SWIG-1.3 Documentation

SWIG-1.3 Documentation

Table of Contents

SWIG=1.3 DevelopmentDOCUMENEALION.iiii ettt e e e e e e e e ettt ettt e eeeeeaesaa s aateeteeeeeaaeaeaaaasnbbsbeeeeeaaeeeeassaansssbeeseeeeaaaeeesaaannnsssneees 1
ST <03 1) TR

A X O] (=YD e Te1 1 a1 a1 =1 110 o RO 1

I TaTo [WF=ToT= 1Yl o (] ST B ToTolU 0 0 =101 =i o) o RSP TRTPRRR 1
DSV Le [o] L=y (B Lo Yot U] Ty 0] 7= LA L0 o H U ETRT R PPR 1
Documentatiorthathasnot yet DeenUDAALEM.............uuiiiiiiiiiee e e e e r e e e e e e e e s e ennneeeeeees 2

o (Y = Vo] = TP RPORRY
I L0 (0T 18 T T o PR
1.2 SpeciallntroductioNfOr VEISIONL. 3. .o ittt e ettt e e e e e e e e e ettt e e eaaaeeaesansbbbe e et eeeaeaeeesaaannntbsseeeeeaaaaeeaann 3
L3 SWVIG VEISIONS. .. e eeeetti e e ettt e e e ettt e e e e et ettt e e e e e ettt eaeees e s baa e eeeeeasban s ee s e e s ban e sees e s s banaeesessaban e eessebannaeeessssannsaeeeesssnnnneens.
YN (R (=TS0 U | (o= TSP PORRPPUPRUPRTRRY

RN o (Y (=10 (WIS =P R PP
1.6 OrganizationDf thiS MANUAL..........c..eeieeeei et e et e e e e e e e e ettt ettt e e ee e e e e e aanaenbebeeeeeaaaeeeseaannbneeeeeees 4
1.7 How to avoid readingtie MANUAL...........uuueiiiiiieiee ettt e e ettt et e e e e e e et e s e ebebe et eeaeaeeeesaaannabbseeeeeeaaeeeeseaannneneeees 4
1.8 BaCKWArdSCOMIPALIDIIEY eee ittt e ettt et e e e e e s et be ettt e e e e e e e e e e e e nnbebb e et e et e e e e e e e e nnnnnrnbrreeeaaeens L
e T O 1Yo L1 £SO PUPRSRPN

0 TN o T =] oo TP UURPTRPPP

A AT YA 1T 1AV [R R TSR PRPPRPRRRY
AR AT\ A (e V0] o= T PEURPURRRRTPPRRPIS
I YLV [101 (=T 0 7= (o< 11 UORRRRPPRIN Y
2.3.2THE SWIO COMIMAI. ...ttt e e e e e ettt et e e e e e e e e e te bttt e e et e e e e e e s aaasneebebe et e e e aeeeeaesannsbsbeeeeeeeaeaeeesaasnnnbbnbneeeeaaaens &
ARSI] =T U T o T o Ir= W =Y d 5T 0 T o LU][O PERRRRT 8
2.3.4BUilding 8 PYthONMOAUIE.......ciiiiiiiiei ittt e e e ettt et e e e e e e e e e s abb e be et e e e eaeeeeesaannnnbbnaeneeaaaaaeaannn 8
RS TS] T0] (o] 1| =TT
A BTN o] o ol n(=Te O 0% P T a1 0Tz (o = (e LU (= PP PEPRRRR 9
2.5 NoN=iNtruSIVEINTEIfACEDUIITING. ... veeeeeiieeee ettt e e e e e e e e ettt e e e e e e e e s et st beaeeeeeaaeeeesaannsbsbneeeaaaaens 10
2.6 IncorporatingSWIG int0 @ DU SYSTEM.....ceiiiiii ittt e e e e e e e ettt e e e e e e e e e s aa e nnnbabeeeeeeaaeeeaeeannenneees 10

AN A = = VaTo o) i Moo o [=To =Y a1y ir- Ao) o IO U PRSPPI 1
R IV A LRz aTe L (=T=T0 (0] o' T 1

R Tt aTo ISy r= T C=To o) INYAY AT T 01RO T RSP PPPPRRR 1
I a1y =Y | oo T T] AT 0 [0y 1:

I I AT T T o A (=Y o U= o] T 12

3.2 SWIG WINAOWSEXAMPIES.eeeeeeeeeeee ettt e e e ettt et et e e e e e e e e et te ettt e e e e e e s aaannstbeteeeeeeaeeeesesannnbssseeeeeeaaeeeesannnnne 12
3.2.1Instructionsfor usingthe Examplegnith ViSUal STUAIO.uuueeeiiiieeaiiiiiiiiieeie et e e 12

VN 1 Vi {aTo o PO TP PP PP OPPPPP TN 1
G 2 O TP PP TP PP PP 1

I T =Y PO 1
I I N L= 7= F P OO US PSPPI 1
G IR LU o PP PUPPRRP 1
T I 1O - SO 1
3.2.2Instructionsfor usingthe Exampleswith otherCoOmMPIIErS.........uuuiiiiiiiii e 14
3.3 SWIG 0N CYGWIN ANAMINGWV.eeiieeiie ettt e ettt e e e e e e e e e s eba bttt et e eaeaeaeaaaneabbeeeeeeeaaeeeeaaasnsbnbaneeeaaaaeeaeaannnsnes 14
3.3.1BUIldiNG SWiQ.EXEON WWINAOWSeetteeeeeieaeeeeeeee ettt et eeee e e e e s s s asstbabaeeeeeeeeaeaasaansatbeseeeeaaaaeesseaannnssbanseeeaaaaeeesanannns 14
3.3.1.1Building swig.exeusingMINGW andMSY S......uuiiiiiiiiiieeei ittt e e e et e e e e e e e s e e aanbbebeeeeeeaaaaeeas 14
3.3.1.2Building SWiQ.XEUSINGCYOWINLeeeeeiieiiiiititieeeeeeeeaeeesaaatitaeteeeeaeaaeesassansasbeeeeeeeaaaaeasasaannsssbsneeeaaaaaaessaannnns 15
3.3.1.3BUIldiNG SWiQ.EXEAIEINALIVES. eeiieieeeeie ittt e e e e e e e ettt e et e e e e e e s e s s ebabb et eeeeeaeeeesaaasnbbnbeeeeaaaaeeeaans 15
3.3.2Runningthe exampleon WiNndOWSUSINGCYAWIN.eetiiiieeaieiiiiiiieeeeeeee e e e e e s e aeiteeeeeeeeeeaeeaesaasnsntesaeeeeeaaeaesaaannns 15
3.4 Microsoft extension®NdOtherWINAOWSQUITKSeoiiiiiiiieeie ettt e e e e e e e e ettt e e e e e e e e e e s e e enbbeteeeaaaaaaeeaeaanns 15

SWIG-1.3 Documentation

Table of Contents

A oY (0 VA o = 1SS < TP 1
4.3 Building ScriptinglanQUagEEXIENSIONSeetieeete i ittt ettt e e e e e et e e eete et eeeeeeeeaesaa s eabesseeeeeaaeaesaaaasnsbasaeeeaeaaeaesesannnsseneneees 19
4.3.1SharedibrariesanddyNamiClOAAING. eeiieeeeeiieiiiiti e e e ettt e e e e ee e e e e e s bbe e e reeeaeaeeesaaannnbesbeeeeaaaeaeaaaan 19
4.3.2LINKING With SNAr@IDIAIIESeeii e et e et e e e e e e s sttt e e e e e e e e e s e s e nbateeeeeaeaaeeaeas 20
TGS = L] 1101 <2 T PSSP T PRSPPI 2

oSN AV [T 2= 1o O

o A U 0170 AT [TP 2
Lo I T U o 00T PP PRSP 2
LN 2 Y [T 11 1 1 PRSP PPRRURT 2
oI G T 0o 101010 1=] 01 £ PP PRUPPTRPPRt 2
T N L O (=T o] (o 1ol 11T o AT PP TPUPTPPUPPPPTPPIN 2
oI RISV [€T BT =Y od 1LY T PRTORRRPP 2
oI I O] =YY =) | I 1172 110 1= OO 2

5.2 WrappingSimPIEC DECIAIATIONS.eeei ittt eeeee e e e ettt e et e e e e e e s e e e eebeeeeeeteeaeaaaaaaansbsbeeeeeeeaeeeassaaannnbeseeeeeaaaeaesanannns 25

oI N o= TS ol Y/ o 1= e =TT |1 o U UR TSP 2E
oI A €1 6] o F= A Z= 1 1 T=1 0] [T TRTTTR 2

Lo TZAR O o] 1) =1 11 = 2
oI Y N o 1A <Y VT[0T (0 =1 1o 11 (o0 1= AT 28

5.2.5A cautionarytale Of CRA™ et e e e e e e ettt e e e e e e e e e e et e e e e aaaeaeaaaann 29
ORCT adol 1 a1 (=T 6=V aTo [ofoTnaT o] [=3to] o] [=Tox £ RSO EPPRPRT 29
LRI T 101 o) (=Y o011 1 (= F PP T RO 2
5.3.2RUNtime POINEITYPE CRECKING. ... ututttieeiteeee e e ettt e e e e ettt et et e e e e e e s e ettt e et e eeaaaaeesasaannnbsbeneeeaaaaaeeeaaaannns 30
5.3.3Derivedtypes.StrUCES ANACIASSES.ccuuieeiieeiieee ettt e e e e e e e e ettt et e ee e e e s e e e nbabe e e e e e eeeaeeesaaannbaeaneeeeaaeens 30
RS 8 LT oY T T=To (o Fo 1Y 6T RSO PPPPURPRP 31
LR TSI N/ 1= [TP PPRRURT K
oI N @1 T=T o nd = (o1 [07= 11 [F PP 3
5.4.1PaSSINGBIIUCIUIERIY VAIUE ...t e ettt e e e oo e e oottt e et e e e e e e e e s e aabbeteeeeeeaaeeeaesannnnnbesaeeeeaaaeaesanannns 32
B.4.2REIUINDY VAIUE ...ttt e oo oottt et e e e e e e e s e et ta bt e ettt e e e e e e e s aa e s n b bebe et eeaaeeeeeeaannnsbesneeeaaaaeeas 3
5.4.3LINKINQG tO StIUCIUIEVAIADIES.ueeeiiieeie ettt e e e e e e s e ettt et e e e e e e e e e s e nnsbesaeeeaaaaeeasasannnnnnes 33
o 0T o (o o = PR EUT PSRRI 3!
L Y AN £ 1= 1Y F PP PPPPUPPUPTPTPRN K
5.4.6Creatingread—0NIWAIADIES.cooeie ettt et e e e e e e s e s et e e e e e e e e e e e e e b reaaaaaeaaa s 36
5.4.7RenaminandignNoringAECIAIAtIONSc.uuiiiiiiiiieee e ettt e e e e e e e e ettt e e e e e e e e e s sa e e ne b e et e e eeaaeeee e e e e nnnreeneees 36

5.4.8Default/OptioNaBIGUIMENES.uuiiiiii ettt et e e e e e e e e ekttt et e e e aeaesae s nnbabbeeeeeeaeeeeeeaaannnreeeeees 37
5.4.9P0intersto fuNCtiONSANUCAIDACKScueeiiiiie e ettt e et e e et e e e e e e et e e eaa e e s et e e e sba s eeseaaseseaneeeernsss 38

oS RS YA 0 (o1 Ty L0 [T TT0) 1S TR 3
oo A /1= o) 7= T o £S3 (0 od (1 o TR 40
5.5.2CharactestriNgSANASITUCIUIESutiieeeiieee e e ittt et e e e e e e e e ettt et e e e e e e e e s e nee bt e et e eeaaaaaesasannnnbsbeeseeeaaaaeeesaaannn 41

oI Y AN 1= VA 101 0] 0= PR U RO 4
5. 5.4 SITUCIUTEHATAMEIMIIELS. ceeee ettt ettt et ettt e et e e e e e e e et e e eaa e e s eaa e e e et e e s aaa e e s saaessaaeesebaseessaneneen 41

RS O o0 a1 10 [01(0] 5N 10 [0 [STo (10 [01 (0] ¢TI 42
5.5.6 Adding membefunCtioNSIO C SITUCTUIESiiiii ittt ettt e e e e e e e ettt e e e e e e e e e e s et e aeeeeeaaaeeaaean 43
ORI AN ST (=0 Y 1 (U (o1 (0 (=TT 4

5.5.80therthingsto NOteabOUtStIUCTUrEWIAPDING. ... uuvetreeeeeeieeeeeeie ettt et e e e e e et e e ettt et eeeeaaaeeeesaannnbsaneeeeeaaeeeaaaanns 47
oI X @0 Yo (5] [TT=Y o 1T o PP 4

LN A I Y 10 11 0 10 (o S 1A PP PPPPURPRP 47

SWIG-1.3 Documentation

Table of Contents

5 SWIG Basics
ol A @fa o [=1 A 1Y =T 0 10] 0] 0] [o]od -3 PPPRRR 4€
ol o] 1] ITaT=Yo Koo To [) o] [ood <4< SOOI 4¢
NS A a1 F= 1[4z L1 Te] 41 o] [0To) TSRS 4
5.7 AN INterfaCeBUIIAING STEALEOY. ...t eeeetteeeeeei i ittt e e e e e e ettt e e e e e e s e s e betbe e eeeeaaeeeesaaasnebeeaeeeeaaaeeesasaannnntbneeeeeaaaaeens 49

5.7.1Preparingd C Programifor SWWIG. e ittt ettt e e e e e e e s e ettt e e aeea e e e s e aesbeeeeeeaeaaeeesaaasnbbsbneeeeaaeeesaeannnnenes 49
D 7.2 THE SWIGINEEITACETIIE.ccee ettt et e et e e et e et e e e et e e e e et e e s aaa e e e et eeesaneesaaasesebaeeeenasans 49

5.7.4Gettingthe rght NEAAEHIIEScoe ittt e e e e e e s e sttt e e e e e e e e e e ae e s nnbaaeeeeeeaaaeeaas 50
5.7.5Whatto dOWIth MAIN(Y.....cuveiieeiiiiiiee ettt ettt e e e ettt et e e e e et e e e e e s eeab e e e e e eesaa s eeesesbaaaaesesssbannaeesessssannseeseees 50

B SWIG BN Crrhio ittt h e s s b e e s a e e £ oh b e e e o b e e oo R b e e oo b e e e e b e e e s R E e e e R e e e e R R e e aa b e e e R e e e e b e e e e b e e s e r e e e s nee e s nee s

6.1 CoMMENTIIN Ctt WIAPPING .. ceeeeeeeeeee ittt ee e e e e e e e e e ettt et e eeeeeaeasaaasanbaeeeeeeaeaeeeaesaannnsbeeseeeeaaeeessesannsenbseneeeaaaaeeesaaannns 52
ST Y o] 01 (0 Y- T o PR UUUP R TUPOUPPPPPPE
OGRS U] 0] o o]0 (=0 Ol (Y- LU (=Y TR SPPR 5!
6.4 Commandine optioNSANACOMPIIATIONLuvieiiieiiee e e e ettt e e e e e e e e ettt e et e e e e e e e s e s e anbebaeeeeeeaeaeaesaaannnsbnaeeeaeaeaaaaaeas 54
OISR Y1001 0] (=Y O a1 =T o] o 11 o (TR 5.
6.5.1COoNStIUCIOIEANAAESITUCIOIS.vvveieeeeiiti et e e ettt e e e e ettt e e e e et et e e e e e e e eat e eeeeeessbsaeeseetaaaaaeesessaaneeeesssssanseeeeesrann 54
6.5.2Defaultconstructorscopy constructorandimpliCit deStIUCIOIS........oooviviiiiiiiieie e 55
6.5.3WhenconstructomrapperSareN TICrEAtEM.eiii ittt e e e e et e e e e e e e e e s e r e e e e aeee e e s 56

ORI 1 @ 0] o)V eT] 0 -1 1 (U (01 10] £ TSP RUPRPPP PP 5
(SRS 1) 0] oYY 10T Yo 1] 0 =TT 5

SRS IS] F= N1 [0] 10 1=1 001 0= £ POt {
SIS\ [=T 001 0]=T (0 P 7= PPN 5
oI CX B=) r= VU |1 =T o 18T 0 0T= 0] TSR RPPPPPRI 6
ST =d (0 (=Y o1 110] o PRSPPI 1
(OISl = a 1000 =Y aTe [ole] 1S =1 0 £ TSP 6
(SRl 11110 [OOSR
6. 10 REfEIENCEBINUPOINIEIS tteeiieiieee e e e ittt e et e e e e e e e ettt et eteeaaee s e s s ateebe e eeeeeaaeeeeaaasnsbebaeeeeeaaeeeaesaannnsesseeeaaaaaaeessannns 6-
6.11PaSANAIEIUINDY VAIUG.ciiiii ittt e ettt ettt e e e e e e e e ettt ettt e eeaeeaesaa s e et be bt e eeeeaeeeeeesannsbsbeeeeeaeaeeeeesaannnneenneees 63
(ST [=T 1 7= L o] = PSP (
6.13A brief discussiorof multiple inheritancepointers.andtype CheCKiNg..........ccueeiiiiiiiiiiiiiiiiiiiee e 65
LN R =T 0= V0 11T TR TR (
6.15WrappingOverloaded=unctioNSANAMETNOASciieiiii ittt e e e e e e e e e e e e e e s e e be e e e eeaaeaeeaaan 67
6.15.1DiSpatChfUNCLION QENEIALIONiii i ettt e e e e e e e ettt e e e e e e e e s aaanbn b bt st e e e eeaaeeeaeaannnbnbaeeeeaeeens 67
6.15.2AMDbIgUIity IN OVEIOAING.eeeeeiiiiieeee ittt e ettt et e e e e e e s e e et ettt e eeeaaeeeaae s nnbasbaeeeeeeeaeeeesaannneneneees 69
6.15.3AMDbIiguity reSOIUtIONANAIENAMING. ... uteeeereeeeeeie ittt eeeeeee e e e e e aaaeebeteeeeeeeeeeesesaanesbeaeeeeaaaaeaessaannnnrssneeeaeaaaaesens 70
6.15.4C0MMENIDN OVEIOAING.veeeeeiieiee et ettt e e e e e ettt e e e e e e e e s e s s ae b ettt e eeeaaeeesasaanntbsbeeeeaeeeeeeeeaannsnnbneseees 73
oI L oATAY] =T ol o] 1 Te [o)VZ=Ta [oF=To [STa o) o T=T = 0] A= PRSP URRPPR 73
ST A O P T A (=T 0 1T (0] o PP 7
Lo RSN =100 o] P =S PR PR RRR |
oI RS L =T TS 0T (o= PP €
6.20 EXCEPIONSPECITICALIONS. ... tteeee ettt et e e e et ettt e e e e e e e e e et b e be ettt e eeaeeaesaa s sabae e e e eeeaaeeeesesannsbsbeeeeaaeaeeeeeaaannneeeeeees 8¢
6.21 ExceptionhandlinQWith J0CaICIESuiiiiiiiie ettt e e ettt e e e e e e e e e s e e n b et e e e e aaeeeeaeannnnanes 88
(SO o] 101 (=1 (0N Y (=) 1 0] =) RPN 8
6.23 SMAartpOiNtErSANAOPEIALONT()... . eeeeeitreeeeeiaitiet e e ettt e e ettt e e e et et e e e ek b et e e e e aa b b et e e e e bbbt e e e e an b b et e e e aae b et e e e e bbb e e e e e annbeeeeeannees 89

6.24UsingdeclaratioNBNAiNNEIITANCE.uuuiiiiiieie ettt e e e ettt e e e e e e e s e s s ebebe e et eeaaeeeaesaaannbeeteeeaaaaaeeeaeaannane 91
(WA =N (=1 [P TS e (=) (AL 1] T 9!

(I T (Y =101 =1 0 Y01 UL (010 41 it 10 6 (=103 1 1=K)= TSRS 93

T o (0 A VA ol = 1SS T TP RPPRRRRR ¢
6.27.1CONStIUCHIONDT PIOXY ClASSES ittt e e ettt e e e e e e e e ettt ettt e ee e e e e e saabebe e et e eeaaeeeesaaannnbesbeeeeeaaeeasaaannns 94
6.27.2ReS0UrcaNaNAQEMEITI PIOXIES ... it i uuereeteeeteaeeeesaaaieteteeeeeeeeeaeaasaaaaanebeeeeeaeeaaeessaaaansabesseeeeeeaeeesaaaannsassseeeaaaeens 95
6.27.3LanguagESPECITICABLAILS.ii ittt e e oo ettt et e e e e e e e e s s a b bttt et e e aaeeeaeeannnnnenrreaeaaaeeeaaaann 96

6.28Whereto 9o for MOreiNfOrMATIONoii ittt e e e e e e e e e e st e e e e e e e e e e s e eannnbebeeeeaaaaaaeaeas 96

SWIG-1.3 Documentation

Table of Contents

A (=] o] o oSS o P UUURR T OPOUPPPPRPRRPP
A 1L T Tl [V o T RUURRRRPIN ¢
A 11T 00T 0T TP PPPPRPRPR (
AT o] aTo [14[o] =1 (0] na] o)1 F= 11T o PRSP PPPPPERRPTR 9]

A Y = e (0] =T T [o PR TP 9
ARSI VAT LY, F= T T ¢

7.6 COOANUGINU EXEEINSIONS .. .ceeuieetieeiete e eete e e et eeeet e e s et e eee et eseeaa s e s s s eesaaeseeaa s e s s s ee s e b essaaa s e s s aasesabesesansessaansesatassanensanes of
7.7 PreprocesSiNANAY0] ... 01 DIOCKS.iiiiei ettt et e e et e e e e e e et e e e eaa e e e eaa e s e et e e e saa e e eaaeereaaaas 100

AR STl (=] o) o odoXSIST [0 T= Lo K T TP 10(
7.9 VIeWING PrePIrOCESSODULDULteettttteeeeeeiaaautteeteeeeeeaaaeaasaaaentbeeeeeeaeaaaaasaaanneateeseeeeaeaeeessaannsbeteeeeeaaaeeesssannnsnbssseeeaaaaeens 100
7.10The#errorand#WarNINQAITECIHIVES euiiii e e ettt e e e e e e et e et e e e e e e e e e s eeebebeeeeeeeaeeeaeaaannssbaeseeeeeaaeeesaaannnnsenees 100

T A O AN 1 - VA X= 10 | 01101 (=] £ UP TR 10:
T2 o o To 0] OO PPPRRPRT 1C

T o L - \A= T U EUP TR ORI 1C
oI To] 1 1= 11 [0 Yoy TR 1C

oI Yol o = v= N [T 1(

o 51 (0 1 110 1 RSP 11
R = (o IRV =Toi (o] 1 S PRROPR 11
ot R FS I < od =] 0 [0 L PP TSP PRPRR 114
o 8 111 YA T o] 7= U= OO PPPRRRPR 11

o I A [0 UL o F= U= 100 [(=] € PSPPI 11¢
I G @ U 11 01U 1 o=V = T A1) (] A< TR 12(
9.1.4INPUL/OULDUIDAIBIMETEIS. .. ettt ee et et ittt e e e e e e e e e ettt ettt e eeeaeeeeaaaasaebeteeeeeaeaeaeseaaanesbbeeeeeeeeaeeeesaasnnbsbnneeaaaaaaeaens 121
oI Y W ST T To Mo (T =T) T L1 1= SR P TR 121
9.2 Applying CONSEIAINE0 INPUEVAIUES.eeiiiiieeee ettt e e e e e e ettt et e e e e e e e s s s s be et eeeeaeeeeaeaannenbesteeeeeaeeeesaaannnnnenees 122
9.2.1 SIMPIECONSITAINEXAMPIE ...ttt e e ettt et e e e e e e e ettt ettt eeeaaee e s e e s nnbbateeeeeaaaeesaeaansnnbeneeeaaaaeeesaanannns 122
I A O10] 4 Y1 = 11011 T=11 010 PR 127

9.2.3Applying cONStraiNtd0 NEW ALY DES ... o ceeeieieieeeeee e ettt e e e e e e e e e ettt e e e eeeeaeeaansanbeeeeeeeaaaeeesaaannneeeeeees 122

SWIG-1.3 Documentation

Table of Contents

10 Typemaps
O Y] o<1 10 F= T 0 ol] o= USUUPPPPPPPUPTPTRRRRIN 13:
O ZRe 0o o)/l aTo F= HAYA 0 1=T 1.0 T- o SRS PPPRURPTR: 132
O B L= (=) [aTo = HAYA 0 1=T 1.0 T- o TSP PPPRURPTRR: 132
Q2T ol P Tol =TTy L) MY 01T 0 T oL RO PERRPRR 132
10.3PatterNMAtCRINGIUIES. ...ttt ettt e e e oottt et e e e e e e e sa s aa e be ettt eeaeeaeeae s e nbnbbe et e eeeaaeeeeaeannnnbnbtneeeaeeens 13!
10.3.1BASICMALCRINGAIUIES eeeeieee ettt e e e e e e e e e et e ettt e eaeeaee s e n bbb beeeeeeeaaeeesaaannnbbebeaeeaaaaeeeaeaanns 133
O RS A Y] o1 =To =) =T U)o o KT PPPRRRT TR 134
QR IRC B =) oYU |10V 01=T0 0T o 1 PR 13¢
ORI Y D C=To Mo [= 10 LAY 01=T0 0= 0 RPN 137
10.3. 5MUlti=argQUMENTEYDEIMADS. ... eeveeeeeetieaeeee s e i aiteteee et eteaeeaasaaatebbeeeeaeeaaaeeeaaaansanteeeeaeaaeaeaesaaasnsbenseeeaaaaaeaassannnnnnes 137
O oo T <o [T =T = Lo (1 = RSP TR 13
O N ST o o] oL ST PP 1z
10.4.2DeclaringnNeWI0Cal VAIADIESciii ittt e e e e e e e s e e et e e e e e e e e e s aannnnrbeeeees 138
10.4.3SPECIAINANIADIES. ... ettt ettt et e e e e e s oo ettt et et e e e e e e e e e e R a b ettt e teeaeeeeaeeaaannnbaetreeaaaaeeeeaaaann 14(
10.5CoMMONtYPEMAPMETNOUS. .. .ot eie ettt e oo e ettt et e e e e e e e e e st b ettt eeeeaaaeaeeaannbbenrreeeaeaeeeeaaannn 141
O R T00 T 1Y 0= 0 7= o U PSRUPT TP 14
ORI Y] o T=Tod a1 o (YA 0 =T 0 T o R PUPPPRPR 142
O TRC o U A1 01=T010 =1 TP STSPURPPP 14.
O T - o [T TS 01T A= PR 14
ORISR0 (=) =T L Y 0 T=T 010 o ST PPPRT 143
ORI SR o] 0 T=T ol LAY 0 1) 7= o U UTPOPPPRRURTR 14:
O A= To [0 101 Y 1< 0 1F=T o TSP PUPTUPPRUPPTPRIN 14:
ORI T Ye Lo BNV 1= 0 7Y o TR PPPRT 143
ORI I oA (=T YA 01=T0 0= o DS PPPRURPRRR: 144
ORI KO aT=T 0] o= T Y 0 1=T 010 =T o PP RRRRT 144
O T B V7 V[1Y 0= 0 7= o PR PRRRT R 14«
O Y7 T (o 10 | YA 01T 10 F= o PP PT PP 14¢
ORI e 1 (0 (01Tl Y/ 0 1=T 0 1= o DS PPPEURPTRR: 144
10.6 SOMELYPEMAPEXAMIPIES. ... tteteeeeeeeeeee e et ettt teeae e e e e e aaateetee et eeeaaaeeesaaasanbeseeeeeeaaeeeaesaansesbseeeeeeaaaeeesaaannsbsbbeeeeaeaaaaaeas 14¢F
O ST Y] o=t 0 =T o1 (o = U1 7= LY YU PRPRRR 145
10.6.2ImplementingconStraintSVIth tYPEIMADS.vvveeeeieie ettt e e e e e e e e e e e e s et eeeeeeaeeeeaaannneeneees 148
10.7Typemapgor MUItIPIE ANGUAGES.cceie ittt e ettt e e e e e e e e e et e bt e e e e e e e e e e aaanenbbeeseeeaaaeeeesesannsbsbneeeaaaaaaeaeas 148
10.8MUlti—argQUMENEYDEIMAS ..ot ueetttteeeeeeeee e e e e aataebeeeeeeeeaeaassaaaseebeeaeeeeaaaaaesaaanneesbeeeeeeaaeeeaesannsssbssaeeeeaaaeeesaaannnsssneeeeeens 14¢
10.9The ruN—tiMEtYPE CRECKEE. e ettt e ettt e e e e e e e e e s e aba b e et e e eaeaeeeeaaannbbebneeeaaaaens 151
ORI 0]] (=T 0 0 1= 01 7= o PR USRS 15:
O A0 7= (o [T TP 1F
OO R o 1T Fo Yo TaTo [0)V7=] o (o= Vo 1T PP URPRP PSP 154
10.11More aboUtdOaPPIY ANAYOCIEAL eeeeeeee e ettt e e e e e e ettt e e e ee e e e e e aaaae e e eeeeeaaaeeesaaannnbesaeeeeaaaaeeeesannnnsbnneees 158
10.12RedUCINONTIAPPEICOUESIZE. ... eetieeeeeiiiieiitttteeeeee e e e e e e e e e aaebtete e et e eaeeeaasaaaaesbee et eeeaaaeeeaas e nnbebbeeeeeeaeaaeessaasnsbsseneeaaaaaeeaens 159
10.13PassiNglatabEtWEEIEYDEIMEBS teeetttteeeteaiiitetteeeeeeteeaeeaaaa e aneeeeeeeaaaaaaasasaaansssbeeeeaaeaaaeassaaansnbsseeeeaaaaeeesesaannsnsrnneeees 160
10.14Whereto do for MOreinfOrMatIONT e ittt e e e e e et e e et e e e e e e s e e e anbebreeeeeaaeaeeeeaaannnn 160
11 CUSIOMIZALION FEALUIES.cciieitiieeeeeetie ettt e e e ettt e e e e et et eeee e e e et e eeeee s s ba s e e s eesaaa e eees e s s ban s aeeeessaban e eesessaanaeeessstbanseeeeesrannnss 1€
11.1ExceptionhandliNQWith Y0EXCEPLION.ceei ittt e ettt e e e e e e e e ettt e e e e e e e e e e saananbe e e e eeeaaaeeesesannenbeneeeeas 161
11.1.2HandliNgeXCePIONSN € COURceii ittt ittt e e e e e e ettt et e e e e e e s e et aebe ettt e e e aaeaesesaanssnbeseeeeeaaaeeesesannenseeeeeeas 161
11.1.2ExceptionhandlingWith IONGJMP(). ... «.xeveeereeeeeeeeiiaaiitite et e e e e e e e ettt e e e e e e e e e s s e anbbeseeeeaaaaeesasannnbsbaeeeeeaaaaeaans 162
11.1.3HANANNGC H+ EXCEPIIOMS. .. ettteteeeeteeeee et as ettt et eeeeaeeeesaaaaebeeaeeeeaeaeaesaaannnbasbeeeaaeaaeeeassansesbeseeeeeeaeseesanannsrsnseees 163
11.1.4Exceptionhandlerdor VAriabIeSuiiieiiiie e e e e e e ae s 163
11.1.5Defining differenteXCeptionNaNAIBIS.oiiiiiiiiiieie et e e e e e e e e e e e e e e e ereaaaaaaeas 164
11.1.6USINgThe SWIG @XCOPHIOMIDIAIYuteeeiieieeeeeee ettt e e e e e e e e ettt e e e e e e e e s s e s betb e et e e eaaaaeesssannnbsbneeeeeaaaaeaens 165
11.2 ObjectownershipBNAYONEWODJECE.co ittt e e e e e e e ettt e e e ee e e e e e s s nnbebbe et e eeaaaeeeaseannrbenneeeeaaeens 166
R e L sV o L T (o N1 L= 0 [(=Y oL (AL O PUTR 167
R T I oY (0 1= = o P ETUPT TP 16

SWIG-1.3 Documentation

Table of Contents

11 Customization Features

RS P O [T 14T 0| (= LU o PR PPRRURTR 16¢
11.3.3FeatureaNddefaultargUMENES..........uu e e e e e e e e e e ettt e e e e e e e e e e e e e nnb et e eeaaaaeaeaaan 170
R R oY (1= <5 =0 0] o) = U RP PSP PPRRRRTR 17:
O] 111 = (o1 1= T PO PRUPPURPRt i
A R I 1SN0] 011 = Yoa 0 [(=Y o1 1LY/~ RSOSSN 17:
A ToT0] 011 =103 "= 1010 (0] F- Fo1T =Y R UUPORRUR 17
12.3Constanfiggregatio@nd%agaregate ChECK. i it e e e e e e e e e e e ne e eee s 173
L2 AN O S .ottt e et eeeeeteeeeeaaeestaaeeeetaeeeetteesttneeettaaeeettaetttaeeettaaeeeetaeertaaeaetaaarataaes 1
RSV 1= o] [T T o 1 I AN o T8 10 0T=T 1P PPPPRPPTR 17
G0 I 0 (o Yo [0 o3 1o TSRO 17
T2 B 4 1SY o (0] o] 1T o o OO RPPPPR 17
SRR T Do) o T8 1AY== U0 1o U] 0160 ¢ PO TP PPPPRRPR 17
13.4 ArgumentreplacemMENUSINGYOVAIAITS.eeee et i auetteeteeetaaaeaesaaaaeteteeeeeeeaaaeaasaaasssteeeeeeaeaaaaesasansssbseseeaeaaaeeesseannnreneees 177
RS ROV A= 1= Vo 1S T a0 [NV 1<) 00T oL TSP TR PP 17
13.6 VarargswrappinQWIth ioooiiii e e e e e e e e e e e e e 179
S A YA =T o] o1 T T) Y= W 1) GO PP TR 18
R ST O ol 11 U =] TSP PRPRUPPPRRIN 1¢
G] B o U 1T (o) o TR 1¢
Y= T T o T[T oY= o =TT PUPEPRPRR 1
0 I (Yo [0 o3 1o RPN 18
14.2\WarninQgmMeSSAQBUDDIESSION. ... ciuuitettieieetteaee et e e aetteeeeetaeaaeaesaaaasaeteeeeeeaeaaeaeaaaaasssbsbeeeeeaaaeeesssansssbesseeeeaaaeaesasannsnnes 185
14.3ENablinQadditiONAIVEININGS ... eeeeeeeeeieeiitetee ettt e e e e e e ettt et e e eee e s e s s e eaabee et eeeaaaeeeaas e nnbebbeeeeeeaeaaeesaaasnsbssnneeaeaaaeaaens 186
14.41SSUINQA WA NINGIMIESSAGE - tttttteeeeeeaeeesaaaautueteeeeeaeaaaaaaaaaassseeseeeeeaaaaaaaasaaasssstsseeeeeaaaeassasaanssssesseeaeaeaessssnaasnsssssneeeeneens 18€
Y 0o] A1) 0172 PP TP TP PP PPPPPPTTPTT 1€
Y= T a0 = LT =Y 0] TP PPPRURPTR 18
14. 7 MeSSAQ@ULDULTOIMIAL. eeeieeiiiiie e ettt e ettt e et e e e e e e e e s e ea bttt et et e eaeeeaeaanebebb et eeeeaeaeaeaaaannnbbeneeeeaeaaeeeaaaanns 18
14.8WarningNUMBDEMEIEIENCE.ueiiiiiii ettt e oottt et e e e e e e e s e s e ababte et e e e e aaeeeeaaannbbnbneeaaaaaens 187
14.8.1Deprecatedeatured100=199). .. . i ittt iiieiie ettt ettt e e et e e e e b e 187
14.8.2PreproceSSA200=299)... . .ueeeiiiteiee e ittt e e e ekttt e ettt e e h e e a4 b e e et o R b e et e e e e b e et e e e o R b et e e e e e be e e e e e et eeeeeaane 188
14.8.3C/CH+PArSEIB00=390) ... i et tiiiiiittiiiieitete e e e e e ettt et eetaa e e e e e e e _— e ettt ateeaeeeeaeaa—heteeeeeaaeeeeaeaaaaanbetreeeaaaaeaeaaaannns 188
14.8.4TypesandtypemapE400=2499).......ccueiiureeeeeiiteeee ettt e e e sttt e e e et et e e e st e e e e e e et e e e e b e e e e et r e e e e a b e e e e e aanbn e e e e 189
14.8.5C0odedeneration{500=599)......cciitriiiei ittt ettt e e e et e r e e e e s 189
14.8.6Langquagenodulespecific(800—=899).........uuutiiiiiiiiieiiiiii et 190
14.8.7Userdefined(9007999).... .. eiiiiitiiee ettt e ettt R et e e e e e e e e b b e e e e e e b b e e e e e a b e e e e aane 191
] 1S3 (Y PP RTPPI 1
SV T To T Yo Yo LU [PO PPPRURPRP 1¢
15. 1 THESWIG FUNIIMECOEuvueeeeeeeite e ee ettt e e ettt e e e e e e et e e e e e e et eeee s e e st e e eeessa b e eesesbaan e seessasbanaeeeessbabnnseeesenrannnnns 197
15. 2 EXtErNalacCeSI0 tNE TUNTIMIE.vuu i eeeieite ettt e et e e e e e ettt e e e e et e e e e e e eab e e e e eesbaa e eeesessban e eeeeeaabansaeessessnnanaees 192
15.3A word of cautioNabOULSIALICIDIAIIESvuuiiiiieiitee et e et e e e e e ettt e e e e e e ea b e e e e e eebaeeeeeeesbanes 193
N =) (=] (=) 1o Y TTR 1¢
15.5ReduCINANEWIAPPEITIE SIZE......eieeeiiiiie ettt oottt e et e e e e e e e e e bttt e e e e e e e e e e e e r e eeeaeaeas 193
16 SWIG and Alledro COMMION LS. .. eeeitiiiiiititieeiteeee e e e e e e ettt et ittt e ae e e e s e s aetebeeeeeaeaaaeaeaaaaanneaeteeeeeaaeaeeeesaansssbssseeeeaaaeeeseaannnssstnneees 194
T I = T T o OO PUPPPRR 1
T I T 1T 0 ST TSP OTPPPRPRR 19!
16.1.2C0MMANAINE OPIOMNS. ... teeeteiiee et e iieteteee et e e e e e et e e et e et e e eeeaaeesaaa e abeeeeeeeeaaeeasesaanssbbseeeaeeaaeeeesaannnnbsbneeeaeaeens 197
16.1.3Insertingusercodeinto geNeratedileSuu o it e e e e e e 198
A YA =T o] o1 Lo @ LY 7=T Vi< PP PR 19
T2 ¥ Tt o] 0 VAT 7= 0] T PSP PPPRRRPTRR: 19¢

SWIG-1.3 Documentation

Table of Contents

16 SWIG and Allegro Common Lisp
I o] (=110 TNV A A= o] 01T £ T ST SO 19¢

T AT 7= 0 01T TSR RUUUPPPPPP 19
S N (o])Y =Y [0 F=T0 (ST DLy 1| T 200

SISO LY =Y d [0 F=To (Yo DI iU 1T 20(

G2 A ®] o T=Tol A TATA = o] o1 T PSRRI 20(
R AT =T o] o1 aTe| = r= V1 PP PEURPTR 20

RS TN N\ =T 11T 0 T2 Lo TP 20
IR TZA O 0] 1) £ 15T 20

SR RN 2= 1A F=1 o] [T P 20
SRR 0 T aaT=] = L (o) 0 20

GGy N1 = 1Y TP PP PP 2(
16.3.6Classeand StructsandUnNIioONS(ON MYuuieiiiiiiiiee e e e e e e e e e e e e e e e e s e e enneeeneees 206

16.3.6.1CLOSWIAPPINGOT. . ettt e e e e e e e ettt e e e e e e e e ettt e e e e e e e e e e e e nnnraeaeees 206
SR I O M@ 1SN 1] 41T 41 7= Lo = TR 206

TR A =Y 001 o] oY TP PEURPRRT 20
16.3.7.1Generatingvrappercodefor tEMPIALES.uuuieeiiiiie e a e 207
16.3.7.2Implicit TemplataiNStANTIAIONiii et ee et e e e e e e e e et e e e e e e e e e e s nbeebneeeeeeeaeeeeaaannes 207

16.3.8Typedef TemplateSand SYNONYMITYPDES.cccuiiiiiiiieieee e e e ettt e et e e e e e e e s e ettt e e eeeaeaeese s s nbebbeeeeeaaaaeaesaaannes 207
16.3.8.1Ch00SINGA PIIMAIYEYIDEttteeeteeiee e et e ettt e e e e e e e e e ettt et e e eeeeeaeaansbnbee et e eeaaaeaesaaannsbnneeeeeaaeeesaeaannnnne 208

16.3.9Functionoverloading/Paramet@efaulting.............oooiiiiiiiiii s 208

16.3.100peratomrappingandOpPeratOrOVEIIOAING. eeueieee et eieeeee e e e e e e ettt e eeaeaeeeesaaannreeeeeeeeeaaeeaeaannnnnes 210

R TN B AT = 10 SRR P PP PTPUPRPPPPPRPRN 21

TR T 2 Ol ot (ol=T 0 0] PR TRT R 21

16.3.13Pasdy Value,passiy FEfEIEINECEuu i ettt e e e e e e ettt e e e e e e e e e e s e er e eeeaaeeas 213

G Y T=T010 =T o S S PP PP UUU TP 2.

16.4.1CodeGenerationn the CH4 VWEBDDEE. .. . iiiee e e e e ie ettt et e e e e e e e e ettt e et e e e e e e e e s e aenbbeeeeeaeaaeeesaesannsnnbneeeeeeaaaeens 213
G 0 1\ I o= 00T o PP PRURPRR 21:
T 2 O 1 N N Y/ 0T 117 S RRPR PP 214
T G O N B LY 0 T=T 110 Y o PR PTPPI 214

16.4.2C0odegenerationn LiSP WIADDEES. ... uuuutaaaateiaeeutieeeeetaaaeaesaaaaateeteeeaeeaaaeaaeaaasssbeeseeeeeaaeeasaaaannssnbseeeeeaaaesessannnnns 214
MG e TV LY/ 0 T= 0.1 Y o PP PPPRURPR 214
I O 1 I LY/ =10 7= o P PP PERPPRP 215
R e I I = Y 01T 1 7= o SRR 215
I I 1] el I o i IR/ 0= 0.7 o PP ERUPP 216

16.4.2. 5L ISP CLAS STYPEIMIGI . tttttttttetaaaaaataaauutttteeeaaaaaaaaaaaaaasatteeeeeaaaaaaeasaaaasssbteseeeeaaaeaessaaansssbeneeeeeaaasassanannns 216
16.4.3Modifying SWIG behaViomUSINQLYDEIMIAScevuuneierinieeetneeeeeteesesaeesstaeeesaasessa e setasesettessa e retseerensesssaerees 216

16.51deNtifier CONVEIIEIUNCIIONS. eieeteieiee ettt e ettt e et e e et et e e e et s e s sa e e e et eeeaaa s e s eaa e e s aaeesaaa s e s eaaeessaesssba e ssanssessnnasennnsaes 216

16.5.1Creatingsymbolsin theliSp @NVIFONMENL.........coiii it e et r e e e e e e e e e s e nenbe e e eeeaaaeeas 217
16.5.2Existingidentifier—CoNVertefUNCHONSuu it e e e e e e e e e et eeeeas 217
16.5.2. 1identifier—CONVEI=NULL.........ccoi it e e e e e e e e e e e ettt e e e e e s esbaeeeeesesbannaeeeaees 217
16.5.2.2identifier—ConVEIT=lISPIEY........ccii ittt e e e et e e e e e e e e e nenneees 217
16.5.2.3Defaultidentifier t0 SYMBDOICONVEISIONS.oiiiiiiiiiiiiiie e e e ettt e e e e e e e e e e et e e e e e e e e e e e e annebeeeeeeeeas 217
16.5.3Defining your OWN identifiler—CONVEITEE.......coi ittt e e e e e e e e e s e e eeeeaaeeee e s 217
16.5.4InstructingSWIG to usea particularidentifier—CONVEITEN.............uuiiiiiiaiiiieee e 218

XYY A L= T O T 2
O T Yo 0 o oY T 2]
17.2Differencesto the JAVAMOUUIE.ouuiiii ettt e e e et e et e e e et e e ea e e s et e e e aa s e e eaaaeesebaesenaaeeseansesenas 219

R T O o Col=T o) o] 1 PO PPRPRTTR 22
17.3.1C# exceptionexampleusing"CheCK tYDEIMANDuueiiriee ettt e e e e e e e e e e s et eeeeaaeeeeeeannnnes 223

SWIG-1.3 Documentation

Table of Contents

17 SWIG and C#

17.3.2C# exceptioneXampleuSINGYOEXCEPLION.uuurteiieeee ettt et e e e e e e s e ettt e e e aeeeeesaaanaebeeeeeaeaaaeeesaaannnenneees 225
17.3.3C# exceptionexampleusingexceptionsPecCifiCationsS............ueeiiieieiiiiiiiiiiiiiiie e 226
17.3.4CustomC# ApplicatioNEXCEPHIOMBXAMPIEiii ittt e e e e e e e e s e e e e e e e e e e e e annnenbneeeeeas 226
N O Y] 0 1=T 0 F=T 0 o ee 1101 0] [TP PPPPRRPR 22!
17.4.1Memorymanagemenivhenreturningreference$o membewariables.............cccoveiiiiiiiiiiiiiiiies 228
17.4.2Memorymanagemertor objectspassed the CH+IaYEI........uuii it 229

MRSV A (= aTo O o113 =T T 2:
I = [T TR = T TP 23

18.1.1RUNNINGSWIG N C MO, ... ee e e ittt e e e e e e ettt e et e e e e e e e e ekt ettt et e e e aeeeae s s nbnbbeseeeeeaaeeeesaaannsbstaneeeaaaaaaaans 232
18.1.2RUNNINGSWIG N Ct MOAE ... ettetieeieete e e e e e ettt e e e e e e e e e e et e et e e e e aaeeeaaaaansbaebeeeeeaaeaeeaeaansssbasneeeaaaaeeesanannn 233
T @fo o (=] CT=T 01T = L1 o) o RPN 23
18.2. 1NAMINGCONVEINTIONS. .. ettteeeiieiiittteetee et e e e e e e e e e aeteebe e et eeeaaeaasaaaseebeeaeeeeeaaeeeaaaaasesebeseeeeeaaeaeeseaanssnbenseaeaaaaeeesaaannns 233
T2 1Y, (oo 11 | =T PUP RPN 23
18.2.3CoNStaNtRNAVANIADIES.........vuuieiieieiii ettt e e e ettt e e e e e e e ee b e e e e e e es bt e e e e e e ssba s eeseesban e aeeeesnranns 233
T | TN o od (0] 1P 23

ST (o= o) 1o 1 TR 23
TR I T YO 1 SRR PPPSPPRPR 2!
T Vo [P T RSP 2.
18.4.1Staticbinaryor sharedibrary linked at COMPIIELIME...........uuiiiiiiiiieii e 235
18.4.2Building chickeneXteNSIOHIDIATIES.cieiiiiieeie e ettt e e e e e s e ettt e e e e e e e e e s e e nanb e e e eeeaaeeeeeeannnneseeees 235
18.4.3Linking multiple SWIG moduleswith TINYCLOS ittt e e e e e e e e e ereeeaaaeeeas 236
S ANV 7=T010 =T o S S PP PUPTTPTPTPR 2.
ST o8] (=Y TP 2.
RSN K Y= T o= Vo T oo | =Tk o T o ST PPEPRPRRTR: 237
18.7UnsupportedeatureSaNdKNOWN PIrODIEIMISueiiiiiie ettt e e e e e e e e et et e e e e e e e e s e s et e e e eeaeaeaeeesanannnseeeeees 237

FO SWIG AN GUILE......ceeeeeeiete ettt e et ettt ettt e e e et e s et e e e et e e e e e e e s e e e e s et e e e e et e e s e s ee s et e e e aaee s aaa e s s e ba e e saaneessanassebassennnnsanes 2
9 1Mean|ngof 1YL 0o L1 | 23

19.3 T ST =PTSRS 2.
R T AT 0] o) =] I 0= Lo = TP 23
RS I e TSIV BT 1= Lo = U TP PPRRRTRR 24(
19.3.3Native GUIlE MOAUIE LINKAGE. ... eeeieeeeeeiiiiiitieie et e e e e e ettt ettt e e e e e e e s e et be e et e eeaaaaaesa s e nnbataeeeeeeaeaeeesaannsnseeneeees 240
19.3.40Id Auto—LoadingGuile MOAUIE LINKAGE.ueeeieiieieeeiie ittt e e e e e e e e e ettt e e e e e e e e e s s et eeeeeeaaaeeeaaaannnnnes 240
19.3.5HODDIAD LINKAOE. ... eeeeeeeeeeeee ettt e ettt ettt e e e e e e e ettt ettt e e e e e e e e aaannabbbe e e e eaaaaeeeseaannnbsbeeeeeaaaeeeeesannnnne 24(

S O T =Y ST olo =] [0 10T PP PRR PP 24

S IV 7=T00 =T o S S PP P PP UUTUTPTPR 2

19.6Representationf POINTErSASSIMODS.iiiiiii ettt e e e e e e e e e ettt e e e e e e e e e e e e s nnbnbeereeeeaaaeeas 242
R T KT ST 1210 LT 24

19.7 ExcegnonHandIlng ... 24
MR R T nd (Yo=Y o (U] o (o Yo U I aT=)] =N [0 A TR 24:

R Rl (o Tol=T o [T N A TEY = 1 (< TR 24:

19. 100G OOP SPIOXY ClASSES. . tttteaeettiiiiutittttteettaaea et e s aatteteeeteeeaaaasaaaaaseabeeseeeaaaaeeasaaanntesbeeeeaeaeeeeesaansasbeseeeaeaaeeessaaannnnennnees 24:
10,10, INAIMINGISSUEBS ... itteteeeee et e e e e et ettt et e e e e e e e s e s e e tbebe e et eeeaeeeaesanasenbeeeeeeeeaaeee s e nsebbeeeeeeaaeeeeeseaannnbsbbeneaaaaeeeaananns 24!
L0 B2 I] o USRI 24

AN AV [Tz T aTo I 2 A= TR 2
O R @ LYY= ST 2
A I o (= [T AT TR F= T TS T 2

20.2. 1RUNMINASWWIG ...ttt ettt ettt ettt ekttt e e oo ekttt e o4k ket e e 4ok b b et e e 442k b e et e 44k b e et e o4 4a kb et e e e e bbb e e e e e aabbe e e e e abbneeeenane 25(

SWIG-1.3 Documentation

Table of Contents

20 SWIG and Java
20.2.2Additional ComMMaNAINEDPIIONSuueieieiieeee ettt e e e e e e e e e e e ettt eeeeaeeeaaasaastbbaeeeeaeeaaeeesasannsnsbeneeeeaaaaeans 250
20.2.3Gettingthe rght NEAAEIIIESceiiieieeei ettt e e e e e e s e e ettt e e e e e e e e e e e e annneereees 251
20.2.4CompilingadyNamiCMOMUIE.ueiiiiii ettt e e e e e ettt e e e ee e e e e e saaaeebeeeeeeaeaaeaesaaaantssbneeeeaaaaeaesaaannnn 251
20.2.5USINGYOUIMOAUIE.ceeeeiee ettt e e e e e e ettt et e e ee e e e s e s s et bebe e et e eaaeeeaesaanesbeseeeeeaaaeeesaaansnnbsbeeeeaaaaeeasesannnnne 251
20.2.6DYNamMICHNKING PrODIEIMISeiiiiiieei ittt e et e et e e e e e e e e ettt et e e eeeaae s s nseebe s e e e eeaaaeeeseaannnsnneeneeeas 252
20.2.7CompilationproblemsandcompilingWiIth Cr....ciivviiiiiiciiiee e e st e e st e e e e s enbaaeee e 253
A IR] 1o [T aTo Mo AYAT e o T TP PRPPPRR 253
20.2.8.1RUNNINGSWIG from VISUAISTUIO.ceieiiiiiiieiie ettt e e e e e e e s e eeeeeaaee s 253
20.2.8. 2USINGINIMAKEeeteeiitiiete e ittt e e sttt e e e ettt e e e s atte et e e s sstaeeeeeaasseeeeeaastaseee e e ssseeeeeantaeaeeeassaeeeeeanntneeeeannneean 254
20.3A tour Of DASICC/CH+WIAPDPING: +.teeetivtrereeeittereeeaittereeesstteeeessastaeaeesastaeeaeaaasteeaeeaasssaeeesasseeeeesassseeesaasseeeesssssereessnssees 255

20.3.1Modules packagesfindgeneratedaVaClaSSESuu e iiiiiieee et e e e e e e e e e e e e e 255
ORI U o 110 1T 25

AR €1 (o] o =Y AV Z= 1A E=1 o] [) T 25!
O TR T 1 @0 1] = 11 TN 25
RIS T80 1=] =1 1] 0 25

20.3.5. JANONYIMIOUSEIUIIS. ..ottt eeeeeeeeetatetteeeeeeeeaeeeebababaea o s oo o1 e e e e e e e aeaaaatetateteeeaeassstssbebebabas e aa e e e e e e aeeaaaaaaaaens 258
20.3.5. 2TYPESAIEENUIMS. ...ttt et e e e e e e e ookttt e e et e e e e e e ae e nn ettt et e e e e eeeeeee s e nnbnbbeeeeaaaeaeaans 259
20.3.5.3PIOPEIJAVAEIIUITIS.oeteteeeiietittittttatata o e o e o e e e e aaaaeaaaaatateteteeeseasbebebbbb s ae o e o e e e e e eeeeaaaeaaaeaeeeeesesssnnbnnes 260
20.3.5.4TYPEUNSAIEENUIMIS. ...ttt e e ettt et e e e e e e s s s bbb b ettt et e e aaeeeassannsnabeneeeeeaeeaeeaaannnns 260

A RS RIS T00] o) (=TT 418 0P R PSPPI 261
ORI 3] o 11 (=Y T 2¢€

B O TR A (T3 (U TN 26
ORI ST O o] F= 1YY L= YT 26
ORI L O 18] 1<) 1 7=1 107 =TT 26:

20.3.10Pointersreferencesarraysandpassy VAIUE.oooiii ittt e e e e e s e eeeeae e e e e e annneees 264
20.3. L0 INUI POINEEIS .. tttteeeeeeeee e e e e e ettt e et e e e e e e e e e e bttt et et aeaeee s e e s nnebebe e eeeeeeaaaaesaaannsbebaeeeeaeaeaeaesaaannnsbssnneeeeaaens 26E
20.3.11C++ 0VErIOAUEAUNCLIONS.vvueieeiieite et e ettt e e e ettt e e e e e et e e e e e et eeeeesee b e eeeeessbaa s eeseestanaaeesssstansaeeeeesnes 265
AR I 2 O o [7= LU]| = o 1800 T= 01 PP ESURT TR 266
A T RS Ol = V0 11T 01 (o0 1 TP PPPPPPPURPPROPON 26"
P N O (Y 1410 = (S YT PPRRPPTRRN 26’
A O T S O] 1 =11 01101 (=1 £ PSPPSR 268
20.4Furtherdetailson the geNerate@aVaCIBSSES. . .. uuuiea ettt e e ettt et e e e e e e e ettt e e e e e e e e e e e e s nban e e eeeeaeaeaeas 268
20.4.1TheinterMEIArYINT CIASS iitiii ettt e ettt et e e e e e e e e e ae e ettt e e e e eeeaae s s nsebbeseeeeeaaaeeeseaannnbnneeneeeas 269
20.4.1.1TheintermediaryJNI CIaSSPIAGMAS. ... uuuuureteeieaeeeaiaiitiieeeeeeeeeeeesaaaabetbeeeeeeeaaeeeeaaaannrbsereeeeaaaaaesesannnnnes 270
20.4.2The JaVaAmMOUUIECIASS.cvuteieeeeeetiee e ettt e e et e e e e e et ettt e e e e e e ea b e e e e s eesaa e e e e s sesban e eeeesssaban s eeeseessraneeeesesrannnnns 270
20.4.2.1The JavamOdUulECIaSSPIAGMEAS.eetieuutreeieeeaeeee e e e e e ettt eeeeaaaeaaaaaaesabeareeeaaaaaaesaaannbssaeeeeeeaeaeeesannnne 271
20.4.3JAVADI0XY ClASSES. .. e et ittt e e e e e et ettt ettt e e e e e e s aa e e atb ettt et e e eeeeeae e R R habe et e e et e eeee e e e e annbatbeeeeeeeeeeeeeaannnnreneeees 271
20.4.3. 1MEMONY MANGGEIMIEIALttt e e et e e e e e e ettt et e e ettt tete b e eb e e oo oo o oo e e e e e e e aaaaeeaeeeeeeeeeebebnbsbbbbbbsnnn e e e e e s 272
A R I 4] 4 = 11 7= 4T =R PUUPRRRIN 274
20.4.3.3ProxyclassefandgarbageeOlIECHON.iiei ittt e e e eas 275
A Y] o 1oAY 7= 0] 0= (0P TS PR PUPPRPRRR 276
A Y = 410 [o P LT TP 27
20.4.5. 1 TYPESAIEENUMICIASSES. ... eetteteeeeeeee e et ettt et e e e e e e e e ettt et e e ee e e s e s s sttt beeeeeeaeeeeeeaaanssnbssneeeaaaaeeesaaannns 277
20.4.5.2Pr0PEIJAVAENUMICIASSES. ... ettieiieieeeei et ittt et e e e ae e e e e e ettt e e eeeeeaaaeesaa s nnbaebeeeeeeaeaeaesaaannsbssneeeaaaaeaeseaanns 278
20.4.5.3TYPEUNSAfEENUMCIASSES. ...ci e e ettt ettt e e e e e e ettt et e e e e e e e e e s e nbebbe et e eeaaaeeeeaeannneneeees 279
20.5Crosslanguagepolymorphismusingdirectors(eXperimental)...........eeeiiirrrreiiiiiie e 279

A RSN S g T2 o] T T o [T (Yo (o) PSR 28(
ARSI B (=01 (] Ml = 1Y TR 28

A RS RCI O V/=T daT<F=Te -1 alo [o]0Ye 1) o (o= | ST 281

A RS ST 0 0] o) [=To [T =T o (0] £t e= 11 0]][TS PRPRRRT 281
20.6 COMMONCUSTOMIZAIIOITEALUIES.eete i eeeetee ettt e e et e e et e e et e e e et e e ee e e s et e e s et eeee s e e s e s eesea e eeseaa s e s saaees et s sesansesesansenennss 282

20.6.1C/CH+NEIPEIMUNCHIONS. ...ttt e e e ettt e e e e e e e e ettt ettt eeeaeeeseaannsbe e e et e eeaaeeeesaassnbssaeeeeaaaeeesasannnnnnes 282
20.6.2C1aSSeXtENSIONNIEN YOEXIEINA.ceeeeeeeee et e ettt e et e et e e e e e e e e e b e e e s et e e saaeseeba s e s eaaee s et e eanbasessannsesees 282

SWIG-1.3 Documentation

Table of Contents

20 SWIG and Java

20.6.3Exceptionhandlingwith %exceptiorNd%jaVaeXCePLION.uuuuiiiie ettt e e e e e e e e e e eeeeeeeeeeannnes 283
20.6.4Methodaccesavith %javamethodmMOIfIEES.i i e e e as 285

A A o 1SX= Lo L (=Tod 0 0 10 U 1= PP PR TR 28
20.7.1Inputandoutputparametersisingprimitive pointersandreferences...........occvvvviiieeiieeeiiiieieeeeee e 285
A S 1101 o] 1= o To 0 (=T TR PPRRPRTRRN 28
20.7.3WrappingC arraySWith JAVBITAYS. uuttiaeeeeeiaaiuitteeeeaeaaaeeesaaaateeteeeaaeeaeeaaesaaaesbeseeeaeaaaaeesaaannresaeeeeaaaaaesaann 287
20.7.4AUNDOUNAEAT ATTAYS. .. .etetttieeeeeiiaiitteteeeteeee e e e e e e s eaeteeaeeeaeaaaaaaaa e s s teaeeeeeeaaaeasaaaannsbsbeeeeeaeaaeeessaasssbssseaeaaaaeeesanannns 288

P2 O I N = V7= Y o T oo]] 11T 1 TR 316

20.11.2FunctionalinterfacewithOUt ProXY CIASSES.cciii ittt e e e e e e e e e e s e e eeeeeeeas 319
20.11.3Usingyour OWN INTTUNCHIONS ..ottt ettt et e e e e e e s e s e bbbt e e e e e e e e e e e aeannnbneneeeeeas 320
20.11.4PerformanC@ONCEINSANANINTS.cicvee it eee ettt ettt e et et e e ettt e e e et e e s et e e e et e e eaaa e e s aaesss b eesean e seaneenansss 321

P 2 = 11101 11RO PPPEPPRPR 3:

A O 1] PP PP TP O PP PPTPPPPRPRPPPR 3

21.2.1Additional ComMMaNAINEDPIIONSuueeeieiieeeeeeie ittt e et e e e e e e e e e e bbbt ereeaaeeasasaanabbaseeeaeeaaeeesasaannnsbeneeeeaaeaaans 322

21.2.2DetailSON CLISP DINAINGS. . +.tttetietieeiieiiitttie et e e e e e e e e ettt ettt e e e e e e s e e aaa et te e et eaaeeeaesaansesbeseeeeaaaeeeeseaannrnneeeeees 322
IR T 3

X AT A (CI= T Lo I U - T 3
A N (= LRI F= LTS 32

22. 2 RUNNMINGSWVIG ..ottt ettt e e e e e oo e o te ettt et e eeeaeeeeaaaaa s e beteeeeeeeaeeeee e e nna b bets et e e e aeeeeeeeannnnbeeaeeeeaaaeeeaaaann 32
22.2.1CompilingandLinKing @ndINtEIPIEIEL.uiiiiiiiiieeee ettt e e e e e e e e e ettt e e e aeeeeesaaasnbbeaeeeeaaaeeeeaesannnnne 326
22.2.2CompilingadyNamiCMOAUIE.ueiiiiie ettt e e e e e ettt e e e ee e e e e s saaaeebeeeeeeaeaaeaesaaannbesbneeeeeaaaeaesaaannnn 326
22.2.3USINGYOULMOAUIE.eeeeeeeeeee ettt ettt e e e e e e e ettt ettt e e e e e e s e e s e tbe bt et eeeeaeeeaesannesbeseeeeeaaaeeeeaaansnsesbeeeeaaaaeeasesannnnne 327

22.3 A tour Of DASICC/CHHWIAPPDING. ..o eetteeeeeeeeeeeeee e e eeeteteeeeeeaeaaeeasaaaaenteeteeeaeaeaeeassaansssbeseeeeeaaaaeesaaannnbenbeneeaaaeaasesaannnnes 327

SWIG-1.3 Documentation

Table of Contents
22 SWIG and Lua

A T N o Lo [1 1= 32
R B A V| o3 10] 41 PRSPPI 32
R] €] o] o= | AV T =1 o] [T PT PR 32
R I L0041 =1 151 L0 [=) 01010 0 F OO RPPPST 329
R BT o 1101 (=] =TT PPN 32
R I S 11 (01 11 | (=Y TSP 33
R T A 0% e ol I YT L VST 33
R R < O 111 41=) 117-1 o =TT PP 33:
22.3.9PointersreferenCesyalueS ANUAITAYS.cc.uuuueiiiiieiee e ettt e et e e e e e e s e e aate bt eeeeeaeaeaaaaaasnebetseeeaaaaaeesaaannnnnes 332
22.3.10C++ 0VErIOAEAUNCLIONS.vvueieeiiiii e et ettt e e ettt e e e e et e e e e e e et e e e e e s eebaa e eeseessbaseessestanaaeessestansaeeeeeseen 333
A T N O 0] =T = (0] £ PSP P PP 33
22.3.12C1asSeEXtENSIONVIEN YOBXIENM.ieeviriei ettt e e e e ettt e e e e e e e et e e e e s eeata e eeeseesbanaaeeesssstansaeeeeerees 336
R TN S (O (Y 141 0] = (S YRR PPERPRPRRN 33
R T O e) 1 1= 11 01101 (=1 £ PSSR 337
22.4DetailSONthe LUBDINAING.......iie e ettt e e e e e ettt ettt e e e e e e e e s s antbebe et eeeeaeaeaesaannnsbasaeeeeaaaeeeseaannnnene 33¢€
22.4.1Binding globaldatainto the MOAUIE..............uuuiiiiiiiee e e e e e e e e e e e e e e e e s annneeeeeees 338
22.4.2Userdat@BNAMETatabIESttt e e e e et e e et e et a e e e et aerarr s 339
22.4.3MEMOIY MANAUEIMIENL. ... eeeeiieetittetttet oo e e e e e e e e e e e ee e et et eeeeeaeaebebebbes s e o s oo oo o e e e e e e eaeaaeeaeteeeseassnsbbbsbnbnnnn i ns 340
IV (= 1Yo 1Y oo [1 P2 G TSRO 34
A T @ Y=Y VA= PSPPI 3
A T I AT VA T ST] o) (1T PSP PPURPRPTRRRN: 3472
AT A AT 0 VY. T [o USRS RPPPRPRRRRT 34:
AT A1V 0V O A O TR P PSPPSRI 34
23 L. AWVVNY SWVIG 2 -t tttteieite et et e e ettt ettt e e e e e e oottt ettt e e e e e e e e e o na et e bttt e e et e e e e e e e aa AR R b ettt e et e e eeeeeee e nnanbeeeeeeteeeeeeeaannnreeaeees 34
A T4 @10 1 o3 o[o USSP PPPRRRPTR 3¢
A I N 101 (=) 0 7= (o) (0 N O [1] =1 1Y F PPN 343
AV A 11 1=) 0 7= 0= (0N Ol 1] 0] 7= 1 [OOSR 344
A IR] o (= 110 0T 10 =V =T OSSP 34
A TS T K @0 111 o 11 Y PRI 34
23.3.2Additional ComMMAaNAINEDPIIONSuueiiieiieeee ettt et e e e e e e e e e et eeeeeeeeaaasaasabbaeeeeaeeaaeeesasannnnsbeneeeeaaaaeans 345
A 1Y [o o LU= S 1 AV 1=y 0 T 01 TP TR 34
23.4. 1INPULSANAOUEDULS. ... e ettt e e e e e ettt et e e e e e e s e e s e tb ettt et e e aaeeaaesannetbbee e e e e eaeaeeesaaannnbesbeeeeaeaeeeaeeaannnnnbenneees 34¢
23.4.25Ubrange S NUMEIAtIONSSELS. .. oiiiii ittt ettt e e e ettt et e e e e e e e ettt et e e e e e e aeaeeas e s nnbebaeeeeeeaeeesesannnenseeeeeeas 347
A e 1@] o] = ox £ U EUP PRSPPI 34
AT B 1] 0 To] S S PP TP P PP 34
A] (el =] 01 1[0 1L TSP PEURPRR 34
A o] =V 1] o) = PRSP PPPRPPTRR 34
AR Y Y[T (=T a1 a1 ST (o aT=Yo =T 1= = Lo) P ERR PR 34¢
23 5. L BALUIES. . ..ee it e e e et et e et it eeeeteeeetteettteeeeteeeettaaetataeeetaeaettaeaeaaaaaets 34
A T T A wd r= o |10 1= TP 34
A I O] =T 10714 < TSR 3.
AT (= 1aTo B Ao 0 T=T 0 41 TR 3t
24.1CreatingnativVeMZ S ChEMESIIUCTUIES.ii ittt et e e ettt e e e e e e e e ettt e e e e e e e e e e s e nssteeeeeaeaaaeeeeasannnenbeeeeaeas 350
A IV [CI= 1 aTo O ToF= 1 o | OO PSTORREPPN 3
AT e (= 1100110 =V =TSR PPPT 35
A U T T T 0o 1L R PPRUPRTRR 35:
AT B2 @fo] 0] o1 TaTe 1o =Yoo Yo [P PPPEPRPTRRN: 357
25.1.3TheCAMIPAMOAUIE.cei ittt e ettt ettt e e e e e e e e ettt ettt e eeee e e e e e s eatbeeeeeeeeaeaeeaesannnssbesseeeeaaaeeeaaaannnnnnes 3572
25.1.4USINGYOULMOAUIE.eeeiiiee ettt ittt e e e e e e e ettt et e e ee e e e s s s a e e beb b e et eeeaeeeaesa st sbbseeeeeeaaeeesaaasnsbsbeeeaeaaaeeasesannnnnes 353
25.1.5CompilationproblemsandcompilingWiIth Cr....oiiviiiie i e s e e s s e e e e s enbaaeee e 353

xi

SWIG-1.3 Documentation

Table of Contents

25 SWIG and Ocaml|
25.2TheloW—1eVEl OCAMI/CINIEITACE. i eeeeeetee ettt e e et e e e e et e e e e e e et e e e e e e eab e e e eeessbaeeeeseesrannns 353
25.2.1Thegenerate@NOAUIE.uu ettt e e e e e ettt et e e e e e e e e s e atbabe et e e eaeaeeeesaasnsbeeeeeeeaeaeeesesannnsnnenneees 354
AT A = 010 11 11 SRR PPROR 3E
25.2.2. 1ENUMEYPINGIN OCAML. ... ittt e e e e e e e ettt et e e e e e e s e s s s babbeeeeeeaeeeeeeaaanssnbenneeeeaaaeeesanannns 355
AT AR N -\ T PSSP 3E
25.2.3.1Simpletypesof DOUNAEMRITAYS.........ciiiiiiieiieie et e et e e e e e e e s e e s bt eeeeeeeeeeeeaannnnes 355
25.2.3.2ComplexandunbOUNAE@ITAYS oiiieiritiieieeeee e e e e ettt e e e ae e e e e e e e aeabbeeeeeeeaaaeeesa s s nnbssaeeeeeeaaaeaasannnnnes 356
AT R TG 1S T =T Ko) [T o A PP RRT PSP 356
25.2.3.4Exampletypemapfor afunctiontakingfloat* andint..............oooouiiiiiiiiiiiii e 356
AT O e O F= 11T =Y R ROTSR 35
25.2.4.1STL vectorandStrNG EXAMIPIE. ... eeeieiee e ettt e ettt et e e e e e e e s e st e et e e e e e aeaeeeesannbnbeneeeeeaaaeens 357
AT O o O 1= 1SS = 1111][PSRRI 358
25.2.4.3C0MPIlINGTNE EXAMIPIE ... ettt e e e e e e e e e sttt eeeee e e e e e e e e e nnbbe e e eeeaaeeeeeeaaanne 358

AT STz 1101 0] (Y= (o PP RPN 359
SIS B 1= o1 (] O P 1T oYY YT 35!

SIS T 1B (=Yo3 (o) L1 1 i(Yo 18 o110 359

25.2.5.20verridingMethodsin OCAIML........oiieiiiiiieiiie et e et e e e e e e e e et eeeaeaeeeeeesannnnereees 359
25.2.5.3DIreCtOrUSagEEXAIMPIE. ... it e ettt e e e e e ettt e e e e e e e e e e e e bt e e e e e e e e e e e e e nnnb e e eaeaaaaeaaa s 359
25.2.5.4CreatingdireCtOrODJECES. ... ittt et e e e ettt e e e e e e ettt e e e e e e e e e e e bbbt e et e e e e e e e e e e nnn b e rrraeaaaaeaaaan 360
25.2.5.5Typemapdor directorsdirectorin,directorout direCtorargouLeeeveieeerir i e e 361
AT R o o [(=To (o] 1T]AY] 1= AT o SRR 361
AT R (o [(=To (o] (0101 18YA 0 1=T0 T o PR TSP 361
AT SRS o [[(=Toio]r= 1o (0101 Y 1<) 1 AT- 8 NP PRRPRRT 361
AT o] (el =] 01 [0 1L U PPEURPRR 36

I AV A [Tz T aTo =T o 5 T 3
T R @ LYY= T 3
A I md (= [T AT F= T T3 TR 3¢

26.2.1Gettingthe rght NEAAEHKIIESceiiiieeeei ettt e e e e e e s e e ettt e e e e e e e e e e eaannneereees 363
26.2.2CompilingadyNamiCMOMUIE.ueiiiiie ettt e e e e e ettt eeeee e e e e s saaae e beeeeeeaaaaeaesaaannsssbeeeeeaaaaeaesaaannnn 363
26.2.3Building adynamicmodulewith MaKeMAaKEE.............ccuuiiiiiiiieeie et e e e e e e e e e 364
26.2.4Building @ StatiCVerSIONOT PEIL......... et e e e e e e e st r e e e e e e e e e e aan 364
26.2.5USINGINEIMOTUIE. ...ttt e e e e e e e ettt ettt e e e e e e e e s aa e e tb e bt e eeaaaeeeeaeaannbnbeneeeaaaaaeeeaaaannn 36°¢
26.2.6CompilationproblemsandcompilingWiIth Cr....ciiviiiee i e e et e e e e enbraeee e 366
26.2.7Compilingfor 64—Dit PIAtFOIMS. ... e et e e e e e e e e e eee s 367
26.3Building PerlEXtensSioNSINAENVINAOWS.ceiii ittt eteeae e e e e ettt eeeaeeeeeesaaasnsbeeaeeeeaaaeeeaesaaannnsbsseeeeaaaaaesaasannenes 368
26.3.1RUNNINGSWIG from DEVEIOPEISTUTIO. ... vvvverereieeeeieiiititiee ittt e e e e e e e ettt e e e e e e e e e s e ettt e e e e e e aeeesasannneanbeeeeeeas 368

A RS I 8 LS T Lo L) (1T o] 0] o] =T U PRPPRRR 368
AR N W A1) (o i (VL) M A1 (=) 7= (o < TR 36¢

A oY U o3 1o T PUPORR PRI 36
26.4.2GI0DAIVATIADIES.o ettt e et e e e e e et e e e e et e e e e ra e earear s 36¢
A e 1 L0] 4151 v= |1 K- PSPPSRI 37
S B o101 (=] £ T PPPRRRI 37
P oI Y 1 (1 (01 10 | (=Y PSPPSRI 37
I] O a0l I oY == YRR 37
26.4.7C++ classeRNAtYPE=CRECKING. vtteeiitiiitee ittt e e ettt et e e sttt e e et e e e s st eeeesssaaeeeesssseeeeesssseeeaesssssneeeesnnsnees 373
AT R e O 01 V/=) 1 [0F=10 1Yo U] 103 10) 0 OO 373
AN e (O o 1] = L] T RO PTPUPPPRPRPRN 37
26.4.10MOdUIESANAPACKAGES. ... oottt eee et e e e ettt e e e e e e e e e et bttt e et e e aeeeesaaannebe et et e eeaaeeeeaaaannnbbeaeeeeaaaeeeeaeaannnane 374
26.51INPUt ANAOULPULDATAIMEIEES ..ot e e ettt ettt e e e e e e e ettt et e e ee e e e s s sttt ettt e eaeeaeaeaaassnbeeaeeeeeaeeeeaeeaannsesbsseeaeaaaeeeesannnnns 374
AN o] Sy ded=T o1 1 (o] /= o [T TP PPRRURR 37
26.7RemappinalatatyPeSVItN TYPEMADS.cvvuuieieeieetie e ettt e e e et e e e e e et ee e e e e eeaaa e e eesees b e eeeessata e aeeseesabaeaeesenraannns 378

26.7.1A SIMPIEtYDEMAPEXAMIDIE ... ettt e ettt e e e e e e e e e e e ee b be et et e e aeeeeae e e nbebeeeee et aeeeee e e annbrebaeeeaaaeeeaaaan 378

SWIG-1.3 Documentation

Table of Contents
26 SWIG and Perl5

A Y Y € 1511 1= 1T 01 U PPRUPPTRRN 37
26.7. 3TYPEMAVAIADIES. ... ettt ettt e oottt et e e e e e e s e s st ettt e e e e eeeeeeeaaana b be b et e e e e e e e e e e e e e nnnnreeteaeaaeaaeas 38(
26. 7. AUSEIUITUNCIIONS.evti ettt ettt e e e e ettt e e e e e e e et e e e e e e e bt e e e e e s e s abn e e e e e e aaaseeesesbaaneeeeeessrannnenss 38:
26.8 TYPEMAPEXAMIPIES ... tteeeeeetee e e e et ettt e e e e e e e e e ettt et e eeeeeaeeaesaaaaabeeteeeeaeaeeeseaannnee e beeeeeeaeeeeeeaannsebbeeseeeeaaeeeeaaannnnrneenees 38
26.8.1Convertinga PerlSarrayto @ Char ™. e e e e e e e e e e e e e e e b 381
26.8.2REIUINVAIUESotiiiiiieetee ettt ettt e e ettt et e e e e ettt ee e e e e s et e s e e e e estaa e eee s e s s ban s aeeeeesabanseeesesbaanaeeesesssnnsaeeeens 38
26.8.3Returningvaluesfrom argUIMENTS. ittt e e e e ettt e e e e e e e e e e s e e n bbb e e e e eeeaaeeesasaanensbeeneeaaaaaeens 383
26.8.4ACCESSINAITAYSITUCIUNEIMEIMIDEES. ... ettt e e ettt e e e e e e e s e ettt e e eeaeeeesaa e nntbeteeeeeaaeeeeaeaannsnnreneeeeas 384
26.8.5TurningPerlreferenCcesnto C POINIEES.ccc.uuuiiiiiiieiee e e e ettt e e e e e e e s e et eeeeaeeeeesaaasnbbsaneeeaeaaeeeaesannnne 384
A R I o] o101 (=Y 1 =V aTo |1 To T TR TSRO 38!
A Sl (0 AV o = 1SS F TP EPRRRRT 3¢
A SIS I N nd (=] 110 01T P 1Y PP 38
26.9.2StrUCtUrEBNACIASSUWIAPPETS. ... eeeteeeeeei ettt e et e e e e e e e e ettt et e et e e eeeeaesaanaabbe et e e eaeaeeeeasaannebsbeneeeeaaeaeeeeaaannsensnees 386
A RS R 1@] o] T=Tod (@11 1T 6] 11 o PSRRI 38¢
A RS I N =TS (To @ o] [T ol £ TP PRRRPR 38
A IS] d 0)V U o1 1 T TR T RSO PPR 38¢
Ao o1 101 4 1=) 117- 1o (o =SOSR 38
26.9.7Modifying the ProXy METNOAS.ueeeiiiiiie ettt e e e e e e s ettt et e e e e e e s e s e ntbtbeeeeeeaaaeeeeaaannnns 390
A T 0) Ao [o T To = To [o [T TeT T | o=y o Koo Yo L= U PPPRRRPT 390
AN (= 1 aTo l nd w | OSSR 3
A N CT =] a1y o Ao ol m Y =T 1S 0 S URPR SRR 392
27.1.1BUildiNg @108daDIEEXIENSION uutieeiiiie e e ettt e e e e e e ettt e ee e e e e s s e e e bttt e e e e eaeee e e e e nbbrbeeteaaaaeeeeeaaanne 392
27.1.2Building eXtenSIONINEO PHP.... ..ottt e e e e et e e et e e e e e e e aa e n et bt be e e e e e eeeeaeeaannnbbenraaaaaaeens 393
27.1.3USINGPHPAEXIENSIONS ... ettt e e e e e e e e e ettt ettt et e e e e e e s aa s aetteteeeeeeaeeeeaaaannsbebeeaeeeeaeaeeesaassnbesaeeeeaaaeeesasannnnnnes 394
A T TS (od nd w | o T 1 (=) 1 7= (ol OO EPPRPTPN 39:
A YA L 000] 4151 7= 11 K= PSPPSRI 39
27.2.2GI0DAIVAIADIEScevii ettt e e e e e e e e e et et e e eeera e e eera e raaaran 39!
AR T V| o 1o T PUPORR PRI 39
A L@ /=11 o - Vo |10 e SRR PP 39
Y R Rl o101 (=] 652 1010 | =) (=) (=) 4101 OO 397
27.2 6 IUCTUIE AN CH 1 ClaSSES . uuuu e ieieitiee e ettt et e ettt e e e e et ee e e e e e e et ee e e e e e sta e e e e e e s baa e eeeess b e eeseesabaneaeesessaannnns 398
27.2.6. LUSING mNIOPIOXY: - tttttteeeeaeaeaesaaauueteeeeeeaaaaaeasaaasnsteseeeeeaeaaeeaasaaassssbeseeeeeaaeseesaaasnsbssseeeeaeaeeesasannsssnbnseaaeaaaeaans 399
27.2.6.2C0NStrUCIOrSANADESIIUCTOIS. .. .uvuui e eeieeitee e ettt e e e e ettt e e e e e et ee e e e e s eeba e eeeesesbaseeeesssaanaaeesessbanaeeeeernes 399
27.2.6.3StatiCMEMDBEIVALADIES.coviiii ettt e e e e e e e e e e e e e e e e earaan 400
27.2.6.4StatiCMEMDEIEUNCHIONS ... e eeeeeite e et e ettt e e ettt et e e e e et e e e e e e e aab e e e e s eetbanaeeeesessbansaeeseesssnnseeeeenes 400
27.2.7PHP4PragmasStartupand ShUtdOWNCOAEcioi ittt e e e e e e e e e e e e e e e s e e eeeeeeeaeas 400
A IV [CI= 1 aTo I nd 1 (SRR 4
oI (= 1100110 =V =T OO 4(
2o T I B T T T 0o S 1A T PPRRPRPRRN 40:
28.1.2Gettingthe rght NEAAEHKIIESceiiiiiee ettt e e e e e e s e e e bttt e e e e e e e e e e aaannneereees 402
P T 1 LS T Lo Y010 2T Yo [= TSP PRURPRRR: 40¢
A I T o (o] O L @8 ol Vi F= o o1 T PR 40:
2 S T2 N o Lo [1 1= PURPR 40
ST V| o1 10] 41 PPN 40
28.2.3GI0DAIVATIADIES. ettt et e e e et e e e e et a e e e et e e e rea e aerrrr s 40:
28.2.4C0oNstantBNdENUMEIAEAYPES. ... oiiii e e ittt e e e e ettt e e e e e e e e e et bebe et eeeaaeeeaesaaannnbbeseeeeaaaeeeeaeannneeereees 404
28.2.5C0ONSIUCIOIEINAD ESIIUCIONS. .1uu i eeeeeitiee e e ettt e e e e e ettt e e e e et et eeeeeeeee b e eeeesssbaseeseesbaa e aeessasbanseeesessstansaeeseeranns 404
A I) v= L1 To 1V [T 10 1= T PPN 40:

Xiii

SWIG-1.3 Documentation

Table of Contents

AS A TAY A (= T o N YA (o o TR PP 4
A I RO LYY= ST 4

A A md (= [T AT F= T TSP 4(

29.2. TRUNNMINGSWVIGt teeetettee e e e ettt e e e e e oo oottt ettt e e e e e e s e s s nte e be et e e eeaaeeeeaa e s s ebetbeeeeeeaeeeeesaannnbbeseeeaaaaeeesssaannnnne 40¢
29.2.2Gettingthe rght NEAAEHKIIESceiiiiieee ittt et e e e e e e s e e ettt e e e e e e e e e e aaannneereees 407
29.2.3CompiliNgadyNamiCMOAUIE.ueiiiiiie ettt e e e e e e ettt e e eeaeeeesa e ae e beeeeeeaeaaeaesaaannnsssbneeeeeaaaeeesaannnnn 407
A I L ST T o [y (1 1] U P TR PRRRR 40
A IR 1S = L1 Tod 10142V TR PPPPRPURPR 40
29.2.6USINGYOUIMOAUIE.ceeeiieeeeie ittt ittt e e e e e oottt ettt e e e e e e e e s e tte et e eeeaaeeeaeaaanesbbseeeeeeaaeeesaaasnsbsbeeeeaaaaaeaaesannnnnes 40¢
29.2.7ComMPIlatioNOf CH4 EXEENSIONScii ittt et e e e e ettt e e e e e e e e s e et bttt e eeeaaeaeaa s e nbsbaeseeeeeaaeeeeaaannnnrnreeeeeeas 410
29.2.8Compilingfor 64=Dit PIAtFOIMIS. ...t e e e e et e e e e e e e e e e eeeeas 411
29.2.9Building PythonEXtenSioNSINAENWVINAOWS.uuuiiiiiiiieeeee ittt eeeee e e e s e seieebee e e eaaaeeeesaaannnreseeeeeaaaeaeaaaannns 411

29.3A tour Of DASICC/CH+WIAPDPING: ..ttt etitteeteeeettereeeestteeeeesstteeeeasastaeeeesasteeeaesaasteeeeeaastsseeesasteeeesaassseeeesassseeeessssseeeeesnssees 412
ARG I 1Y, o Yo V][R 41

A R I U1 o3 1o 1 PRSP 41
A R R €] o] o T | AV T =1 o] [T PPTORR 41
29.3.4CONSIANTEINTENUITIS .. .uuu i eeiieiti e ee ettt et e eeeeeta e eeeesestt it eeeeeesaaaeeeeestaa e aeeessstanseesesssanaaeesssstanaeeesesstnnseeesenranns 414
A R I SY o 101 (=] =TT PP 41
A R SIS 11 (o1 11 | (=Y PSPPSRI 41
A R I A 0% s ol I oYL= YRR 41
A R <1 O 11101 117-1 o =TT PPT PR 41
29.3.9PointersreferenCesyalueS ANUAITAYS.cc..uuueiiiiieeee e et ettt et e e e e e e e s e e abebeeeeeeeaaaeaesaaasnsbeseeeeeaaaeeesesannnenes 418
29.3.10C++ 0VErOAUEAUNCLIONS.ovvteeeeeieite e e et ettt e e e ettt e e e e e et e e e e e eet e e e e e s eebaa e eeeeessbanseeseestanaseessestansaeeeeesees 419
A TS T N O 0] =T = (0] £ O PP PP 420
A S T Ol =V 11T 01 (o] 1 T PR PPPUPPPURPPTOPIN 421
AT N S (O (T 1410 = (S YRR PPRRPRTRRN 42:
A R T O T 1 =111 01101 (=1 £ PSSP 4272
29.3.15C++ ReferenceCountedObjectS(ref/UNIer)....... .. e 423
29.4Furtherdetailson the PYthonClaSSINtEITACEuuueiiiiiiie e 425
A N 0V o F= 1SS = PR RPN 42
29.4.2MEMOIY MANAUEIMIENL. ... eeeeieeeeietetetat oo e e e e e e e e e e e aeeeeeteteeeaeasbebebbeb s e oo oo oo oo e e e e eeeeaeaeaeeeeeseasbnsbbbsbnbnnnn e ns 426
29.4.3PythoN2.2 ANACIASSICOIASSES. ... uvttteeteeiieee e e ittt e e e e e e e e e ettt e e eeaeeeesa e aetbet e et eeaaaeeesaaannntssbneeeeaaaaeaesaannnns 428
A RS O (o TSI P TaTo 0 F= Lo = o Yo VA0 L0 0] 0TS o P PEURT R 428
A SN S g T2 o] T T o [T (=T oa () PP UR TR 42¢
A RS B[(=o (0] ol = Fo 1Y =)= VPPN 42
PAS ISR @Y aT=T 6]l 0=V aTo [o o] [=Tod (o [S1S] 1 8 [od 1T o FEN RPN SO P PRPPR 430
29.5.4EXCEPUONUNIOIINGci i ettt e ettt e e e e e e e e ettt et e e e e e e e e e aanaatbeteeeeeeaeaeeseaannnbsbeneeeaeaaaeeeeaaannnnnne 43(
A BRI OV/=1dal=Y: (e 1 a 0 [0)0 (<) o] (o - | SRR 431
A RN CX Y/ 01T 1A= oL T TSR SRURPPP 43
A R4\ 1Yot | F=T =TT OO 43
29.6 COMMONCUSTOMIZATIOEALUIES .. . eeeeeevie e e e ettt ee e e e ettt e e e et ettt e e e e e e et e e e e e e e stb s e e e s e e baa e eeaeessbanaeeseesabnaeessssstnnsaneeees 432

29.6.1C/CH+NEIPEIMUNCHIONS. ...ttt e ettt e e e e e e e e e ettt ettt e e eaeeeaaaannsbe e e et e eeaeaeeesaansnbesaeeeeeaaeeesassnnnnnnes 432
29.6.2Adding additioNalPYINONCOAE. ...ttt e e e e e e s e e et e e e e e e e e e e e eeeeas 433
29.6.3C1asseXteNSIONNVITN YOEXIENM.ii et e et e e e e e e e e e e e ea b e e e e e e e sab e e e e s eesbaa e eeesessbanaaeeeees 434
29.6.4ExceptionhandlingWith Y0@XCEPLION.utiiiiieiieie e e ettt e e e e e e e e ettt et e e ee e e e e e sansaebeeeeeeeaaaeeesaaannneeeeeees 435
A A o 1SX= Lo L (=Tod 0 0 0 U 1= PP RRR T RPR 43
29.7.11INPUt ANAOULPULDAIAIMIETIELS teeeeeeeee e et e e ettt et e e e e e e s e ettt te ettt e aaeee s e s s saebeeaeeeeaeaeeesaaannbbasaeeeeeaeeeeeesannennenes 437
A ST 1111 o] 1=T 0 To 10 (=T TR PPRRPRTRRN 43
29.7.3UNDOUNAEAT ATTAYS. .. .eteettieeeeei ittt et e aeeeaaeaaa sttt teeaeeeeeaaaaesaa e s s teeeeeeaeeaaeeaaeaannsssbeeeeeaeaaeeeesaasssbesseaeaaaaeeesanannns 439
A A S ([To] =V T | T TR PPRRPRTRR 44(
A AR SY N -\ T PP P PP 4/
A A1) (1010 =1 = Y SRR PP 44
A A AN I Y= o] o= £ T TP RRUPURPPP 44
A IR I Y] 0= 110 F= oL ST TRTRPP 4.

SWIG-1.3 Documentation

Table of Contents

29 SWIG and Python

AR T ALY T LA EST= WY 01T A= 1 1RO PPURPURTRRN: 441
AR I A L0 1Y 01T 1T LTS PRPRRRRT 44;
29.8.3TYPEMAVAIADIES. ... ettt e ettt e e e ettt e e e e e e e s e s st bbbttt et eaeeeeeaa e an b be ettt e e e eee e e e e e e nnnnnretteaeaaeeaeas 44
29.8.4USefUl PYtNONEUNCHONSciiiiieeei ittt e ettt et e e e e e e s ettt ettt e e eeeeaee s nnnbebeeeeeeeaeeeeeaaannnnnbsbeeeeaaaeans 443
A Sl Y 01T 00 Fo Vo e V] o) o SRR 44
29.9.1ConvertingPYthONISt 10 @ CNAI™ ™ ... et e e e e e e e et e e e e e e e e e e eeeeas 444
29.9.2Expandinga Pythonobjectinto multiple argUMENTS.oc.uuiiiiiiiieee et e e e e e e e e e e e e e e ennneees 445
29.9.3Usingtypemapgo retUrNMAIrQUMENESeeeeetiiiiittttieeeeeeeeeesesaaseetbeeeeeeeaaeaeesaaannbsteeaeeaeaaeeassaaasnsbsaseeeeaaaeesssaanns 446
29.9.4MappingPythontupleSinto SMAITAITAYSicc et iiee e e e e e ettt e e e e e e e e e ettt eeeeaaeeesesaanbsbaeseeeeaaaeaeaaaannns 447
29.9.5MappPiNgSEQUENCEED € BITAYS . .eetiiiiuutteteeiteetaaaaaeaaaasaeteeaeeetaaaaaasasaaasatbeseeeaaaaaeaesaaaanbsteeseeaeaaeaeesaaannnnssseeeeees 447
PAS e 6] o101 (=Y 1 =TT |1 R TR PO R PPI 44!
29. 10D OCSINOEEAIUIES ... eeeeeeeteee e e e sttt e e e e e e e e e ettt e eeeeeaeeaesa s s aebe e et e eeeaaeeesa s s s neaebeeeeeeaeeeeeeaannsnbbseseeeaaaeeeeaannnnnsnnneees 44
A I O 1Y/ oo [= [Yoy 1T T USROS 45(
A RO) (== DL =T =101 (0o (oo TP PP PP PP OPPPRPRPPPPPR 450
29.10.2.1%feature("aUtOAOC™ 0™uu ettt e e e e e e et e e e e et e e e e e e et a e et aera e e e e arr s 450
A I A) (=F= 110 (=) (=10 100 1o [0 o K PR 450
PAS I N O J0ZRS 71 (== L (BT (=Y (=101 (o [o Toule [oToxS] 1o [N NP ERUPR SR 451
29.10.3%F0ALUIE ("AOCSIIINT) -+ttt ettt ettt ettt ettt e e ekt e 4t e e 4kttt e e ettt e e et e e e e s et e e ekt e e e e e e e e e 451
A I Y1 o]] o Tod 2= Lo =S TP EPRRTR 45
BTSN TAY A (= T o U o RPN 4
IO (= 110 0T 10 =V =TSR PPPO 45
OO I T T T 0o 1YL RO PPRRPRTRRN 45
30.1.2Gettingthe rght NEAAEKIIESceeiieeeee ittt e e e e e e s e s e bttt e e eeeaeeeeeaannneeneees 453
30.1.3CompiliNgadyNamiCMOMUIE.uueiiiiie ettt e e e e e ettt e e e e e e e e e e sa e e bt et e eeeeaaaeaesaaannnbssbneeeeaaaaeaesaannnnns 453
30.1.4USINGYOUIMOAUIE.ceeiiieeeeie ittt et e e e e e e e ettt ettt e ae e e e e s e e etebee et e eeaeeeaeaannesbeseeeeeeaaeeeeaaansnsbssneeeaaaaeeaaeaannnnne 45/
BT 1S = L Tod 11T T TP PPPPRPURPR 45
30.1.6CoMPIlatioNOf CH+ EXEENSIONSei ittt e e e e e ettt e e e e e e e e e s ettt e eeeaeeeesa s s nnbebbeseeeeaeaeeesaaannnnbnseeeeeeas 455
30.2Building Ruby ExtensionsiNdenWINAOWS O5/NTceiiieeee ittt e e e e e e e e ettt e e e e e e e s e s e nebbbeeeeeeaaaeeeeseaannneneeees 455
30.2.1RUNNINGSWIG from DEVEIOPEISTUTIO. ... vvvreeetieeeeeieiiititee ettt e e e ettt e e e e e e e e e s et e e e e eeeaeeesasannnebnbeeeeeeas 455
CTO R I AT R U])Y (0 e O[O 1Y =1 o] o 11T PRSPPI 456
TR T 1Y o o [1= PUSPR 45
1T O R A U [od 1o] T PPN 45
TR R AV T r= o] (=Y T 1< T SRR PRRURTR 457
ORI L 0] 4151 v= 101 K- PSPPI 45
O RS SY o 101 (=] £ U PTPPRRRR 4E
IO R SIS 11 (o1 11 | (= PSPPSRI 45
O R I OF ol oYL YO PUTPRR 45
O R <1 0% ol [2] =T 7= 1 o] =TSP ORR 46(
30.3.9C++ OVEIOAUEATUNCLIONS.evvuieeeeieeete e e e e e ettt e e e et eet et e e e e e eetb et e e e e ee st e seeesesbaaaseeeesssannseesesssannaseessestansaeeeeesees 462
TS T K0 Ol @ 01T -0] T TSRS RU PP 46!
BT O 0T 1111 1S] 0= (o =1 TSR 463
BT T 2 O (T 141 0] = (S YRR PPRRPRTRRRN 46
TR T O T 1 =111 0] 101 (=1 £ PSP 465
30.3.14Cross=LanguagBolyMOIPRISITI.uuiiiiiiiiee et e e e e e e e ettt et e e e e e e e e e e e nbnr et e e eaaaeeeas 466
TS 1 o =Y o T 8 0 (0 T O EURP TR 466
BCT 0 5 N = 0 11 o TR 4
30.4. LDEfINING ALIBSES. ...ttt et e e e ettt e e e e e e oo ettt ettt e e e e e e e e e e nabbebe et e e e eaeeeeeeaRbabeeeee et eeeeeeeaaannbtebeeeeeaaeeeeaaaanns 467
IO B nd (=0 [Tor= 1 (= Y 1= (V0T o O PPRORR 467
T e] 27 Vo |11 o o TSP TR PO 46
O L T 1 =T £ T a0 Y=l 1= o PR 46¢
30.51NPUL ANAOULPULDATAIMEIEESeeeeeee ittt et e e e e e e e ettt ettt e e e e e e s s ettt be e et e eeeaaeaesaassnbeeaeeeeaaaeeeseeaannsssbsseeaeaaaeeeesannnnns 469
T o] S ded=T 011 [o] /= o |1 TP PPRRURR 47

SWIG-1.3 Documentation

Table of Contents

30 SWIG and Ruby

30.6.1UsIiNgthe Y0eXCEPLIOMIITECLIVE.ei ittt e ettt e e e e e e e sttt et e e e e e e e s e s e nnbbb et e eeeeaaeaeeaaannnbnbeeeeeeas 470
BT 2 = TS T 0 oy et =T 01 [0 L USRS PRPRTT 47:
T TR | o (ed=T o1 [0 o P TS TSP PRPRPRRT 47:
OO A LY 0= 110 F= oL S PR TSR 4
T Y P LA EST= WY 01T 1= 1 1SS PPPERURPRRRN: 477
BT U] 01V A 1Y 01T 1= R PPRRPRTRRN 47!
TR Y] 01T 00 F= Yo N7 V= o] (USROS 47"
30.7.4AUSEIUIFUNCLIONS.cvvtiieeieeitee ettt e e ettt e e e e ettt e e e e e e e et b e e e e e e e sat e e e e s ee bbb aeeesssbaan e eeesssbbanseeesesbannneeeessnranns 47¢
30.7.4.1C Datatypeg0 RUDY OBJECES .. .ueiiiiiieeeei ittt e ettt e e e e e e s e et et e e e aaeeeeesaaannnbeeaeeeeaaaaaaaanan 476
30.7.4.2RUDY ODJECLSIO € DAIAIYPES. . veeeeetieeeeeeieeiiiteiee et e e e e e e e e e ettt et e e ae e e e s e aannebe e e eeeaeaeaeeesaaananbesseeeeaaaaaaaaean 476
30.7.4.3MACIOSION WALUE ... ittt et ettt e e e et e e e e e ettt e e e e e ee b e e e e eessbaseeseessaaaaseesesstansaneeees 476
LA ol =] 01 1[0 TP ERUP PSR 47"
A (=] =1 (0] £ PSP SRP 47
30.7. 5TYPEMAPEXAMPIES. ... e e ettt e e e e e ettt ettt e e e e e e s e s aat bt ettt teeeeeeeaeeaanan bt ettt eeeeaeeeeaeaannbnaeeeeeaeaeaeeeaaaannnene 47¢
30.7.6Convertinga RUDY AITaYI0 @ CNaI™ttt e e e e e e et e et e e e e e e e e anneeeeeees 478
30.7.7Collectingargumentsn @NASK.........oooi i e e e e e e 479
T AR] o 101 =Y s =T |1 TR 48:
30.7.8.1RUDY DAtAtYDEVWIAPDING - eeeeeeeeeeeeeseiaiettteeteeeeaeaeeeaasaanteebeeeaaaaeaaaaasaaansntaseeeeeeaaeaeaessaansnstssneeeeaaaeaesesanns 482
30.7.9Example:STL VeCtortO RUDY AITAY. ..ottt ettt e e e e e e e e e st eeeaaeeeeeaaannneeeeeees 482
TR ST o V7=V aTot=Te | o] o) ox =T O PEERPRR 48
ORI @] oTY =1 o] (0 1Y7=T0 (o =T |10 o T RSP PRPERPRR 484
30.8.2CreatingMulti=MOdUIE PACKAGES. ueeeiiiiee ettt e ettt et e e e e e e s et eeeeaaeeeeaeannansbeeeeeeeaeaeens 484
30.8.3SpeCifyiNngMIXiN MOAUIBScoiiiieeiii ittt ettt e e e e e e e ettt e e ae e e e e s s nbebbe et e e eeaaaeeeseannnnrnneeeeeens 486
IO =TT AYAY F= e Lo [y 1<) o TSRO R PUPPPPPRPPRPTROIN 48
30.9.1Mark and SWeepGarDaAQE OIECION i iiiie ettt e et e e e e e e st e e e e e e e e e e s e e nnbb e e eaaaaeeeaaaan 487
TR 2@] o] =To (@1 1T] 11 o PSRRI 48"
TSR 1@] o] =T ox I 7= 1o (o TR TP 48!
30.9.4AMAIK FUNCHIONS. ...t i ieeeeetiie e e ettt et e e e e e ettt e e e e et et e e e e e s ee st e e e e e e e s sb s e e e s e e baa e eeessabannaeesesssaanaeessssbananeseernes 49;
O Y e (=) b 1411110 0 OO ETPPP 49
N VA (2= Vo o) TR 4
I I (=Y 110 Y10 =V =T OO PPPO A€
31.1.1Gettingthe rght NEAAEHKIIESceiiiieee ettt e e e e e e s e e e bttt e e eeeaeeeeeaannneereees 498
31.1.2CompiliNgadyNamiCMOAUIE.ueeiiiie ettt e e e e e e ettt et ee e e e e e sa e aeebaeeeeeaeaaeeesaaannnsssbneeeeaaaaeeesaaannnns 498
O3 I I 15 = LT 11T T PRSP PPPPRPURPR 49
O3 I I O ST T Yo T8 2T Yo [= O PEPRPTRRN: 49¢
31.1.5ComMPIlatioNOf CH+ EXEENSIONS . ..ottt ettt e e e ettt e e e e e e e e e s et ee bt eeeeeaaeee s e s s nbebbeseeeeeeaeeeeaaannnnrnreeeeeeas 500
31.1.6Compilingfor 64—Dit PIAtFOIMIS. e e e e e et r e e e e e e e e e e n e eee s 501
31.1.7Settinga PACKAGEIIETIX ... ettt e et e e e e e e e e e e e e b a e b e e e e e e aeee e e e e nnnenaaees 501
1.1 . 8USINO N AMESDACES. 1. etttttteeetaeaeeatasaautetteeeeeeaaaaaaaaaaaaesteeeeeaaaaaaaasaaaanststteseeaeaaeeeassaansssbesseeeeeeaeeesaaannbnsteeeeaaaaaaaens 501
31.2Building Tcl/Tk ExtensiongiNdeWINAOWSOS/NTuuuiiiiiiieeeeie ittt ee e e e e e e s e s st e e e e e aeeeesesannbsbaeeeeeeeeaaaeaaaannns 501
31.2.1RUNNINGSWIG from DEVEIOPEISTUTIO. ... vvveeeeteieeeeieiiititee ettt e e e e e e e ettt e e e e e e e e e s e ettt e e e e e aaeeesaeannneenbneeeeeas 502
B I ST T Y AN R PPEUPPPRRN 50:
31.3A tour Of DASICC/CH+WIAPDPING: ..ttt etiutreteeeitteeeeeestteeeeesatteeeeaaastaeeeesastaeeaessssbaaaeeaastseeeesasteeaeesassseeeesasssaeeessssseeeeesnssees 503
G I T 1/ o To [1= 5C
G IR A U (o3 1o] T PRSP 50
NIRRT €] o] o T 1AV T =1 o] [T PPT SRR 50«
31.3.4CONSIANTEINTENUITIS .. .uuueeieeetiieeeeeeett et e e e e eettt e eeeesestt s eeeeessaa s eeeeestaa e aeesssstanseeseessaaaaessssttanaeeesesstansaeesesranns 504
N IR ST o 101 (=] £ T PUPPORR 5C
N R SIS 11 (o1 11 | (=TSP 50
I IR I 0% ol oYL YOOI 50
N IR IR <1 O 1] 01 117-1 o =TSRRI 50!
31.3.9PointersreferenCesyalueS ANUAITAYS.cc.uuuueiiiiieeae e ettt ee e e e e e e s e s abebbeeeeeeaeeeaeaaaasnsbeteeeeeaaaaeesesannnenes 510

SWIG-1.3 Documentation

Table of Contents
31 SWIG and Tcl

31.3.10C++ 0VErOAUEAUNCLIONS.vvueeeeeieite et e et et e e e ettt e e e e e et e e e e e e et e e e e e s ee bt e eeeeessbanseeseestanaseessestansaeeeeesees 510
O I T O 0] 01T =10 U PPRRPPTRRN 51
O I N 2 O 1T 11 11T 0 Y- (o =1 TSP RR TR 51°
O I T S (O (T 14101 = (S R PPRRPRPRR 51.
N IR T O T 1 =11 0] 101 (=1 £ PSP 513
31.4Furtherdetailson the TCl CIASSINIEITACE...........uuei ettt ettt e e e et e e e e e e et e e e e s eet e e e eeesaabnsaeeeees 514
O I N 0 TV o F= 1SS = U EETRR TP 51
31.4.2MEMOrY MANAUEIMIENL. ... ieeeiieeeietetetet e e e e e e e e e e e e e e ee e et et eeeeeaeasbebebbes s e o s oo oo oo e e e e e eaaeeeeaeeeeeseasbnbsnbsbnbnnnn e ens 515
31.51INPUt ANAOULPULDATAIMEIEES ...ee et ettt ittt et e e e e e e e ettt ettt e ee e e e s e e e bee bt e et e eeeaeeeeaaasssbeeeeeeeaaaeeesaeannnsssbsseeaaaaaeeeesannnnns 517
G I C] Ced=T o1 (o] /= T o [T TP PPERURT 51
O A Y 0= 110 F= oL S PR PSRRI 5.
B A Y T L EST= WY 01T 1= 1 1S PPPRPURTRRRN: 52C
R A2 ol Y/ 01T 7= TP EPETRR PP 52
B AR Y] 01T 00 Fo Yo N7 V= o] (USRS 522
31.7.4Convertinga TCl ISt 10 @ CHAI ... et e e e e e e e e st e e e e e e e e e e s e nnn ittt e eeeaeaeeas 523
31.7.5ReturNiNQVAlUESIN @FQUMIENES. .. .eieee ettt ittt eee e e e e e e e s e ettt eeeeeeeesesaansebbeeeeeeeeaeaesaaaasnsbssbeeeeaeaeaesesannnenrenneeeas 523
3. 7. BUSEIUITUNCIIONS.evti ettt et et e e e e e et e e e e e e aa b e e e e e s e e taa e e e e e s s s aban e e e e e s aaaseeesesbaaneeeeeessrannnaess 52:
R A 451 = T To F= 10 1Y/ 0 1=T 01 = T o USROS 52t
I AR S o 101 =Y =T |1 o TR 52!
31.8Turninga SWIG ModuleiNtO @ TCI PACKAGE. ... ttiieeei ittt ettt e e e e e ettt e e e e e e e s e e et beeeeaeeeaeeeas 526
31.9Building newkinds of TClINtEIrfACEIIN TCI)....uvuuiieiiiiiiiiee ettt e e e e e et e e e e e e et e e e e e eeaba e e eeseesbanaaeeaees 527
O IS 0)TV o F= TS U PETRR PP 52
32 Extending SWIG t0 SUPPOIT NEW IANGUEBGES. ... vutreeieeeteeaeeeiaaiiiteteeeteeaaeaesaaaasaetbeeeaeeaaaeeaeaaaannsbebeeeeeeaaeeesesaansnbasseeeeeaaeaeaanannns 530
T [oY 18 o3 1o o FO ORI 53
A (=] (=Y 1 1T R RSP RTPPPPR 5z
GRS I I 1= = o T o (= TP EPPRPRPR 53
] (Yo N 1110 11V, [0 =) RO PRR 53
A T N =] 0] (0101114 T F OO U PP TP PRPPN 53
A = U511 11 P U PP RRT ORI 5G
Y e | o= 1<) I (=1=Y TSNP 53
32.4. AAHITDULE NAMESPACES. .. ettt eeeeei ettt et e e e e e e e e e et te e et eeeeeeeesaa s e ateeteeeeeaaeeesaeaannsbebeeeeeaeaaeesesaassnbesbeeeeaaaeeesaaannns 537
YA 1o VA0 1] o To] I 1= o] =PTSRS 53
N M N AT (= 110 (= o [(= o1 1AV RPN 538
Y B A Ofe o (ST CT=Y =] =1 110 TP 53¢
32.4.8BSWIG ANAXIMLceeeiiteiie et e et e e e ettt e e et e et e e e e e s e e tta e e e e e e e sa b s e e e s ee bbb e eeesssbaan e eeessssbanseeesesbasnneeeeesnranns B54(
32, S P IMILIVE DALASIIUCIUIESvu e eeeeetiee e e e ettt e e e e e e e e e e e e e e ettt e e e e e e tab e e e e s e e baa e e eeesesbaa s ee s e e s aaa s eessaabanaeesesssbanaeesenrannnnns 54(
ST 1S (1o [RSO PPPPRRRRRR 54
ST b= o) £ 1= VPSPPI 54
ST T 1 £ PPUPRR Y
YA @fe] 1010 010]0 0] 1<) r- 1 U[0] 0 1S TSP PPPERURTRRRN: 54z
32.5.51teratingoVver ListS aNAHASNES. ..ottt ettt e e e e e e s et r et e e e e e e e e rn e eeaeas 543
ST 211 O EPRPPRS 5
32.6 NavigatingandmanipUIAtiNODAISEIIEES.uueeiieiieeee e e ettt e et e e e e e e e ettt e e eeeeeaesa s s nnbesbeeeeeeaeeeaesaannnnsbanneeeeaaaeens 544
32. 7WOrKING WIth @EEFDULESeeeeeeeiiee et ettt e e e ettt et e e e e e e s ettt et e e e e e e e s s s e nnbbsbe e e e eeaaeeesesansnnbseneeeaaaaeeesaaannns 54¢
AR H Y] 01151 A1 (= 1 PO PP 5¢
YR < T S ([aTo =T a edo e [1aTe o) iV 01T PP ESURT TR 547
YR S T2 Y] o 1= oo 10 1S) (0 o311 o PSR 54¢
A TG 1] 611 (S £ F SRR PUPUPPURPRPRN 54
YR S I Y] o 1=Te (=) =V aTo [T aT=Y 1T = PSRRI 549
R S Y= |11 1 T PPPRRR 55
R S T ST W11 o0 0T 1o o PR RRURTR 55!
IS] =T =11 1121 (=) £ OO 5!

XVil

SWIG-1.3 Documentation

Table of Contents

32 Extending SWIG to support newlanguages

32.10WTriting @ LanQUAGEVMIOTUIE.ceiiieeee ittt e ettt e et e e e e e e s ettt et e et eaaeaesaaansnbbebeeeeeeaaeeeseaannsbsbeneeeeeaaeeaens 552
32.10. 1EXECULIONMMIOUEL ittt ettt e e e e ettt e e e e e e ettt ee e e e et aa s e e e s e s baa e eeeeessbanaeeseesaanaaeesssnransaeeeens 552
B 1 0 225 = 1T o 11 | PRSP PPPPRPURPR 55
32.10.3COMMANAINE OPLIONS ... ettt et e e e e ettt et e e e e e e s s s s aeteeeeeeeeeaaaeesaaannsbebeeaeeeeaaaeeesaaansnbesaeeeeaaaeeesasaannnnnes 553
32.10.4CoNfigurationaNdPIEPIOCESSIMG.vveetuerreteeruttrttesattteeeeaasste e e e s asbbe e e e aassbe e e e s asbbe e e e e anbb e e e e e anbb e e e e e annbeeeeeeannees 554
32.10.5ENtry pOINtt0 COABUENEIALION.uueieiiieeeeeeie ettt et e e e e e e e e ettt et e e e e e e s e s e ntab ittt e e eeeaaeeessaannnbsnseeeaaaaaeesesanns 554
32.10.6Module /O andWrapPEISKEIBTON.uiiiiiiiieieeeee ettt e e e e e e e e e et e e e e e e e e e s e e anaatbeeeeeeeaaeeeeseaannsenreeeeeeas 555
I X O I M oY (oY= Koo T =T o [T 1= = L () PRSPPI 557
32.10.8CONTAGUIBLIONTIES ee ettt ettt e oo oottt et e e e e e e e e e aa bt ettt e e e e aa e e e e e aanbbbeeereaeaaaeeeeaaannnnene 55¢
YA (O N LT 0TSt STU o] o o AR EER TR 56(
32.10.10StandardiDrary filES.........oii ettt e e e e e et e et e e e e e e e e nabreaeeeeaaaeeeeaeannnane 560
A O = T 4] 0] S V[0 | (oS (o= Lo < U UUP TR 560
T O I 2B o Yol U /1 1= 0 = [0 PSRN 561
32.10.13Prerequisitesor addinga newlanguagemnoduleto the SWIG distribution.............ccoooveciiiiiiiiiiiieies 561

A B A Y/ 01T 1T o PP R URUUPPPPPTP 5¢
G I I (0)Y ol = TS T PP PRRRPR 56!

YA W TN (o (] (ol oY= L ET= ((=T=T 0100 [T RPETURPR 561

Xviii

SWIG-1.3 Development Documentation

Last update : SWIG-1.3.29 (March 21, 2006)

Sections

The SWIG documentation is being updated to reflect new SWIG features and enhancements. However, this update process is
quite finished—-there is a lot of old SWIG-1.1 documentation and it is taking some time to update all of it. Please pardon our dt
(or volunteer to help!).

SWIG Core Documentation

» Preface
« Introduction

« Getting started on Windows
» SWIG Basics (Read this!)

* SWIG and C++

e The SWIG preprocessor

e The SWIG Library

» Argument handling

» Typemaps
« Customization features

e Contracts

« Variable length arguments
» Warning messages

» Working with Modules

Language Module Documentation

« Allegro CL support
o C# support
 Chicken support
 Guile support

« Java support

e Lua support

« Common Lisp support
» Modula3 support

» MzScheme support
» Ocaml support

« Perl5 support

* PHP support

« Pike support
 Python support

« Ruby support

e Tcl support

Developer Documentation

» Extending SWIG

SWIG-1.3 Development Documentation 1

SWIG-1.3 Documentation

Documentation that has not yet been updated

This documentation has not been completely updated from SWIG-1.1, but most of the topics still apply to the current release.
Make sure you read the SWIG Basics chapter before reading any of these chapters. Also, SWIG-1.3.10 features extensive
changes to the implementation of typemaps. Make sure you read the Typemaps chapter above if you are using this feature.

» Advanced topics (see Modules for updated information).

Documentation that has not yet been updated

1 Preface

« Introduction

« Special Introduction for Version 1.3
* SWIG Versions

« SWIG resources

« Prerequisites

« Organization of this manual

« How to avoid reading the manual

» Backwards Compatibility

* Credits

o Bug regorts
1.1 Introduction

SWIG (Simplified Wrapper and Interface Generator) is a software development tool for building scripting language interfaces tc
C and C++ programs. Originally developed in 1995, SWIG was first used by scientists in the Theoretical Physics Division at Lo
Alamos National Laboratory for building user interfaces to simulation codes running on the Connection Machine 5
supercomputer. In this environment, scientists needed to work with huge amounts of simulation data, complex hardware, and &
constantly changing code base. The use of a scripting language interface provided a simple yet highly flexible foundation for
solving these types of problems. SWIG simplifies development by largely automating the task of scripting language
integration——allowing developers and users to focus on more important problems.

Although SWIG was originally developed for scientific applications, it has since evolved into a general purpose tool that is usec
in a wide variety of applications——in fact almost anything where C/C++ programming is involved.

1.2 Special Introduction for Version 1.3

Since SWIG was released in 1996, its user base and applicability has continued to grow. Although its rate of development has
varied, an active development effort has continued to make improvements to the system. Today, nearly a dozen developers ar
working to create SWIG-2.0——-a system that aims to provide wrapping support for nearly all of the ANSI C++ standard and
approximately ten target languages including Guile, Java, Mzscheme, Ocaml, Perl, Pike, PHP, Python, Ruby, and Tcl.

1.3 SWIG Versions

For several years, the most stable version of SWIG has been release 1.1p5. Starting with version 1.3, a new version numberin
scheme has been adopted. Odd version numbers (1.3, 1.5, etc.) represent development versions of SWIG. Even version numt
(1.4, 1.6, etc.) represent stable releases. Currently, developers are working to create a stable SWIG-2.0 release. Don't let the
development status of SWIG-1.3 scare you——-it is much more stable (and capable) than SWIG-1.1p5.

1.4 SWIG resources

The official location of SWIG related material is

http://www.swig.org

This site contains the latest version of the software, users guide, and information regarding bugs, installation problems, and
implementation tricks.

You can also subscribe to the swig—user mailing list by visiting the page

http://www.swig.org/mail.html

1 Preface 3

http://www.swig.org
http://www.swig.org/mail.html

SWIG-1.3 Documentation

The mailing list often discusses some of the more technical aspects of SWIG along with information about beta releases and
future work.

CVS access to the latest version of SWIG is also available. More information about this can be obtained at:

http://www.swig.org/cvs.html

1.5 Prerequisites

This manual assumes that you know how to write C/C++ programs and that you have at least heard of scripting languages suc
Tcl, Python, and Perl. A detailed knowledge of these scripting languages is not required although some familiarity won't hurt. N
prior experience with building C extensions to these languages is required——-after all, this is what SWIG does automatically.
However, you should be reasonably familiar with the use of compilers, linkers, and makefiles since making scripting language
extensions is somewhat more complicated than writing a normal C program.

Recent SWIG releases have become significantly more capable in their C++ handling——especially support for advanced featur
like namespaces, overloaded operators, and templates. Whenever possible, this manual tries to cover the technicalities of this
interface. However, this isn't meant to be a tutorial on C++ programming. For many of the gory details, you will almost certainly
want to consult a good C++ reference. If you don't program in C++, you may just want to skip those parts of the manual.

1.6 Organization of this manual

The first few chapters of this manual describe SWIG in general and provide an overview of its capabilities. The remaining
chapters are devoted to specific SWIG language modules and are self contained. Thus, if you are using SWIG to build Python
interfaces, you can probably skip to that chapter and find almost everything you need to know. Caveat: we are currently workin
on a documentation rewrite and many of the older language module chapters are still somewhat out of date.

1.7 How to avoid reading the manual

If you hate reading manuals, glance at the "Introduction” which contains a few simple examples. These examples contain abou
95% of everything you need to know to use SWIG. After that, simply use the language—specific chapters as a reference. The
SWIG distribution also comes with a large directory of examples that illustrate different topics.

1.8 Backwards Compatibility

If you are a previous user of SWIG, don't expect recent versions of SWIG to provide backwards compatibility. In fact, backwarc
compatibility issues may arise even between successive 1.3.x releases. Although these incompatibilities are regrettable,
SWIG-1.3 is an active development project. The primary goal of this effort is to make SWIG better——-a process that would
simply be impossible if the developers are constantly bogged down with backwards compatibility issues.

On a positive note, a few incompatibilities are a small price to pay for the large number of new features that have been
added-—-—-namespaces, templates, smart pointers, overloaded methods, operators, and more.

If you need to work with different versions of SWIG and backwards compatibility is an issue, you can use the SWIG_VERSION
preprocessor symbol which holds the version of SWIG being executed. SWIG_VERSION is a hexadecimal integer such as
0x010311 (corresponding to SWIG-1.3.11). This can be used in an interface file to define different typemaps, take advantage ¢
different features etc:

#if SWIG_VERSION >= 0x010311
/* Use some fancy new feature */
#endif

Note: The version symbol is not defined in the generated SWIG wrapper file. The SWIG preprocessor has defined
SWIG_VERSION since SWIG-1.3.11.

1.4 SWIG resources 4

http://www.swig.org/cvs.html

SWIG-1.3 Documentation
1.9 Credits

SWIG is an unfunded project that would not be possible without the contributions of many people. Most recent SWIG
development has been supported by Matthias Képpe, William Fulton, Lyle Johnson, Richard Palmer, Thien—-Thi Nguyen, Jasor
Stewart, Loic Dachary, Masaki Fukushima, Luigi Ballabio, Sam Liddicott, Art Yerkes, Marcelo Matus, Harco de Hilster, John
Lenz, and Surendra Singhi.

Historically, the following people contributed to early versions of SWIG. Peter Lomdahl, Brad Holian, Shujia Zhou, Niels Jenser
and Tim Germann at Los Alamos National Laboratory were the first users. Patrick Tullmann at the University of Utah suggestet
the idea of automatic documentation generation. John Schmidt and Kurtis Bleeker at the University of Utah tested out the early
versions. Chris Johnson supported SWIG's developed at the University of Utah. John Buckman, Larry Virden, and Tom Schwa
provided valuable input on the first releases and improving the portability of SWIG. David Fletcher and Gary Holt have providec
a great deal of input on improving SWIG's Perl5 implementation. Kevin Butler contributed the first Windows NT port.

1.10 Bug reports

Although every attempt has been made to make SWIG bug-free, we are also trying to make feature improvements that may
introduce bugs. To report a bug, either send mail to the SWIG developer list at the swig—devel mailing list or report a bug at the
SWIG bug tracker. In your report, be as specific as possible, including (if applicable), error messages, tracebacks (if a core dur
occurred), corresponding portions of the SWIG interface file used, and any important pieces of the SWIG generated wrapper ct
We can only fix bugs if we know about them.

1.9 Credits 5

http://www.swig.org/mail.html
http://www.swig.org/bugs.html

2 Introduction

* What is SWIG?

» Why use SWIG?

« A SWIG example
+ SWIG interface file
¢ The swig command
¢ Building a Perl5 module
¢ Building a Python module
¢ Shortcuts

 Supported C/C++ language features
» Non-intrusive interface building
« Incorporating SWIG into a build system

« Hands off code generation
* SWIG and freedom

2.1 What is SWIG?

SWIG is a software development tool that simplifies the task of interfacing different languages to C and C++ programs. In a
nutshell, SWIG is a compiler that takes C declarations and creates the wrappers needed to access those declarations from oth
languages including including Perl, Python, Tcl, Ruby, Guile, and Java. SWIG normally requires no modifications to existing
code and can often be used to build a usable interface in only a few minutes. Possible applications of SWIG include:

« Building interpreted interfaces to existing C programs.

* Rapid prototyping and application development.

« Interactive debugging.

« Reengineering or refactoring of legacy software into a scripting language components.

» Making a graphical user interface (using Tk for example).

* Testing of C libraries and programs (using scripts).

« Building high performance C modules for scripting languages.

« Making C programming more enjoyable (or tolerable depending on your point of view).

* Impressing your friends.

 Obtaining vast sums of research funding (although obviously not applicable to the author).

SWIG was originally designed to make it extremely easy for scientists and engineers to build extensible scientific software
without having to get a degree in software engineering. Because of this, the use of SWIG tends to be somewhat informal and
ad-hoc (e.g., SWIG does not require users to provide formal interface specifications as you would find in a dedicated IDL
compiler). Although this style of development isn't appropriate for every project, it is particularly well suited to software
development in the small; especially the research and development work that is commonly found in scientific and engineering
projects.

2.2 Why use SWIG?

As stated in the previous section, the primary purpose of SWIG is to simplify the task of integrating C/C++ with other
programming languages. However, why would anyone want to do that? To answer that question, it is useful to list a few strengf
of C/C++ programming:

« Excellent support for writing programming libraries.

« High performance (number crunching, data processing, graphics, etc.).
« Systems programming and systems integration.

* Large user community and software base.

Next, let's list a few problems with C/C++ programming

2 Introduction 6

SWIG-1.3 Documentation

» Writing a user interface is rather painful (i.e., consider programming with MFC, X11, GTK, or any number of other
libraries).

« Testing is time consuming (the compile/debug cycle).

» Not easy to reconfigure or customize without recompilation.

» Modularization can be tricky.

 Security concerns (buffer overflow for instance).

To address these limitations, many programmers have arrived at the conclusion that it is much easier to use different programr
languages for different tasks. For instance, writing a graphical user interface may be significantly easier in a scripting language
like Python or Tcl (consider the reasons why millions of programmers have used languages like Visual Basic if you need more
proof). An interactive interpreter might also serve as a useful debugging and testing tool. Other languages like Java might grea
simplify the task of writing distributed computing software. The key point is that different programming languages offer different
strengths and weaknesses. Moreover, it is extremely unlikely that any programming is ever going to be perfect. Therefore, by
combining languages together, you can utilize the best features of each language and greatly simplify certain aspects of softwe
development.

From the standpoint of C/C++, a lot of people use SWIG because they want to break out of the traditional monolithic C
programming model which usually results in programs that resemble this:

* A collection of functions and variables that do something useful.
« A main() program that starts everything.
« A horrible collection of hacks that form some kind of user interface (but which no—one really wants to touch).

Instead of going down that route, incorporating C/C++ into a higher level language often results in a more modular design, less
code, better flexibility, and increased programmer productivity.

SWIG tries to make the problem of C/C++ integration as painless as possible. This allows you to focus on the underlying C
program and using the high-level language interface, but not the tedious and complex chore of making the two languages talk
each other. At the same time, SWIG recognizes that all applications are different. Therefore, it provides a wide variety of
customization features that let you change almost every aspect of the language bindings. This is the main reason why SWIG h,
such a large user manual ;-).

2.3 A SWIG example

The best way to illustrate SWIG is with a simple example. Consider the following C code:
/* File : example.c */
double My_variable = 3.0;

/* Compute factorial of n */
int fact(int n) {
if (n<=1) return 1;
else return n*fact(n—1);

}

/* Compute n mod m */
int my_mod(int n, int m) {
return(n % m);

}

Suppose that you wanted to access these functions and the global variable My _variable from Tcl. You start by making a
SWIG interface file as shown below (by convention, these files carry a .i suffix) :

2.3.1 SWIG interface file

I* File : example.i */
%module example

2.2 Why use SWIG? 7

SWIG-1.3 Documentation

%{

/* Put headers and other declarations here */
extern double My_variable;

extern int fact(int);

extern int my_mod(int n, int m);

9%}

extern double My_variable;
externint fact(int);
extern int my_mod(int n, int m);

The interface file contains ANSI C function prototypes and variable declarations. The %module directive defines the name of tt
module that will be created by SWIG. The %{,%]} block provides a location for inserting additional code such as C header files ¢
additional C declarations.

2.3.2 The swig command

SWIG is invoked using the swig command. We can use this to build a Tcl module (under Linux) as follows :

unix > swig —tcl example.i

unix > gcc —c —fpic example.c example_wrap.c —l/usr/local/include
unix > gcc —shared example.o example_wrap.o —0 example.so
unix > tclsh

% load ./example.so

% fact 4

24

% my_mod 23 7

2

% expr $My_variable + 4.5

7.5

%

The swig command produced a new file called example_wrap.c that should be compiled along with the example.c file.

Most operating systems and scripting languages now support dynamic loading of modules. In our example, our Tcl module has
been compiled into a shared library that can be loaded into Tcl. When loaded, Tcl can now access the functions and variables
declared in the SWIG interface. A look at the file example_wrap.c reveals a hideous mess. However, you almost never need
to worry about it.

2.3.3 Building a Perl5 module

Now, let's turn these functions into a Perl5 module. Without making any changes type the following (shown for Solaris):

unix > swig —perl5 example.i

unix > gcc —c example.c example_wrap.c \
—l/usr/localllib/perl5/sun4-solaris/5.003/CORE

unix > Id -G example.o example_wrap.o —0 example.so # This is for Solaris

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my_mod(23,7), "\n";

print $example::My_variable + 4.5, "\n";

<ctrl-d>

24

2

7.5

unix >

2.3.4 Building a Python module

Finally, let's build a module for Python (shown for Irix).

unix > swig —python example.i

2.3.1 SWIG interface file 8

SWIG-1.3 Documentation

unix > gcc —c —fpic example.c example_wrap.c —l/usr/local/include/python2.0
unix > gcc —shared example.o example_wrap.o —o _example.so
unix > python

Python 2.0 (#6, Feb 21 2001, 13:29:45)

[GCC egcs—2.91.66 19990314/Linux (egcs—1.1.2 release)] on linux2
Type "copyright", "credits" or "license" for more information.

>>> import example

>>> example.fact(4)

24

>>> example.my_mod(23,7)

2

>>> example.cvar.My_variable + 4.5

7.5

2.3.5 Shortcuts

To the truly lazy programmer, one may wonder why we needed the extra interface file at all. As it turns out, you can often do
without it. For example, you could also build a Perl5 module by just running SWIG on the C header file and specifying a module
name as follows

unix > swig —perl5 -module example example.h

unix > gcc —c example.c example_wrap.c \
—l/usr/localllib/perl5/sun4-solaris/5.003/CORE

unix > Id -G example.o example_wrap.o —o0 example.so

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my_mod(23,7), "\n";

print $example::My_variable + 4.5, "\n";

<ctrl-d>

24

2

7.5

2.4 Supported C/C++ language features

A primary goal of the SWIG project is to make the language binding process extremely easy. Although a few simple examples
have been shown, SWIG is quite capable in supporting most of C++. Some of the major features include:

* Full C99 preprocessing.

< All ANSI C and C++ datatypes.
 Functions, variables, and constants.
* Classes.

* Single and multiple inheritance.
 Overloaded functions and methods.
» Overloaded operators.

« C++ templates (including member templates, specialization, and partial specialization).
* Namespaces.

* Variable length arguments.

* C++ smart pointers.

Currently, the only major C++ feature not supported is nested classes——a limitation that will be removed in a future release.

It is important to stress that SWIG is not a simplistic C++ lexing tool like several apparently similar wrapper generation tools.
SWIG not only parses C++, it implements the full C++ type system and it is able to understand C++ semantics. SWIG generate
its wrappers with full knowledge of this information. As a result, you will find SWIG to be just as capable of dealing with nasty
corner cases as it is in wrapping simple C++ code. In fact, SWIG is able handle C++ code that stresses the very limits of many
C++ compilers.

2.3.4 Building a Python module 9

SWIG-1.3 Documentation
2.5 Non-intrusive interface building

When used as intended, SWIG requires minimal (if any) modification to existing C or C++ code. This makes SWIG extremely
easy to use with existing packages and promotes software reuse and modularity. By making the C/C++ code independent of th
high level interface, you can change the interface and reuse the code in other applications. It is also possible to support differel
types of interfaces depending on the application.

2.6 Incorporating SWIG into a build system

SWIG is a command line tool and as such can be incorporated into any build system that supports invoking external
tools/compilers. SWIG is most commonly invoked from within a Makefile, but is also known to be invoked from from popular
IDEs such as Microsoft Visual Studio.

If you are using the GNU Autotools (Autoconf/ Automake/ Libtool) to configure SWIG use in your project, the SWIG Autoconf
macros can be used. The primary macro is ac_pkg_swig, see

http://www.gnu.org/software/ac—archive/htmldoc/ac_pkag_swig.html. The ac_python_devel macro is also helpful for
generating Python extensions. See_the Autoconf Macro Archive for further information on this and other Autoconf macros.

There is growing support for SWIG in some build tools, for example CMake is a cross—platform, open—source build manager w
built in support for SWIG. CMake can detect the SWIG executable and many of the target language libraries for linking against.
CMake knows how to build shared libraries and loadable modules on many different operating systems. This allows easy cross
platform SWIG development. It also can generate the custom commands necessary for driving SWIG from IDE's and makefiles
All of this can be done from a single cross platform input file. The following example is a CMake input file for creating a python
wrapper for the SWIG interface file, example.i:

This is a CMake example for Python

FIND_PACKAGE(SWIG REQUIRED)
INCLUDE(${SWIG_USE_FILE})

FIND_PACKAGE(PythonLibs)
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_PATH})

INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
SET(CMAKE_SWIG_FLAGS ™)

SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES CPLUSPLUS ON)
SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES SWIG_FLAGS "-includeall’)

SWIG_ADD_MODULE(example python example.i example.cxx)
SWIG_LINK_LIBRARIES(example ${PYTHON_LIBRARIES})

The above example will generate native build files such as makefiles, nmake files and Visual Studio projects which will invoke
SWIG and compile the generated C++ files into _example.so (UNIX) or _example.dll (Windows).

2.7 Hands off code generation
SWIG is designed to produce working code that needs no hand—-maodification (in fact, if you look at the output, you probably
won't want to modify it). You should think of your target language interface being defined entirely by the input to SWIG, not the

resulting output file. While this approach may limit flexibility for hard—core hackers, it allows others to forget about the low-level
implementation details.

2.8 SWIG and freedom

No, this isn't a special section on the sorry state of world politics. However, it may be useful to know that SWIG was written wit!

2.5 Non-intrusive interface building 10

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake
http://www.gnu.org/software/libtool
http://www.gnu.org/software/ac-archive/htmldoc/ac_pkg_swig.html
http://www.gnu.org/software/ac-archive/htmldoc/index.html
http://www.cmake.org

SWIG-1.3 Documentation

a certain "philosophy" about programming——-namely that programmers are smart and that tools should just stay out of their we
Because of that, you will find that SWIG is extremely permissive in what it lets you get away with. In fact, you can use SWIG to
go well beyond "shooting yourself in the foot" if dangerous programming is your goal. On the other hand, this kind of freedoom
may be exactly what is needed to work with complicated and unusual C/C++ applications.

Ironically, the freedom that SWIG provides is countered by an extremely conservative approach to code generation. At it's core
SWIG tries to distill even the most advanced C++ code down to a small well-defined set of interface building techniques based
on ANSI C programming. Because of this, you will find that SWIG interfaces can be easily compiled by virtually every C/C++
compiler and that they can be used on any platform. Again, this is an important part of staying out of the programmer’s
way——--the last thing any developer wants to do is to spend their time debugging the output of a tool that relies on nhon—portat
or unreliable programming features.

2.8 SWIG and freedom 11

3 Getting started on Windows

* Installation on Windows
+ Windows Executable

+ SWIG Windows Examples
¢ Instructions for using the Examples with Visual Studio
¢ Python
OICL
O Perl
¢ Java
¢ Ruby
OC#
¢ Instructions for using the Examples with other compilers
+ SWIG on Cygwin and MinGW
¢ Building swig.exe on Windows
¢ Building swig.exe using MinGW and MSYS
¢ Building swig.exe using Cygwin
¢ Building swig.exe alternatives
¢ Running the examples on Windows using Cygwin
 Microsoft extensions and other Windows quirks

This chapter describes SWIG usage on Microsoft Windows. Installing SWIG and running the examples is covered as well as
building the SWIG executable. Usage within the Unix like environments MinGW and Cygwin is also detailed.

3.1 Installation on Windows

SWIG does not come with the usual Windows type installation program, however it is quite easy to get started. The main steps
are:

» Download the swigwin zip package from the SWIG website and unzip into a directory. This is all that needs
downloading for the Windows platform.

 Set environment variables as described in the SWIG Windows Examples section in order to run examples using Visual
C++.

3.1.1 Windows Executable

The swigwin distribution contains the SWIG Windows executable, swig.exe, which will run on 32 bit versions of Windows, ie
Windows 95/98/ME/NT/2000/XP. If you want to build your own swig.exe have a logk at Building swig.exe on Windows.

3.2 SWIG Windows Examples

Using Microsoft Visual C++ is the most common approach to compiling and linking SWIG's output. The Examples directory has
a few Visual C++ project files (.dsp files). These were produced by Visual C++ 6, although they should also work in Visual C++
5. Later versions of Visual Studio should also be able to open and convert these project files. The C# examples come with .NE
2003 solution (.sIn) and project files instead of Visual C++ 6 project files. The project files have been set up to execute SWIG ir
custom build rule for the SWIG interface (.i) file. Alternatively run the examples using Cygwin.

More information on each of the examples is available with the examples distributed with SWIG (Examples/index.html).
3.2.1 Instructions for using the Examples with Visual Studio
Ensure the SWIG executable is as supplied in the SWIG root directory in order for the examples to work. Most languages requi

some environment variables to be set before running Visual C++. Note that Visual C++ must be re—started to pick up any chan
in environment variables. Open up an example .dsp file, Visual C++ will create a workspace for you (.dsw file). Ensure the

3 Getting started on Windows 12

http://www.swig.org

SWIG-1.3 Documentation

Release build is selected then do a Rebuild All from the Build menu. The required environment variables are displayed with the
current values.

The list of required environment variables for each module language is also listed below. They are usually set from the Control
Panel and System properties, but this depends on which flavour of Windows you are running. If you don't want to use

environment variables then change all occurences of the environment variables in the .dsp files with hard coded values. If you .
interested in how the project files are set up there is explanatory information in some of the language module's documentation.

3.2.1.1 Python

PYTHON_INCLUDE : Set this to the directory that contains python.h
PYTHON_LIB : Set this to the python library including path for linking

Example using Python 2.1.1:
PYTHON_INCLUDE: d:\python21\include
PYTHON_LIB: d:\python21\libs\python21.lib
3.2.12TCL

TCL_INCLUDE : Set this to the directory containing tcl.h
TCL_LIB : Set this to the TCL library including path for linking

Example using ActiveTcl 8.3.3.3
TCL_INCLUDE: d:\tchinclude
TCL_LIB: d:\tchlib\tcl83.lib
3.2.1.3 Perl

PERL5_INCLUDE : Set this to the directory containing perl.h
PERL5_LIB : Set this to the Perl library including path for linking

Example using nsPerl 5.004_04:

PERL5_INCLUDE: D:\nsPerl5.004_04\lib\CORE
PERL5_LIB: D:\nsPerl5.004_04\lib\CORE\perl.lib

3.2.1.4 Java

JAVA_INCLUDE : Set this to the directory containing jni.h
JAVA_BIN : Set this to the bin directory containing javac.exe

Example using JDK1.3:
JAVA_INCLUDE: d:\jdk1.3\include
JAVA_BIN: d:\jdk1.3\bin

3.2.1.5 Ruby

RUBY_INCLUDE : Set this to the directory containing ruby.h
RUBY_LIB : Set this to the ruby library including path for linking

Example using Ruby 1.6.4:

RUBY_INCLUDE: D:\ruby\lib\ruby\1.6\i586—mswin32
RUBY_LIB: D:\ruby\lib\mswin32-ruby16.lib

3.2.1 Instructions for using the Examples with Visual Studio 13

SWIG-1.3 Documentation
3.2.1.6 C#

The C# examples do not require any environment variables to be set as a C# project file is included. Just open up the .sln solu

file in Visual Studio .NET 2003 and do a Rebuild All from the Build menu. The accompanying C# and C++ project file are
automatically used by the solution file.

3.2.2 Instructions for using the Examples with other compilers
If you do not have access to Visual C++ you will have to set up project files / Makefiles for your chosen compiler. There is a

section in each of the language modules detailing what needs setting up using Visual C++ which may be of some guidance.
Alternatively you may want to use Cygwin as described in the following section.

3.3 SWIG on Cygwin and MinGW

SWIG can also be compiled and run using Cygwin or MinGW which provides a Unix like front end to Windows and comes free
with gcc, an ANSI C/C++ compiler. However, this is not a recommended approach as the prebuilt executable is supplied.

3.3.1 Building swig.exe on Windows
If you want to replicate the build of swig.exe that comes with the download, follow the MinGW instructions below. This is not
necessary to use the supplied swig.exe. This information is provided for those that want to modify the SWIG source code in a
Windows environment. Normally this is not needed, so most people will want to ignore this section.
3.3.1.1 Building swig.exe using MinGW and MSYS
The short abbreviated instructions follow...

* Install MinGW and MSYS from the MinGW site. This provides a Unix environment on Windows.

* Follow the usual Unix instructions in the README file in the SWIG root directory to build swig.exe from the MinGW
command prompt.

The step by step instructions to download and install MinGW and MSYS, then download and build the latest version of SWIG
from cvs follow...

Pitfall note: Execute the steps in the order shown and don't use spaces in path names. In fact it is best to use the default
installation directories.

1. Download the following packages from the MinGW download page or MinGW SourceForge download page. Note that
at the time of writing, the majority of these are in the Current release list and some are in the Snapshot or Previous
release list.

¢ MinGW-3.1.0-1.exe

¢ MSYS-1.0.11-2004.04.30-1.exe
¢ msysDTK-1.0.1.exe

¢ bison-2.0-MSYS.tar.gz

¢ msys—autoconf-2.59.tar.bz2

¢ msys—automake-1.8.2.tar.bz2

2. Install MinGW-3.1.0-1.exe (C:\MinGW is default location.)

3. Install MSYS-1.0.11-2004.04.30-1.exe. Make sure you install it on the same windows drive letter as MinGW
(C:\msys\1.0 is default). In the post install script,

¢ Answer y to the "do you wish to continue with the post install?"

¢ Answer y to the "do you have MinGW installed?"

¢ Type in the the folder in which you installed MinGW (C:/MinGW is default)
4. Install msysDTK-1.0.1.exe to the same folder that you installed MSYS (C:\msys\1.0 is default).
5. Copy the followig to the MSYS install folder (C:\msys\1.0 is default):

¢ msys—automake-1.8.2.tar.bz2

3.2.1.6 C# 14

http://www.cygwin.com
http://www.mingw.org
http://www.mingw.org
http://www.mingw.org/download.shtml
http://sourceforge.net/project/showfiles.php?group_id=2435

SWIG-1.3 Documentation

¢ msys—autoconf-2.59.tar.bz2
¢ bison-2.0-MSYS.tar.gz

6. Start the MSYS command prompt and execute:
cd/
tar —jxf msys—automake-1.8.2.tar.bz2
tar —jxf msys—autoconf-2.59.tar.bz2
tar —zxf bison-2.0-MSYS.tar.gz

7.To get the latest SWIG CVS, type in the following:
mkdir /usr/src
cd /usr/src
export CVSROOT=:pserver:anonymous@cvs.sourceforge.net:/cvsroot/swig
cvs login
(Logging in to anonymous@cvs.sourceforge.net)
CVS password: <Just Press Return Here>
cvs —z3 co SWIG

Pitfall note: If you want to check out SWIG to a different folder to the proposed /ust/src/SWIG, do not use MSYS
emulated windows drive letters, because the autotools will fail miserably on those.

8.You are now ready to build SWIG. Execute the following commands to build swig.exe:
cd /usr/src/SWIG
Jautogen.sh
Iconfigure
make

3.3.1.2 Building swig.exe using Cygwin

Note that SWIG can also be built using Cygwin. However, SWIG will then require the Cygwin DLL when executing. Follow the
Unix instructions in the README file in the SWIG root directory. Note that the Cygwin environment will also allow one to
regenerate the autotool generated files which are supplied with the release distribution. These files are generated using the
autogen.sh script and will only need regenerating in circumstances such as changing the build system.

3.3.1.3 Building swig.exe alternatives

If you don't want to install Cygwin or MinGW, use a different compiler to build SWIG. For example, all the source code files can
be added to a Visual C++ project file in order to build swig.exe from the Visual C++ IDE.

3.3.2 Running the examples on Windows using Cygwin

The examples and test-suite work as successfully on Cygwin as on any other Unix operating system. The modules which are
known to work are Python, Tcl, Perl, Ruby, Java and C#. Follow the Unix instructions in the README file in the SWIG root
directory to build the examples.

3.4 Microsoft extensions and other Windows quirks

A common problem when using SWIG on Windows are the Microsoft function calling conventions which are not in the C++
standard. SWIG parses ISO C/C++ so cannot deal with proprietary conventions such as __declspec(dllimport),

__stdcall etc. There is a Windows interface file, windows.i, to deal with these calling conventions though. The file also

contains typemaps for handling commonly used Windows specific types such as __int64, BOOL, DWORD etc. Include it like yc
would any other interface file, for example:

%include <windows.i>

__declspec(dllexport) ULONG __stdcall foo(DWORD, __int32);

3.3.1.1 Building swig.exe using MinGW and MSYS 15

4 Scripting Languages

« The two language view of the world
« How does a scripting language talk to C?
+ Wrapper functions

¢ Variable linking
¢ Constants

+ Structures and classes

¢ Proxy classes
« Building scripting language extensions
¢ Shared libraries and dynamic loading
¢ Linking with shared libraries
+ Static linking

This chapter provides a brief overview of scripting language extension programming and the mechanisms by which scripting
language interpreters access C and C++ code.

4.1 The two language view of the world

When a scripting language is used to control a C program, the resulting system tends to look as follows:

Scripting Language
RS

Collection of C/C++ functions

In this programming model, the scripting language interpreter is used for high level control whereas the underlying functionality
of the C/C++ program is accessed through special scripting language "commands.” If you have ever tried to write your own
simple command interpreter, you might view the scripting language approach to be a highly advanced implementation of that.
Likewise, If you have ever used a package such as MATLAB or IDL, it is a very similar model-—the interpreter executes user
commands and scripts. However, most of the underlying functionality is written in a low—-level language like C or Fortran.

The two-language model of computing is extremely powerful because it exploits the strengths of each language. C/C++ can be
used for maximal performance and complicated systems programming tasks. Scripting languages can be used for rapid
prototyping, interactive debugging, scripting, and access to high—level data structures such associative arrays.

4.2 How does a scripting language talk to C?

Scripting languages are built around a parser that knows how to execute commands and scripts. Within this parser, there is a
mechanism for executing commands and accessing variables. Normally, this is used to implement the builtin features of the
language. However, by extending the interpreter, it is usually possible to add new commands and variables. To do this, most
languages define a special API for adding new commands. Furthermore, a special foreign function interface defines how these
new commands are supposed to hook into the interpreter.

Typically, when you add a new command to a scripting interpreter you need to do two things; first you need to write a special
"wrapper" function that serves as the glue between the interpreter and the underlying C function. Then you need to give the
interpreter information about the wrapper by providing details about the name of the function, arguments, and so forth. The nex
few sections illustrate the process.

4 Scripting Languages 16

SWIG-1.3 Documentation

4.2.1 Wrapper functions

Suppose you have an ordinary C function like this :

int fact(int n) {
if (n<=1) return 1;
else return n*fact(n—1);

}

In order to access this function from a scripting language, it is necessary to write a special "wrapper" function that serves as the
glue between the scripting language and the underlying C function. A wrapper function must do three things :

« Gather function arguments and make sure they are valid.
* Call the C function.
 Convert the return value into a form recognized by the scripting language.

As an example, the Tcl wrapper function for the fact() function above example might look like the following :

int wrap_fact(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
int result;
int argo;
if (argc 1= 2) {
interp—>result = "wrong # args";
return TCL_ERROR;

}

arg0 = atoi(argv[1]);

result = fact(arg0);
sprintf(interp—>result,"%d", result);
return TCL_OK;

Once you have created a wrapper function, the final step is to tell the scripting language about the new function. This is usually
done in an initialization function called by the language when the module is loaded. For example, adding the above function to
Tcl interpreter requires code like the following :

int Wrap_Init(Tcl_Interp *interp) {
Tcl_CreateCommand(interp, "fact”, wrap_fact, (ClientData) NULL,
(Tcl_CmdDeleteProc *) NULL);
return TCL_OK;
}

When executed, Tcl will now have a new command called "fact" that you can use like any other Tcl command.

Although the process of adding a new function to Tcl has been illustrated, the procedure is almost identical for Perl and Python
Both require special wrappers to be written and both need additional initialization code. Only the specific details are different.

4.2.2 Variable linking

Variable linking refers to the problem of mapping a C/C++ global variable to a variable in the scripting language interpeter. For
example, suppose you had the following variable:

double Foo = 3.5;
It might be nice to access it from a script as follows (shown for Perl):

$a = $Foo * 2.3; # Evaluation
$Foo = $a + 2.0; # Assignment

4.2.1 Wrapper functions 17

SWIG-1.3 Documentation

To provide such access, variables are commonly manipulated using a pair of get/set functions. For example, whenever the vall
of a variable is read, a "get" function is invoked. Similarly, whenever the value of a variable is changed, a "set" function is callec

In many languages, calls to the get/set functions can be attached to evaluation and assignment operators. Therefore, evaluatin
variable such as $Foo might implicitly call the get function. Similarly, typing $Foo = 4 would call the underlying set function
to change the value.

4.2.3 Constants

In many cases, a C program or library may define a large collection of constants. For example:

#define RED 0xff0000
#define BLUE 0x0000ff
#define GREEN 0x00ff00

To make constants available, their values can be stored in scripting language variables such as $RED, $BLUE, and $GREEN.
Virtually all scripting languages provide C functions for creating variables so installing constants is usually a trivial exercise.

4.2.4 Structures and classes

Although scripting languages have no trouble accessing simple functions and variables, accessing C/C++ structures and class
present a different problem. This is because the implementation of structures is largely related to the problem of data
representation and layout. Furthermore, certain language features are difficult to map to an interpreter. For instance, what does
C++ inheritance mean in a Perl interface?

The most straightforward technique for handling structures is to implement a collection of accessor functions that hide the
underlying representation of a structure. For example,

struct Vector {
Vector();
~Vector();
double x,y,z;

can be transformed into the following set of functions :

Vector *new_Vector();

void delete_Vector(Vector *v);

double Vector_x_get(Vector *v);
double Vector_y get(Vector *v);
double Vector_z_get(Vector *v);

void Vector_x_set(Vector *v, double x);
void Vector_y_set(Vector *v, double y);
void Vector_z_set(Vector *v, double z);

Now, from an interpreter these function might be used as follows:

% set v [new_Vector]
% Vector_x_set $v 3.5
% Vector_y_get $v

% delete_Vector $v

% ...

Since accessor functions provide a mechanism for accessing the internals of an object, the interpreter does not need to know
anything about the actual representation of a Vector.

4.2.2 Variable linking 18

SWIG-1.3 Documentation

4.2.5 Proxy classes

In certain cases, it is possible to use the low-level accessor functions to create a proxy class, also known as a shadow class. £
proxy class is a special kind of object that gets created in a scripting language to access a C/C++ class (or struct) in a way that
looks like the original structure (that is, it proxies the real C++ class). For example, if you have the following C definition :

class Vector {
public:
Vector();
~Vector();
double x,y,z;

¥

A proxy classing mechanism would allow you to access the structure in a more natural manner from the interpreter. For examp
in Python, you might want to do this:

>>> v = Vector()
>>>y.Xx=3
>>>vy =4
>>>v.z=-13
>>>

>>> del v

Similarly, in Perl5 you may want the interface to work like this:

$v = new Vector;
$v—>{x} = 3;
$v—>{y} = 4;
$v—>{z} = -13;

Finally, in Tcl :

Vector v
v configure -x 3 -y 4 -z 13

When proxy classes are used, two objects are at really work——one in the scripting language, and an underlying C/C++ object.
Operations affect both objects equally and for all practical purposes, it appears as if you are simply manipulating a C/C++ objec

4.3 Building scripting language extensions

The final step in using a scripting language with your C/C++ application is adding your extensions to the scripting language itse
There are two primary approaches for doing this. The preferred technique is to build a dynamically loadable extension in the fo
a shared library. Alternatively, you can recompile the scripting language interpreter with your extensions added to it.

4.3.1 Shared libraries and dynamic loading

To create a shared library or DLL, you often need to look at the manual pages for your compiler and linker. However, the
procedure for a few common machines is shown below:

Build a shared library for Solaris
gcc —c example.c example_wrap.c -l/usr/local/include
ld -G example.o example_wrap.o —o example.so

Build a shared library for Linux
gcc —fpic —c example.c example_wrap.c —l/usr/local/include
gcc —shared example.o example_wrap.o —o example.so

Build a shared library for Irix

4.2.5 Proxy classes 19

SWIG-1.3 Documentation

gcc —c example.c example_wrap.c -l/usr/local/include
Id —shared example.o example_wrap.o —o0 example.so

To use your shared library, you simply use the corresponding command in the scripting language (load, import, use, etc...). Thi
will import your module and allow you to start using it. For example:

% load ./example.so
% fact 4

24

%

When working with C++ codes, the process of building shared libraries may be more complicated——primarily due to the fact the
C++ modules may need additional code in order to operate correctly. On many machines, you can build a shared C++ module
following the above procedures, but changing the link line to the following :

c++ —shared example.o example_wrap.o —o example.so
4.3.2 Linking with shared libraries

When building extensions as shared libraries, it is not uncommon for your extension to rely upon other shared libraries on your
machine. In order for the extension to work, it needs to be able to find all of these libraries at run—time. Otherwise, you may get
an error such as the following :

>>> import graph
Traceback (innermost last):

File "<stdin>", line 1, in ?

File "/home/sci/datal/beazley/graph/graph.py”, line 2, in ?

import graphc

ImportError: 1101:/home/sci/datal/beazley/bin/python: rld: Fatal Error: cannot
successfully map soname 'libgraph.so' under any of the filenames /usr/lib/libgraph.so:/
lib/libgraph.so:/lib/cmplrs/cc/libgraph.so:/usr/lib/cmplrs/cc/libgraph.so:
>>>

What this error means is that the extension module created by SWIG depends upon a shared library called "libgraph.so" that
the system was unable to locate. To fix this problem, there are a few approaches you can take.

« Link your extension and explicitly tell the linker where the required libraries are located. Often times, this can be done
with a special linker flag such as —R, —rpath, etc. This is not implemented in a standard manner so read the man page:
for your linker to find out more about how to set the search path for shared libraries.

« Put shared libraries in the same directory as the executable. This technique is sometimes required for correct operatiol
non-Unix platforms.

* Set the UNIX environment variable LD_LIBRARY_PATH to the directory where shared libraries are located before
running Python. Although this is an easy solution, it is not recommended. Consider setting the path using linker options
instead.

4.3.3 Static linking
With static linking, you rebuild the scripting language interpreter with extensions. The process usually involves compiling a shol
main program that adds your customized commands to the language and starts the interpreter. You then link your program witt

library to produce a new scripting language executable.

Although static linking is supported on all platforms, this is not the preferred technique for building scripting language extension
In fact, there are very few practical reasons for doing this——consider using shared libraries instead.

4.3.1 Shared libraries and dynamic loading 20

5 SWIG Basics

e Running SWIG
¢ Input format
¢ SWIG Output
+ Comments
¢ C Preprocessor
+ SWIG Directives
+ Parser Limitations
» Wrapping Simple C Declarations

¢ Basic Type Handling
¢ Global Variables

+ Constants
+ A brief word aboutonst
¢ A cautionary tale ofhar *
- Pointers and complex objects
¢ Simple pointers
¢ Run time pointer type checking
¢ Derived types, structs, and classes
¢ Undefined datatypes
¢ Typedef
» Other Practicalities
¢ Passing structures by value
¢ Return by value
¢ Linking to structure variables
¢ Linking tochar *
¢ Arrays
¢ Creating read-only variables
¢ Renaming and ignoring declarations
¢

Default/optional arguments
+ Pointers to functions and callbacks

« Structures and unions

¢ Typedef and structures
¢ Character strings and structures

¢ Array members
+ Structure data members

+ C constructors and destructors

¢ Adding member functions to C structures
+ Nested structures

¢ Other things to note about structure wrapping
 Code Insertion

¢ The output of SWIG
¢ Code insertion blocks
¢ Inlined code blocks
+ Initialization blocks
« An Interface Building Strategy
¢ Preparing a C program for SWIG
+ The SWIG interface file
+ Why use separate interface files?

¢ Getting the right header files
¢ What to do with main()

This chapter describes the basic operation of SWIG, the structure of its input files, and how it handles standard ANSI C

declarations. C++ support is described in the next chapter. However, C++ programmers should still read this chapter to unders
the basics. Specific details about each target language are described in later chapters.

5 SWIG Basics 21

SWIG-1.3 Documentation

5.1 Running SWIG

To run SWIG, use the swig command with options options and a filename like this:

swig [options] filename

where filename is a SWIG interface file or a C/C++ header file. Below is a subset of options that can be used. Additional
options are also defined for each target language. A full list can be obtained by typing swig —help or swig —lang —help.

—allegrocl Generate ALLEGROCL wrappers
—chicken Generate CHICKEN wrappers

—clisp Generate CLISP wrappers

—cffi Generate CFFI wrappers

—-csharp Generate C# wrappers

—guile Generate Guile wrappers

—java Generate Java wrappers

-lua Generate Lua wrappers

—modula3 Generate Modula 3 wrappers
-mzscheme Generate Mzscheme wrappers
—ocaml Generate Ocaml wrappers

—perl Generate Perl wrappers

-php Generate PHP wrappers

—pike Generate Pike wrappers

—python Generate Python wrappers

—-ruby Generate Ruby wrappers

—-sexp Generate Lisp S—Expressions wrappers
—tcl Generate Tcl wrappers

—uffi Generate Common Lisp / UFFI wrappers
=xml Generate XML wrappers

—Cc++ Enable C++ parsing

—Dsymbol Define a preprocessor symbol
—Fstandard Display error/warning messages in commonly used format
—Fmicrosoft Display error/warning messages in Microsoft format
-help Display all options

—Idir Add a directory to the file include path
—lIfile Include a SWIG library file.

-module name Set the name of the SWIG module
-o outfile Name of output file

—outdir dir Set language specific files output directory
-swiglib Show location of SWIG library

-version Show SWIG version humber

5.1.1 Input format

As input, SWIG expects a file containing ANSI C/C++ declarations and special SWIG directives. More often than not, this is a
special SWIG interface file which is usually denoted with a special .i or .swg suffix. In certain cases, SWIG can be used
directly on raw header files or source files. However, this is not the most typical case and there are several reasons why you m
not want to do this (described later).

The most common format of a SWIG interface is as follows:

%module mymodule

%{

#include "myheader.h"

9%}

/I Now list ANSI C/C++ declarations
int foo;

int bar(int x);

5.1 Running SWIG 22

SWIG-1.3 Documentation

The name of the module is supplied using the special %module directive (or the -module command line option). This directive
must appear at the beginning of the file and is used to name the resulting extension module (in addition, this name often define
namespace in the target language). If the module name is supplied on the command line, it overrides the name specified with t
%module directive.

Everything in the %({ ... %} block is simply copied verbatim to the resulting wrapper file created by SWIG. This section is
almost always used to include header files and other declarations that are required to make the generated wrapper code comp
is important to emphasize that just because you include a declaration in a SWIG input file, that declaration does not automatice
appear in the generated wrapper code——-therefore you need to make sure you include the proper header files in the %{ ... %}
section. It should be noted that the text enclosed in %{ ... %} is not parsed or interpreted by SWIG. The %({...%} syntax and
semantics in SWIG is analogous to that of the declarations section used in input files to parser generation tools such as yacc o
bison.

5.1.2 SWIG Output

The output of SWIG is a C/C++ file that contains all of the wrapper code needed to build an extension module. SWIG may
generate some additional files depending on the target language. By default, an input file with the name file.i is transformed
into a file file_wrap.c or file_wrap.cxx (depending on whether or not the —c++ option has been used). The name of the

output file can be changed using the —o option. In certain cases, file suffixes are used by the compiler to determine the source
language (C, C++, etc.). Therefore, you have to use the —o option to change the suffix of the SWIG—-generated wrapper file if yi
want something different than the default. For example:

$ swig —c++ —python —o example_wrap.cpp example.i

The C/C++ output file created by SWIG often contains everything that is needed to construct a extension module for the target
scripting language. SWIG is not a stub compiler nor is it usually necessary to edit the output file (and if you look at the output,
you probably won't want to). To build the final extension module, the SWIG output file is compiled and linked with the rest of
your C/C++ program to create a shared library.

Many target languages will also generate proxy class files in the target language. The default output directory for these languag
specific files is the same directory as the generated C/C++ file. This can can be modified using the —outdir option. For
example:

$ swig —c++ —python —outdir pyfiles —o cppfiles/example_wrap.cpp example.i
If the directories cppfiles and pyfiles exist, the following will be generated:

cppfiles/example_wrap.cpp
pyfiles/example.py

5.1.3 Comments

C and C++ style comments may appear anywhere in interface files. In previous versions of SWIG, comments were used to
generate documentation files. However, this feature is currently under repair and will reappear in a later SWIG release.

5.1.4 C Preprocessor

Like C, SWIG preprocesses all input files through an enhanced version of the C preprocessor. All standard preprocessor featur
are supported including file inclusion, conditional compilation and macros. However, #include statements are ignored unless
the —includeall command line option has been supplied. The reason for disabling includes is that SWIG is sometimes used to
process raw C header files. In this case, you usually only want the extension module to include functions in the supplied heade
file rather than everything that might be included by that header file (i.e., system headers, C library functions, etc.).

It should also be noted that the SWIG preprocessor skips all text enclosed inside a %f{...%]} block. In addition, the preprocessor

includes a number of macro handling enhancements that make it more powerful than the normal C preprocessor. These extens
are described in the "Preprocessor” chapter.

5.1.1 Input format 23

SWIG-1.3 Documentation

5.1.5 SWIG Directives

Most of SWIG's operation is controlled by special directives that are always preceded by a "%" to distinguish them from normal
declarations. These directives are used to give SWIG hints or to alter SWIG's parsing behavior in some manner.

Since SWIG directives are not legal C syntax, it is generally not possible to include them in header files. However, SWIG
directives can be included in C header files using conditional compilation like this:

/* header.h ——- Some header file */

I* SWIG directives —— only seen if SWIG is running */
#ifdef SWIG

%module foo

#endif

SWIG is a special preprocessing symbol defined by SWIG when it is parsing an input file.

5.1.6 Parser Limitations

Although SWIG can parse most C/C++ declarations, it does not provide a complete C/C++ parser implementation. Most of thes
limitations pertain to very complicated type declarations and certain advanced C++ features. Specifically, the following features
are not currently supported:

» Non-conventional type declarations. For example, SWIG does not support declarations such as the following (even
though this is legal C):
/* Non—conventional placement of storage specifier (extern) */
const int extern Number;

[* Extra declarator grouping */
Matrix (foo); /I A global variable

[* Extra declarator grouping in parameters */
void bar(Spam (Grok)(Doh));

In practice, few (if any) C programmers actually write code like this since this style is never featured in programming
books. However, if you're feeling particularly obfuscated, you can certainly break SWIG (although why would you want
to?).

* Running SWIG on C++ source files (what would appear in a .C or .cxx file) is not recommended. Even though SWIG
can parse C++ class declarations, it ignores declarations that are decoupled from their original class definition (the

declarations are parsed, but a lot of warning messages may be generated). For example:
/* Not supported by SWIG */
int foo::bar(int) {
... whatever ...

}
« Certain advanced features of C++ such as nested classes are not yet supported. Please see the section on using SWI

with C++ for more information.

In the event of a parsing error, conditional compilation can be used to skip offending code. For example:

#ifndef SWIG
... some bad declarations ...
#endif

Alternatively, you can just delete the offending code from the interface file.
One of the reasons why SWIG does not provide a full C++ parser implementation is that it has been designed to work with

incomplete specifications and to be very permissive in its handling of C/C++ datatypes (e.g., SWIG can generate interfaces eve
when there are missing class declarations or opaque datatypes). Unfortunately, this approach makes it extremely difficult to

5.1.5 SWIG Directives 24

SWIG-1.3 Documentation

implement certain parts of a C/C++ parser as most compilers use type information to assist in the parsing of more complex
declarations (for the truly curious, the primary complication in the implementation is that the SWIG parser does not utilize a
separate typedef-name terminal symbol as described on p. 234 of K&R).

5.2 Wrapping Simple C Declarations

SWIG wraps simple C declarations by creating an interface that closely matches the way in which the declarations would be us
in a C program. For example, consider the following interface file:

%module example

%inline %({

extern double sin(double x);

extern int strcmp(const char *, const char *);
extern int Foo;

%0}

#define STATUS 50

#define VERSION "1.1"

In this file, there are two functions sin() and strcmp(), a global variable Foo, and two constants STATUS and VERSION.
When SWIG creates an extension module, these declarations are accessible as scripting language functions, variables, and
constants respectively. For example, in Tcl:

% sin 3

5.2335956

% strcmp Dave Mike
-1

% puts $Foo

42

% puts $STATUS
50

% puts $VERSION
11

Or in Python:

>>> example.sin(3)

5.2335956

>>> example.strcmp(‘Dave','Mike')
-1

>>> print example.cvar.Foo

42

>>> print example.STATUS

50

>>> print example.VERSION

11

Whenever possible, SWIG creates an interface that closely matches the underlying C/C++ code. However, due to subtle
differences between languages, run—time environments, and semantics, it is not always possible to do so. The next few sectior
describes various aspects of this mapping.

5.2.1 Basic Type Handling

In order to build an interface, SWIG has to convert C/C++ datatypes to equivalent types in the target language. Generally,
scripting languages provide a more limited set of primitive types than C. Therefore, this conversion process involves a certain
amount of type coercion.

Most scripting languages provide a single integer type that is implemented using the int or long datatype in C. The following
list shows all of the C datatypes that SWIG will convert to and from integers in the target language:

int

5.1.6 Parser Limitations 25

SWIG-1.3 Documentation

short

long

unsigned
signed
unsigned short
unsigned long
unsigned char
signed char
bool

When an integral value is converted from C, a cast is used to convert it to the representation in the target language. Thus, a 16
short in C may be promoted to a 32 bit integer. When integers are converted in the other direction, the value is cast back into t
original C type. If the value is too large to fit, it is silently truncated.

unsigned char and signed char are special cases that are handled as small 8-bit integers. Normally, the char datatype
is mapped as a one—character ASCII string.

The bool datatype is cast to and from an integer value of 0 and 1 unless the target language provides a special boolean type.

Some care is required when working with large integer values. Most scripting languages use 32-bit integers so mapping a 64—
long integer may lead to truncation errors. Similar problems may arise with 32 bit unsigned integers (which may appear as larg
negative numbers). As a rule of thumb, the int datatype and all variations of char and short datatypes are safe to use. For
unsigned int and long datatypes, you will need to carefully check the correct operation of your program after it has been
wrapped with SWIG.

Although the SWIG parser supports the long long datatype, not all language modules support it. This is because long long
usually exceeds the integer precision available in the target language. In certain modules such as Tcl and Perl5, long long
integers are encoded as strings. This allows the full range of these numbers to be represented. However, it does not allow long
long values to be used in arithmetic expressions. It should also be noted that although long long is part of the ISO C99
standard, it is not universally supported by all C compilers. Make sure you are using a compiler that supports long long before
trying to use this type with SWIG.

SWIG recognizes the following floating point types :

float
double

Floating point numbers are mapped to and from the natural representation of floats in the target language. This is almost alway
C double. The rarely used datatype of long double is not supported by SWIG.

The char datatype is mapped into a NULL terminated ASCII string with a single character. When used in a scripting language if
shows up as a tiny string containing the character value. When converting the value back into C, SWIG takes a character string
from the scripting language and strips off the first character as the char value. Thus if the value "foo" is assigned to a char
datatype, it gets the value °f'.

The char * datatype is handled as a NULL-terminated ASCII string. SWIG maps this into a 8—bit character string in the target
scripting language. SWIG converts character strings in the target language to NULL terminated strings before passing them int
C/C++. The default handling of these strings does not allow them to have embedded NULL bytes. Therefore, the char *
datatype is not generally suitable for passing binary data. However, it is possible to change this behavior by defining a SWIG
typemap. See the chapter_ on Typemaps for details about this.

At this time, SWIG does not provide any special support for Unicode or wide—-character strings (the C wchar_t type). This is a
delicate topic that is poorly understood by many programmers and not implemented in a consistent manner across languages.
those scripting languages that provide Unicode support, Unicode strings are often available in an 8-bit representation such as
UTF-8 that can be mapped to the char * type (in which case the SWIG interface will probably work). If the program you are
wrapping uses Unicode, there is no guarantee that Unicode characters in the target language will use the same internal
representation (e.g., UCS-2 vs. UCS-4). You may need to write some special conversion functions.

5.2.1 Basic Type Handling 26

SWIG-1.3 Documentation
5.2.2 Global Variables

Whenever possible, SWIG maps C/C++ global variables into scripting language variables. For example,

%module example
double foo;

results in a scripting language variable like this:

Tcl

set foo [3.5] # Set foo to 3.5

puts $foo ;# Print the value of foo
Python

cvar.foo = 3.5 # Setfoo to 3.5
print cvar.foo # Print value of foo

Perl

$foo = 3.5; # Set foo to 3.5

print $foo,"\n"; # Print value of foo

Ruby

Module.foo = 3.5 # Set foo to 3.5
print Module.foo, "\n" # Print value of foo

Whenever the scripting language variable is used, the underlying C global variable is accessed. Although SWIG makes every
attempt to make global variables work like scripting language variables, it is not always possible to do so. For instance, in Pyth
all global variables must be accessed through a special variable object known as cvar (shown above). In Ruby, variables are
accessed as attributes of the module. Other languages may convert variables to a pair of accessor functions. For example, the
module generates a pair of functions double get_foo() and set_foo(double val) that are used to manipulate the

value.

Finally, if a global variable has been declared as const, it only supports read—only access. Note: this behavior is new to
SWIG-1.3. Earlier versions of SWIG incorrectly handled const and created constants instead.

5.2.3 Constants

Constants can be created using #define, enumerations, or a special %constant directive. The following interface file shows a
few valid constant declarations :

#define |_CONST 5 /I An integer constant
#define PI 3.14159 /I A Floating point constant
#define S_CONST "hello world" // A string constant
#define NEWLINE \n' /I Character constant

enum boolean {NO=0, YES=1},
enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC};
%constant double BLAH = 42.37;
#define F_CONST (double) 5 /I A floating pointer constant with cast
#define PI_4 Pl/4
#define FLAGS 0x04 | 0x08 | 0x40

In #define declarations, the type of a constant is inferred by syntax. For example, a number with a decimal point is assumed to
be floating point. In addition, SWIG must be able to fully resolve all of the symbols used in a #define in order for a constant to
actually be created. This restriction is necessary because #define is also used to define preprocessor macros that are definitely
not meant to be part of the scripting language interface. For example:

#define EXTERN extern

5.2.2 Global Variables 27

SWIG-1.3 Documentation

EXTERN void foo();

In this case, you probably don't want to create a constant called EXTERN (what would the value be?). In general, SWIG will no
create constants for macros unless the value can be completely determined by the preprocessor. For instance, in the above
example, the declaration

#define PI_4 Pl/4
defines a constant because Pl was already defined as a constant and the value is known.

The use of constant expressions is allowed, but SWIG does not evaluate them. Rather, it passes them through to the output fil
lets the C compiler perform the final evaluation (SWIG does perform a limited form of type—checking however).

For enumerations, it is critical that the original enum definition be included somewhere in the interface file (either in a header fil
or in the %{,%} block). SWIG only translates the enumeration into code needed to add the constants to a scripting language. It
needs the original enumeration declaration in order to get the correct enum values as assigned by the C compiler.

The %constant directive is used to more precisely create constants corresponding to different C datatypes. Although it is not
usually not needed for simple values, it is more useful when working with pointers and other more complex datatypes. Typically
%constant is only used when you want to add constants to the scripting language interface that are not defined in the original
header file.

5.2.4 A brief word about const

A common confusion with C programming is the semantic meaning of the const qualifier in declarations——especially when it is
mixed with pointers and other type modifiers. In fact, previous versions of SWIG handled const incorrectly——a situation that
SWIG-1.3.7 and newer releases have fixed.

Starting with SWIG-1.3, all variable declarations, regardless of any use of const, are wrapped as global variables. If a
declaration happens to be declared as const, it is wrapped as a read—only variable. To tell if a variable is const or not, you
need to look at the right-most occurrence of the const qualifier (that appears before the variable name). If the right-most
const occurs after all other type modifiers (such as pointers), then the variable is const. Otherwise, it is not.

Here are some examples of const declarations.

const char a; /I A constant character
char const b; /I A constant character (the same)
char *const c; /I A constant pointer to a character

const char *const d; // A constant pointer to a constant character

Here is an example of a declaration that is not const:

const char *e; /I A pointer to a constant character. The pointer
/I may be modified.

In this case, the pointer e can change——-it's only the value being pointed to that is read—only.

Compatibility Note: One reason for changing SWIG to handle const declarations as read-only variables is that there are many
situations where the value of a const variable might change. For example, a library might export a symbol as const in its

public API to discourage modification, but still allow the value to change through some other kind of internal mechanism.
Furthermore, programmers often overlook the fact that with a constant declaration like char *const, the underlying data being
pointed to can be modified—-it's only the pointer itself that is constant. In an embedded system, a const declaration might refer
to a read—only memory address such as the location of a memory—mapped I/O device port (where the value changes, but writi
to the port is not supported by the hardware). Rather than trying to build a bunch of special cases into the const qualifier, the
new interpretation of const as "read—only" is simple and exactly matches the actual semantics of const in C/C++. If you really
want to create a constant as in older versions of SWIG, use the %constant directive instead. For example:

5.2.3 Constants 28

SWIG-1.3 Documentation

%constant double Pl = 3.14159;

or

#ifdef SWIG

#define const %constant
#endif

const double foo = 3.4;
const double bar = 23.4;
constint spam =42;
#ifdef SWIG

#undef const

#endif

5.2.5 A cautionary tale of char *

Before going any further, there is one bit of caution involving char * that must now be mentioned. When strings are passed
from a scripting language to a C char *, the pointer usually points to string data stored inside the interpreter. It is almost always
a really bad idea to modify this data. Furthermore, some languages may explicitly disallow it. For instance, in Python, strings ar
supposed be immutable. If you violate this, you will probably receive a vast amount of wrath when you unleash your module on
the world.

The primary source of problems are functions that might modify string data in place. A classic example would be a function like
this:

char *strcat(char *s, const char *t)
Although SWIG will certainly generate a wrapper for this, its behavior will be undefined. In fact, it will probably cause your
application to crash with a segmentation fault or other memory related problem. This is because s refers to some internal data |

the target language———data that you shouldn't be touching.

The bottom line: don't rely on char * for anything other than read-only input values. However, it must be noted that you could
change the behavior of SWIG using typemaps.

5.3 Pointers and complex objects
Most C programs manipulate arrays, structures, and other types of objects. This section discusses the handling of these dataty
5.3.1 Simple pointers

Pointers to primitive C datatypes such as

int *
double ***
char **

are fully supported by SWIG. Rather than trying to convert the data being pointed to into a scripting representation, SWIG simp
encodes the pointer itself into a representation that contains the actual value of the pointer and a type—tag. Thus, the SWIG
representation of the above pointers (in Tcl), might look like this:

~10081012_p_int
_1008e124_ppp_double
_f8ac_pp_char

A NULL pointer is represented by the string "NULL" or the value 0 encoded with type information.

5.2.4 A brief word about const 29

SWIG-1.3 Documentation

All pointers are treated as opaque objects by SWIG. Thus, a pointer may be returned by a function and passed around to othet
functions as needed. For all practical purposes, the scripting language interface works in exactly the same way as you would u
the pointer in a C program. The only difference is that there is no mechanism for dereferencing the pointer since this would
require the target language to understand the memory layout of the underlying object.

The scripting language representation of a pointer value should never be manipulated directly. Even though the values shown |
like hexadecimal addresses, the numbers used may differ from the actual machine address (e.g., on little—endian machines, th
digits may appear in reverse order). Furthermore, SWIG does not normally map pointers into high-level objects such as
associative arrays or lists (for example, converting an int * into an list of integers). There are several reasons why SWIG does
not do this:

 There is not enough information in a C declaration to properly map pointers into higher level constructs. For example, ¢
int * may indeed be an array of integers, but if it contains ten million elements, converting it into a list object is
probably a bad idea.

» The underlying semantics associated with a pointer is not known by SWIG. For instance, an int * might not be an
array at all-—perhaps it is an output value!

« By handling all pointers in a consistent manner, the implementation of SWIG is greatly simplified and less prone to errc

5.3.2 Run time pointer type checking

By allowing pointers to be manipulated from a scripting language, extension modules effectively bypass compile—time type
checking in the C/C++ compiler. To prevent errors, a type signature is encoded into all pointer values and is used to perform
run—time type checking. This type—checking process is an integral part of SWIG and can not be disabled or modified without
using typemaps (described in later chapters).

Like C, void * matches any kind of pointer. Furthermore, NULL pointers can be passed to any function that expects to receive &
pointer. Although this has the potential to cause a crash, NULL pointers are also sometimes used as sentinel values or to deno
missing/empty value. Therefore, SWIG leaves NULL pointer checking up to the application.

5.3.3 Derived types, structs, and classes
For everything else (structs, classes, arrays, etc...) SWIG applies a very simple rule :
Everything else is a pointer

In other words, SWIG manipulates everything else by reference. This model makes sense because most C/C++ programs mak
heavy use of pointers and SWIG can use the type—checked pointer mechanism already present for handling pointers to basic
datatypes.

Although this probably sounds complicated, it's really quite simple. Suppose you have an interface file like this :

%module fileio

FILE *fopen(char *, char *);

int fclose(FILE *);

unsigned fread(void *ptr, unsigned size, unsigned nobj, FILE *);
unsigned fwrite(void *ptr, unsigned size, unsigned nobj, FILE *);
void *malloc(int nbytes);

void free(void *);

In this file, SWIG doesn't know what a FILE is, but since it's used as a pointer, so it doesn't really matter what it is. If you
wrapped this module into Python, you can use the functions just like you expect :

Copy a file

def filecopy(source,target):
f1 = fopen(source,"r")
f2 = fopen(target,"w")
buffer = malloc(8192)

5.3.1 Simple pointers 30

SWIG-1.3 Documentation

nbytes = fread(buffer,8192,1,f1)
while (nbytes > 0):
fwrite(buffer,8192,1,f2)
nbytes = fread(buffer,8192,1,f1)
free(buffer)

In this case f1, f2, and buffer are all opaque objects containing C pointers. It doesn't matter what value they contain——our
program works just fine without this knowledge.

5.3.4 Undefined datatypes

When SWIG encounters an undeclared datatype, it automatically assumes that it is a structure or class. For example, suppose
following function appeared in a SWIG input file:

void matrix_multiply(Matrix *a, Matrix *b, Matrix *c);

SWIG has no idea what a "Matrix" is. However, it is obviously a pointer to something so SWIG generates a wrapper using its
generic pointer handling code.

Unlike C or C++, SWIG does not actually care whether Matrix has been previously defined in the interface file or not. This
allows SWIG to generate interfaces from only partial or limited information. In some cases, you may not care what a Matrix
really is as long as you can pass an opaque reference to one around in the scripting language interface.

An important detail to mention is that SWIG will gladly generate wrappers for an interface when there are unspecified type
names. However, all unspecified types are internally handled as pointers to structures or classes! For example, consider the
following declaration:

void foo(size_t num);

If size_t is undeclared, SWIG generates wrappers that expect to receive a type of size_t * (this mapping is described
shortly). As a result, the scripting interface might behave strangely. For example:

foo(40);
TypeError: expected a _p_size _t.

The only way to fix this problem is to make sure you properly declare type names using typedef.

5.3.5 Typedef

Like C, typedef can be used to define new type names in SWIG. For example:
typedef unsigned int size_t;

typedef definitions appearing in a SWIG interface are not propagated to the generated wrapper code. Therefore, they either
need to be defined in an included header file or placed in the declarations section like this:

%
/* Include in the generated wrapper file */
typedef unsigned int size_t;

9%}

/* Tell SWIG about it */

typedef unsigned int size_t;

or
%inline %({

typedef unsigned int size_t;
9%}

5.3.3 Derived types, structs, and classes 31

SWIG-1.3 Documentation

In certain cases, you might be able to include other header files to collect type information. For example:

%module example
%import "sys/types.h"

In this case, you might run SWIG as follows:
$ swig —l/usr/include —includeall example.i

It should be noted that your mileage will vary greatly here. System headers are notoriously complicated and may rely upon a
variety of non—standard C coding extensions (e.g., such as special directives to GCC). Unless you exactly specify the right incl
directories and preprocessor symbols, this may not work correctly (you will have to experiment).

SWIG tracks typedef declarations and uses this information for run—time type checking. For instance, if you use the above
typedef and had the following function declaration:

void foo(unsigned int *ptr);

The corresponding wrapper function will accept arguments of type unsigned int * or size_t *.

5.4 Other Practicalities

So far, this chapter has presented almost everything you need to know to use SWIG for simple interfaces. However, some C
programs use idioms that are somewhat more difficult to map to a scripting language interface. This section describes some of
these issues.

5.4.1 Passing structures by value

Sometimes a C function takes structure parameters that are passed by value. For example, consider the following function:
double dot_product(Vector a, Vector b);

To deal with this, SWIG transforms the function to use pointers by creating a wrapper equivalent to the following:

double wrap_dot_product(Vector *a, Vector *b) {
Vector x = *a;
Vector y = *b;
return dot_product(x,y);

}

In the target language, the dot_product() function now accepts pointers to Vectors instead of Vectors. For the most part, this
transformation is transparent so you might not notice.

5.4.2 Return by value

C functions that return structures or classes datatypes by value are more difficult to handle. Consider the following function:
Vector cross_product(Vector v1, Vector v2);

This function wants to return Vector, but SWIG only really supports pointers. As a result, SWIG creates a wrapper like this:

Vector *wrap_cross_product(Vector *v1, Vector *v2) {
Vector x = *v1;
Vector y = *v2,
Vector *result;
result = (Vector *) malloc(sizeof(Vector));
*(result) = cross(x,y);
return result;

}
5.3.5 Typedef 32

SWIG-1.3 Documentation

or if SWIG was run with the —c++ option:

Vector *wrap_cross(Vector *v1, Vector *v2) {
Vector x = *v1;
Vector y = *v2;
Vector *result = new Vector(cross(x,y)); // Uses default copy constructor
return result;

}

In both cases, SWIG allocates a new object and returns a reference to it. It is up to the user to delete the returned object when
no longer in use. Clearly, this will leak memory if you are unaware of the implicit memory allocation and don't take steps to free
the result. That said, it should be noted that some language modules can now automatically track newly created objects and
reclaim memory for you. Consult the documentation for each language module for more details.

It should also be noted that the handling of pass/return by value in C++ has some special cases. For example, the above code
fragments don't work correctly if Vector doesn't define a default constructor. The section on SWIG and C++ has more
information about this case.

5.4.3 Linking to structure variables

When global variables or class members involving structures are encountered, SWIG handles them as pointers. For example,
global variable like this

Vector unit_i;

gets mapped to an underlying pair of set/get functions like this :

Vector *unit_i_get() {
return &unit_i;

}
void unit_i_set(Vector *value) {
unit_i = *value;

}

Again some caution is in order. A global variable created in this manner will show up as a pointer in the target scripting languac
It would be an extremely bad idea to free or destroy such a pointer. Also, C++ classes must supply a properly defined copy
constructor in order for assignment to work correctly.

5.4.4 Linking to char *

When a global variable of type char * appears, SWIG uses malloc() or new to allocate memory for the new value.
Specifically, if you have a variable like this

char *foo;

SWIG generates the following code:

/* C mode */

void foo_set(char *value) {
if (foo) free(foo);
foo = (char *) malloc(strlen(value)+1);
strcpy(foo,value);

}

[* C++ mode. When —c++ option is used */
void foo_set(char *value) {
if (foo) delete [] foo;
foo = new char[strlen(value)+1];
strepy(foo,value);

}

5.4.2 Return by value 33

SWIG-1.3 Documentation

If this is not the behavior that you want, consider making the variable read—only using the %immutable directive. Alternatively,
you might write a short assist—function to set the value exactly like you want. For example:

%inline %{
void set_foo(char *value) {
strncpy(foo,value, 50);

}
%}

Note: If you write an assist function like this, you will have to call it as a function from the target scripting language (it does not
work like a variable). For example, in Python you will have to write:

>>> set_foo("Hello World")
A common mistake with char * variables is to link to a variable declared like this:

char *VERSION = "1.0";

In this case, the variable will be readable, but any attempt to change the value results in a segmentation or general protection f
This is due to the fact that SWIG is trying to release the old value using free or delete when the string literal value currently
assigned to the variable wasn't allocated using malloc() or new. To fix this behavior, you can either mark the variable as
read-only, write a typemap (as described in Chapter 6), or write a special set function as shown. Another alternative is to decle
the variable as an array:

char VERSION[64] = "1.0";

When variables of type const char * are declared, SWIG still generates functions for setting and getting the value. However,
the default behavior does not release the previous contents (resulting in a possible memory leak). In fact, you may get a warnir
message such as this when wrapping such a variable:

example.i:20. Typemap warning. Setting const char * variable may leak memory
The reason for this behavior is that const char * variables are often used to point to string literals. For example:

const char *foo = "Hello World\n";

Therefore, it's a really bad idea to call free() on such a pointer. On the other hand, it is legal to change the pointer to point to
some other value. When setting a variable of this type, SWIG allocates a new string (using malloc or new) and changes the poi
to point to the new value. However, repeated modifications of the value will result in a memory leak since the old value is not
released.

5.4.5 Arrays

Arrays are fully supported by SWIG, but they are always handled as pointers instead of mapping them to a special array object
list in the target language. Thus, the following declarations :

int foobar(int a[40]);

void grok(char *argv[]);
void transpose(double a[20][20]);

are processed as if they were really declared like this:

int foobar(int *a);
void grok(char **argv);
void transpose(double (*a)[20]);

Like C, SWIG does not perform array bounds checking. It is up to the user to make sure the pointer points a suitably allocated
region of memory.

5.4.4 Linking to char * 34

SWIG-1.3 Documentation

Multi-dimensional arrays are transformed into a pointer to an array of one less dimension. For example:

int [10]; /I Maps to int *
int [10][20]; // Maps to int (*)[20]
int [10][20][30]; // Maps to int (*)[20][30]

It is important to note that in the C type system, a multidimensional array a[][] is NOT equivalent to a single pointer *a or a
double pointer such as **a. Instead, a pointer to an array is used (as shown above) where the actual value of the pointer is the
starting memory location of the array. The reader is strongly advised to dust off their C book and re-read the section on arrays
before using them with SWIG.

Array variables are supported, but are read—-only by default. For example:
int a[100][200];

In this case, reading the variable 'a’ returns a pointer of type int (*)[200] that points to the first element of the array
&a[0][0]. Trying to modify 'a’ results in an error. This is because SWIG does not know how to copy data from the target
language into the array. To work around this limitation, you may want to write a few simple assist functions like this:

%inline %{
void a_set(int i, int j, int val) {
a[i][j] = val;

int a_get(int i, int j) {
return a[i][j];

}
%)

To dynamically create arrays of various sizes and shapes, it may be useful to write some helper functions in your interface. For
example:

/I Some array helpers
%inline %{
[* Create any sort of [size] array */
int *int_array(int size) {
return (int *) malloc(size*sizeof(int));

}

[* Create a two—dimension array [size][10] */
int (*int_array_10(int size))[10] {
return (int (*)[10]) malloc(size*10*sizeof(int));
}
%0}
Arrays of char are handled as a special case by SWIG. In this case, strings in the target language can be stored in the array. F
example, if you have a declaration like this,

char pathname[256];
SWIG generates functions for both getting and setting the value that are equivalent to the following code:

char *pathname_get() {
return pathname;

}

void pathname_set(char *value) {
strncpy(pathname,value,256);

In the target language, the value can be set like a normal variable.

5.4.5 Arrays 35

SWIG-1.3 Documentation

5.4.6 Creating read—only variables

A read-only variable can be created by using the %immutable directive as shown :

/I File : interface.i

int a; /I Can read/write
%immutable;

int b,cd /I Read only variables
%mutable;

double x,y /I read/write

The %immutable directive enables read—only mode until it is explicitly disabled using the %mutable directive. As an
alternative to turning read—only mode off and on like this, individual declarations can also be tagged as immutable. For exampl

%immutable x; /I Make x read-only
double x; /I Read-only (from earlier %immutable directive)

double y; /l Read-write

The %mutable and %immutable directives are actually %feature directives defined like this:

#define %immutable %feature("immutable")
#define %omutable %feature("immutable”,")

If you wanted to make all wrapped variables read—only, barring one or two, it might be easier to take this approach:

%immutable; /I Make all variables read—only
%feature("immutable”,"0") x; // except, make x read/write

double x;

double y;
double z;

Read-only variables are also created when declarations are declared as const. For example:

const int foo; /* Read only variable */
char * const version="1.0"; /* Read only variable */

Compatibility note: Read-only access used to be controlled by a pair of directives %readonly and %readwrite. Although
these directives still work, they generate a warning message. Simply change the directives to %immutable; and %mutable; to
silence the warning. Don't forget the extra semicolon!

5.4.7 Renaming and ignoring declarations

Normally, the name of a C declaration is used when that declaration is wrapped into the target language. However, this may
generate a conflict with a keyword or already existing function in the scripting language. To resolve a name conflict, you can us
the %rename directive as shown :

Il interface.i

%rename(my_print) print;
extern void print(char *);

%rename(foo) a_really_long_and_annoying_name;
extern int a_really_long_and_annoying_name;

5.4.6 Creating read-only variables 36

SWIG-1.3 Documentation

SWIG still calls the correct C function, but in this case the function print() will really be called "my_print()" in the target
language.

The placement of the %rename directive is arbitrary as long as it appears before the declarations to be renamed. A common
technique is to write code for wrapping a header file like this:

/ interface.i

%rename(my_print) print;
%rename(foo) a_really _long_and_annoying_name;

%include "header.h"

%rename applies a renaming operation to all future occurrences of a name. The renaming applies to functions, variables, class
and structure names, member functions, and member data. For example, if you had two-dozen C++ classes, all with a membe
function named “print' (which is a keyword in Python), you could rename them all to “output' by specifying :

%rename(output) print; // Rename all “print' functions to “output'

SWIG does not normally perform any checks to see if the functions it wraps are already defined in the target scripting language
However, if you are careful about namespaces and your use of modules, you can usually avoid these problems.

Closely related to %rename is the %ignore directive. %ignore instructs SWIG to ignore declarations that match a given
identifier. For example:

%ignore print; I/l lgnore all declarations named print
%ignore _HAVE_FOO_H; // Ignore an include guard constant

%include "foo.h" /I Grab a header file

One use of %ignore is to selectively remove certain declarations from a header file without having to add conditional
compilation to the header. However, it should be stressed that this only works for simple declarations. If you need to remove a
whole section of problematic code, the SWIG preprocessor should be used instead.

More powerful variants of %rename and %ignore directives can be used to help wrap C++ overloaded functions and methods
or C++ methods which use default arguments. This is described_in the Ambiguity resolution and renaming section in the C++
chapter.

Compatibility note: Older versions of SWIG provided a special %name directive for renaming declarations. For example:

%name(output) extern void print(char *);

This directive is still supported, but it is deprecated and should probably be avoided. The %rename directive is more powerful
and better supports wrapping of raw header file information.

5.4.8 Default/optional arguments
SWIG supports default arguments in both C and C++ code. For example:
int plot(double x, double y, int color=WHITE);

In this case, SWIG generates wrapper code where the default arguments are optional in the target language. For example, this
function could be used in Tcl as follows :

% plot -3.47.5 # Use default value
% plot -3.4 7.5 10 # set color to 10 instead

5.4.7 Renaming and ignoring declarations 37

SWIG-1.3 Documentation

Although the ANSI C standard does not allow default arguments, default arguments specified in a SWIG interface work with bo
C and C++.

Note: There is a subtle semantic issue concerning the use of default arguments and the SWIG generated wrapper code. When
default arguments are used in C code, the default values are emitted into the wrappers and the function is invoked with a full s
arguments. This is different to when wrapping C++ where an overloaded wrapper method is generated for each defaulted
argument. Please refer to the section on default arguments in the C++ chapter for further details.

5.4.9 Pointers to functions and callbacks

Occasionally, a C library may include functions that expect to receive pointers to functions——possibly to serve as callbacks.
SWIG provides full support for function pointers provided that the callback functions are defined in C and not in the target
language. For example, consider a function like this:

int binary_op(int a, int b, int (*op)(int,int));

When you first wrap something like this into an extension module, you may find the function to be impossible to use. For
instance, in Python:

>>> def add(x,y):
return x+y

>>> hinary_op(3,4,add)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: Type error. Expected
>>>

f_int_int__int

The reason for this error is that SWIG doesn't know how to map a scripting language function into a C callback. However,
existing C functions can be used as arguments provided you install them as constants. One way to do this is to use the
%constant directive like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int,int));

/* Some callback functions */
%constant int add(int,int);
%constant int sub(int,int);
%constant int mul(int,int);

In this case, add, sub, and mul become function pointer constants in the target scripting language. This allows you to use them
as follows:

>>> binary_op(3,4,add)
Z

>>> binary_op(3,4,mul)
12

>>>

Unfortunately, by declaring the callback functions as constants, they are no longer accesible as functions. For example:

>>> add(3,4)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object is not callable: '_ff020efc_p _f int_int__int'
>>>

If you want to make a function available as both a callback function and a function, you can use the %callback and
%nocallback directives like this:

/* Function with a callback */

5.4.8 Default/optional arguments 38

SWIG-1.3 Documentation
int binary_op(int a, int b, int (*op)(int,int));

/* Some callback functions */
%callback("%s_cb")

int add(int,int);

int sub(int,int);

int mul(int,int);

%nocallback

The argument to %callback is a printf-style format string that specifies the naming convention for the callback constants (%s
gets replaced by the function name). The callback mode remains in effect until it is explicitly disabled using %nocallback.
When you do this, the interface now works as follows:

>>> binary_op(3,4,add_cb)
7

>>> hinary_op(3,4,mul_cb)
12

>>> add(3,4)

7

>>> mul(3,4)

12

Notice that when the function is used as a callback, special names such as add_cb is used instead. To call the function normal
just use the original function name such as add().

SWIG provides a number of extensions to standard C printf formatting that may be useful in this context. For instance, the
following variation installs the callbacks as all upper-case constants such as ADD, SUB, and MUL.:

/* Some callback functions */
%callback("%(upper)s")

int add(int,int);

int sub(int,int);

int mul(int,int);

%nocallback

A format string of "%(lower)s" converts all characters to lower—case. A string of "%(title)s" capitalizes the first
character and converts the rest to lower case.

And now, a final note about function pointer support. Although SWIG does not normally allow callback functions to be written in
the target language, this can be accomplished with the use of typemaps and other advanced SWIG features. This is described
later chapter.

5.5 Structures and unions

This section describes the behavior of SWIG when processing ANSI C structures and union declarations. Extensions to handle
C++ are described in the next section.

If SWIG encounters the definition of a structure or union, it creates a set of accessor functions. Although SWIG does not need
structure definitions to build an interface, providing definitions make it possible to access structure members. The accessor
functions generated by SWIG simply take a pointer to an object and allow access to an individual member. For example, the
declaration :

struct Vector {
double x,y,z;

}

gets transformed into the following set of accessor functions :

double Vector_x_get(struct Vector *obj) {
return obj—>x;

5.4.9 Pointers to functions and callbacks 39

SWIG-1.3 Documentation

}
double Vector_y_get(struct Vector *obj) {
return obj—>y;

}
double Vector_z_get(struct Vector *obj) {
return obj—>z;

}

void Vector_x_set(struct Vector *obj, double value) {
obj—>x = value;

}

void Vector_y_set(struct Vector *obj, double value) {
obj—>y = value;

}

void Vector_z_set(struct Vector *obj, double value) {
obj—>z = value;

}
In addition, SWIG creates default constructor and destructor functions if none are defined in the interface. For example:

struct Vector *new_Vector() {
return (Vector *) calloc(1,sizeof(struct Vector));

}

void delete_Vector(struct Vector *obyj) {
free(obj);
}

Using these low-level accessor functions, an object can be minimally manipulated from the target language using code like thit
v = new_Vector()
Vector_x_set(v,2)
Vector_y_set(v,10)

Vector_z_set(v,-5)

delete_Vector(v)

However, most of SWIG's language modules also provide a high—level interface that is more convenient. Keep reading.

5.5.1 Typedef and structures

SWIG supports the following construct which is quite common in C programs :

typedef struct {
double x,y,z;
} Vector;

When encountered, SWIG assumes that the name of the object is "Vector' and creates accessor functions like before. The only
difference is that the use of typedef allows SWIG to drop the struct keyword on its generated code. For example:

double Vector_x_get(Vector *obj) {
return obj—>x;

}
If two different names are used like this :

typedef struct vector_struct {
double x,y,z;
} Vector;

the name Vector is used instead of vector_struct since this is more typical C programming style. If declarations defined
later in the interface use the type struct vector_struct, SWIG knows that this is the same as Vector and it generates the

5.5 Structures and unions 40

SWIG-1.3 Documentation

appropriate type—checking code.

5.5.2 Character strings and structures

Structures involving character strings require some care. SWIG assumes that all members of type char * have been dynamicall
allocated using malloc() and that they are NULL-terminated ASCII strings. When such a member is modified, the previously
contents will be released, and the new contents allocated. For example :

%module mymodule

struct Foo {
char *name;

This results in the following accessor functions :

char *Foo_name_get(Foo *obj) {
return Foo—>name,;

}

char *Foo_name_set(Foo *obj, char *c) {
if (obj—>name) free(obj—>name);
obj->name = (char *) malloc(strlen(c)+1);
strcpy(obj—>name,c);
return obj->name;

}

If this behavior differs from what you need in your applications, the SWIG "memberin" typemap can be used to change it. See t
typemaps chapter for further details.

Note: If the —c++ option is used, new and delete are used to perform memory allocation.

5.5.3 Array members

Arrays may appear as the members of structures, but they will be read—only. SWIG will write an accessor function that returns
pointer to the first element of the array, but will not write a function to change the contents of the array itself. When this situatiol
is detected, SWIG may generate a warning message such as the following :

interface.i:116. Warning. Array member will be read-only

To eliminate the warning message, typemaps can be used, but this is discussed in a later chapter. In many cases, the warning
message is harmless.

5.5.4 Structure data members

Occasionally, a structure will contain data members that are themselves structures. For example:

typedef struct Foo {
int x;
} Foo;

typedef struct Bar {

inty;

Foo f; /* struct member */
} Bar;

When a structure member is wrapped, it is handled as a pointer, unless the %naturalvar directive is used where it is handled
more like a C++ reference (see C++ Member data). The accessors to the member variable as a pointer is effectively wrapped ¢

5.5.1 Typedef and structures 41

SWIG-1.3 Documentation

follows:

Foo *Bar_f_get(Bar *b) {
return &b—>f;

void Bar_f_set(Bar *b, Foo *value) {
b—>f = *value;

}

The reasons for this are somewhat subtle but have to do with the problem of modifying and accessing data inside the data
member. For example, suppose you wanted to modify the value of f.x of a Bar object like this:

Bar *b;
b—->f.x = 37;

Translating this assignment to function calls (as would be used inside the scripting language interface) results in the following
code:

Bar *b;

Foo_x_set(Bar_f_get(b),37);
In this code, if the Bar_f_get() function were to return a Foo instead of a Foo *, then the resulting modification would be
applied to a copy of f and not the data member f itself. Clearly that's not what you want!

It should be noted that this transformation to pointers only occurs if SWIG knows that a data member is a structure or class. Fo
instance, if you had a structure like this,

struct Foo {
WORD w;

h
and nothing was known about WORD, then SWIG will generate more normal accessor functions like this:

WORD Foo_w_get(Foo *f) {
return f=>w;

}
void Foo_w_set(FOO *f, WORD value) {
f->w = value;

}

Compatibility Note: SWIG-1.3.11 and earlier releases transformed all non—primitive member datatypes to pointers. Starting in
SWIG-1.3.12, this transformation only occurs if a datatype is known to be a structure, class, or union. This is unlikely to break
existing code. However, if you need to tell SWIG that an undeclared datatype is really a struct, simply use a forward struct
declaration such as "struct Foo;".

5.5.5 C constructors and destructors

When wrapping structures, it is generally useful to have a mechanism for creating and destroying objects. If you don't do
anything, SWIG will automatically generate functions for creating and destroying objects using malloc() and free(). Note:
the use of malloc() only applies when SWIG is used on C code (i.e., when the —c++ option is not supplied on the command
line). C++ is handled differently.

If you don't want SWIG to generate default constructors for your interfaces, you can use the %nodefaultctor directive or the
—nodefaultctor command line option. For example:

swig —nodefaultctor example.i
or
%module foo

5.5.4 Structure data members 42

SWIG-1.3 Documentation

%nodefaultctor; /I Don't create default constructors
... declarations ...
%clearnodefaultctor; // Re—enable default constructors

If you need more precise control, %nodefaultctor can selectively target individual structure definitions. For example:

%nodefaultctor Foo; /I No default constructor for Foo

struct Foo { /I No default constructor generated.
h

struct Bar { /I Default constructor generated.

h

Since ignoring the implicit or default destructors most of the times produce memory leaks, SWIG will always try to generate
them. If needed, however, you can selectively disable the generation of the default/implicit destructor by using
%nodefaultdtor

%nodefaultdtor Foo; // No default/implicit destructor for Foo

struct Foo { /I No default destructor is generated.
h

struct Bar { /I Default destructor generated.

h

Compatibility note: Prior to SWIG-1.3.7, SWIG did not generate default constructors or destructors unless you explicitly turned
them on using -make_default. However, it appears that most users want to have constructor and destructor functions so it has
now been enabled as the default behavior.

Note: There are also the —nodefault option and %nodefault directive, which disable both the default or implicit destructor
generation. This could lead to memory leaks across the target languages, and is highly recommended you don't use them.

5.5.6 Adding member functions to C structures

Most languages provide a mechanism for creating classes and supporting object oriented programming. From a C standpoint,
object oriented programming really just boils down to the process of attaching functions to structures. These functions normally
operate on an instance of the structure (or object). Although there is a natural mapping of C++ to such a scheme, there is no di
mechanism for utilizing it with C code. However, SWIG provides a special %extend directive that makes it possible to attach
methods to C structures for purposes of building an object oriented interface. Suppose you have a C header file with the follow
declaration :

[* file : vector.h */
typedef struct {

double x,y,z;
} Vector;

You can make a Vector look alot like a class by writing a SWIG interface like this:

/I file : vector.i
%module mymodule

%f

#include "vector.h"

9%}

%include vector.h I/l Just grab original C header file

%extend Vector { /I Attach these functions to struct Vector
Vector(double x, double y, double z) {

Vector *v;

5.5.5 C constructors and destructors 43

SWIG-1.3 Documentation

v = (Vector *) malloc(sizeof(Vector));
V=>X = X;

V—>y = y;

v—>z = z;

return v;

}

~Vector() {
free(self);

}

double magnitude() {
return sgrt(self->x*self->x+self->y*self->y+self->z*self->z);
}

void print() {
printf("Vector [%g, %g, %g]\n", self->x,self->y,self->z);
}

Now, when used with proxy classes in Python, you can do things like this :

>>> v = Vector(3,4,0) # Create a new vector
>>> print v.magnitude() # Print magnitude
5.0

>>> v.print() # Print it out

[3,4,0]

>>> del v # Destroy it

The %extend directive can also be used inside the definition of the Vector structure. For example:

/I file : vector.i
%module mymodule
%

#include "vector.h"
%0}

typedef struct {
double x,y,z;
%extend {
Vector(double x, double y, double z) { ... }
~Vector() { ... }

}

} Vector;

Finally, %extend can be used to access externally written functions provided they follow the naming convention used in this
example :

/* File : vector.c */
* Vector methods */
#include "vector.h"
Vector *new_Vector(double x, double y, double z) {
Vector *v;
v = (Vector *) malloc(sizeof(Vector));
V=>X = X;
V—>y = y;
v=>z = 7;
return v;

void delete_Vector(Vector *v) {

free(v);
}

double Vector_magnitude(Vector *v) {
return sqrt(Vv—>x*v—>x+v->y*v->y+v—>z*y—>z);

}

5.5.6 Adding member functions to C structures 44

SWIG-1.3 Documentation

/I File : vector.i

Il Interface file
%module mymodule
%f{

#include "vector.h"
9%}

typedef struct {
double x,y,z;
%extend {
Vector(int,int,int); // This calls new_Vector()
~Vector(); /I This calls delete_Vector()
double magnitude(); // This will call Vector_magnitude()

}

} Vector;

A little known feature of the %extend directive is that it can also be used to add synthesized attributes or to modify the behavio
of existing data attributes. For example, suppose you wanted to make magnitude a read-only attribute of Vector instead of a
method. To do this, you might write some code like this:

/I Add a new attribute to Vector
%extend Vector {
const double magnitude;

}
/I Now supply the implementation of the Vector_magnitude_get function
9%{
const double Vector_magnitude_get(Vector *v) {
return (const double) return sgrt(v—>x*v—>Xx+v—>y*v—>y+v->z*v—>7);
}
9%}

Now, for all practial purposes, magnitude will appear like an attribute of the object.

A similar technique can also be used to work with problematic data members. For example, consider this interface:

struct Person {
char name[50];

}

By default, the name attribute is read—only because SWIG does not normally know how to modify arrays. However, you can
rewrite the interface as follows to change this:

struct Person {
%extend {
char *name;

}

/I Specific implementation of set/get functions
9%{
char *Person_name_get(Person *p) {

return p—>name,

}

void Person_name_set(Person *p, char *val) {
strncpy(p—>name,val,50);

9%}

Finally, it should be stressed that even though %extend can be used to add new data members, these new members can not
require the allocation of additional storage in the object (e.qg., their values must be entirely synthesized from existing attributes ¢

5.5.6 Adding member functions to C structures 45

SWIG-1.3 Documentation

the structure).

Compatibility note: The %extend directive is a new name for the %addmethods directive. Since %addmethods could be
used to extend a structure with more than just methods, a more suitable directive name has been chosen.

5.5.7 Nested structures

Occasionally, a C program will involve structures like this :

typedef struct Object {
int objtype;
union {
int ivalue;
double dvalue;
char “*strvalue;
void ‘*ptrvalue;
} intRep;
} Object;

When SWIG encounters this, it performs a structure splitting operation that transforms the declaration into the equivalent of the
following:

typedef union {

int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;

} Object_intRep;
typedef struct Object {
int objType;

Object_intRep intRep;
} Object;

SWIG will then create an Object_intRep structure for use inside the interface file. Accessor functions will be created for both
structures. In this case, functions like this would be created :

Object_intRep *Object_intRep_get(Object *o) {
return (Object_intRep *) &o—>intRep;
}

int Object_intRep_ivalue_get(Object_intRep *0) {
return o—>ivalue;
}

int Object_intRep_ivalue_set(Object_intRep *o, int value) {
return (o—>ivalue = value);

double Object_intRep_dvalue_get(Object_intRep *0) {
return o—>dvalue;
}

... etc ...
Although this process is a little hairy, it works like you would expect in the target scripting language—-especially when proxy
classes are used. For instance, in Perl:

Perl5 script for accessing nested member
$0 = CreateObject(); # Create an object somehow
$o—>{intRep}—>{ivalue} =7 # Change value of o.intRep.ivalue

If you have a lot nested structure declarations, it is advisable to double—check them after running SWIG. Although, there is a g«

5.5.7 Nested structures 46

SWIG-1.3 Documentation

chance that they will work, you may have to modify the interface file in certain cases.
5.5.8 Other things to note about structure wrapping

SWIG doesn't care if the declaration of a structure in a .i file exactly matches that used in the underlying C code (except in the
case of nested structures). For this reason, there are no problems omitting problematic members or simply omitting the structut
definition altogether. If you are happy passing pointers around, this can be done without ever giving SWIG a structure definitior

Starting with SWIG1.3, a number of improvements have been made to SWIG's code generator. Specifically, even though struc
access has been described in terms of high—level accessor functions such as this,

double Vector_x_get(Vector *v) {
return v—>x;

}

most of the generated code is actually inlined directly into wrapper functions. Therefore, no function Vector_x_get()
actually exists in the generated wrapper file. For example, when creating a Tcl module, the following function is generated
instead:

static int
_wrap_Vector_x_get(ClientData clientData, Tcl_Interp *interp,
int objc, Tcl_Obj *CONST objv[]) {
struct Vector *argl ;
double result ;

if (SWIG_GetArgs(interp, objc, objv,"p:Vector_x_get self ",&arg0,
SWIGTYPE_p_Vector) == TCL_ERROR)
return TCL_ERROR;
result = (double) (argl—>x);
Tcl_SetObjResult(interp, Tcl_NewDoubleObj((double) result));
return TCL_OK;
}

The only exception to this rule are methods defined with %extend. In this case, the added code is contained in a separate
function.

Finally, it is important to note that most language modules may choose to build a more advanced interface. Although you may
never use the low-level interface described here, most of SWIG's language modules use it in some way or another.

5.6 Code Insertion

Sometimes it is necessary to insert special code into the resulting wrapper file generated by SWIG. For example, you may wan
include additional C code to perform initialization or other operations. There are four common ways to insert code, but it's useft
to know how the output of SWIG is structured first.

5.6.1 The output of SWIG

When SWIG creates its output file, it is broken up into four sections corresponding to runtime code, headers, wrapper functions
and module initialization code (in that order).

* Runtime code.
This code is internal to SWIG and is used to include type—checking and other support functions that are used by the re
of the module.

» Header section.
This is user—defined support code that has been included by the %({ ... %} directive. Usually this consists of header
files and other helper functions.

» Wrapper code.
These are the wrappers generated automatically by SWIG.

5.5.8 Other things to note about structure wrapping a7

SWIG-1.3 Documentation

* Module initialization.
The function generated by SWIG to initialize the module upon loading.

5.6.2 Code insertion blocks

Code is inserted into the appropriate code section by using one of the following code insertion directives:

%runtime %{
... code in runtime section ...
9%}

%header %{
... code in header section ...
%0}

Ywrapper %f{
... code in wrapper section ...
9%}

%init %{

... code in init section ...
9%}

The bare %{ ... %} directive is a shortcut that is the same as %header %f{ ... %]}.

Everything in a code insertion block is copied verbatim into the output file and is not parsed by SWIG. Most SWIG input files
have at least one such block to include header files and support C code. Additional code blocks may be placed anywhere in a

SWIG file as needed.

%module mymodule

%{

#include "my_header.h"
0%}

... Declare functions here
%

void some_extra_function() {

=
%}

A common use for code blocks is to write "helper” functions. These are functions that are used specifically for the purpose of

building an interface, but which are generally not visible to the normal C program. For example :

%
/* Create a new vector */
static Vector *new_Vector() {

return (Vector *) malloc(sizeof(Vector));

}
9%}

/I Now wrap it
Vector *new_Vector();

5.6.3 Inlined code blocks

Since the process of writing helper functions is fairly common, there is a special inlined form of code block that is used as folloy

%inline %({
[* Create a new vector */
Vector *new_Vector() {

5.6.1 The output of SWIG

48

SWIG-1.3 Documentation

return (Vector *) malloc(sizeof(Vector));

}
9%}

The %inline directive inserts all of the code that follows verbatim into the header portion of an interface file. The code is then
parsed by both the SWIG preprocessor and parser. Thus, the above example creates a new command new_Vector using only
one declaration. Since the code inside an %inline %{ ... %} block is given to both the C compiler and SWIG, it is illegal to
include any SWIG directives inside a %f{ ... %} block.

5.6.4 Initialization blocks

When code is included in the %init section, it is copied directly into the module initialization function. For example, if you
needed to perform some extra initialization on module loading, you could write this:

9%init %{
init_variables();
%}

5.7 An Interface Building Strategy

This section describes the general approach for building interface with SWIG. The specifics related to a particular scripting
language are found in later chapters.

5.7.1 Preparing a C program for SWIG

SWIG doesn't require modifications to your C code, but if you feed it a collection of raw C header files or source code, the resu
might not be what you expect——-in fact, they might be awful. Here's a series of steps you can follow to make an interface for a
program :

« Identify the functions that you want to wrap. It's probably not necessary to access every single function in a C
program—-thus, a little forethought can dramatically simplify the resulting scripting language interface. C header files
are particularly good source for finding things to wrap.

« Create a new interface file to describe the scripting language interface to your program.

« Copy the appropriate declarations into the interface file or use SWIG's %include directive to process an entire C
source/header file.

« Make sure everything in the interface file uses ANSI C/C++syntax.

« Make sure all necessary “typedef' declarations and type—-information is available in the interface file.

« If your program has a main() function, you may need to rename it (read on).

* Run SWIG and compile.

Although this may sound complicated, the process turns out to be fairly easy once you get the hang of it.

In the process of building an interface, SWIG may encounter syntax errors or other problems. The best way to deal with this is
simply copy the offending code into a separate interface file and edit it. However, the SWIG developers have worked very hard
improve the SWIG parser—-you should report parsing errors to the swig—devel mailing list or to the SWIG bug tracker.

5.7.2 The SWIG interface file

The preferred method of using SWIG is to generate separate interface file. Suppose you have the following C header file :

/* File : header.h */

#include <stdio.h>
#include <math.h>

extern int foo(double);
extern double bar(int, int);

5.6.3 Inlined code blocks 49

http://www.swig.org/mail.html
http://www.swig.org/bugs.html

SWIG-1.3 Documentation

extern void dump(FILE *f);

A typical SWIG interface file for this header file would look like the following :

* File : interface.i */
%module mymodule

9%{

#include "header.h"

%}

extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

Of course, in this case, our header file is pretty simple so we could have made an interface file like this as well:

[* File : interface.i */
%module mymodule
%include header.h

Naturally, your mileage may vary.

5.7.3 Why use separate interface files?

Although SWIG can parse many header files, it is more common to write a special .i file defining the interface to a package.
There are several reasons why you might want to do this:

« It is rarely necessary to access every single function in a large package. Many C functions might have little or no use ir
scripted environment. Therfore, why wrap them?

 Separate interface files provide an opportunity to provide more precise rules about how an interface is to be constructe

* Interface files can provide more structure and organization.

* SWIG can't parse certain definitions that appear in header files. Having a separate file allows you to eliminate or work
around these problems.

« Interface files provide a more precise definition of what the interface is. Users wanting to extend the system can go tot
interface file and immediately see what is available without having to dig it out of header files.

5.7.4 Getting the right header files

Sometimes, it is necessary to use certain header files in order for the code generated by SWIG to compile properly. Make sure
include certain header files by using a %{,%} block like this:

%module graphics
9%{

#include <GL/gl.h>
#include <GL/glu.h>
%0}

/I Put rest of declarations here

5.7.5 What to do with main()

If your program defines a main() function, you may need to get rid of it or rename it in order to use a scripting language. Most
scripting languages define their own main() procedure that is called instead. main() also makes no sense when working with
dynamic loading. There are a few approaches to solving the main() conflict :

 Get rid of main() entirely.

5.7.2 The SWIG interface file 50

SWIG-1.3 Documentation

* Rename main() to something else. You can do this by compiling your C program with an option like
—Dmain=oldmain.
 Use conditional compilation to only include main() when not using a scripting language.

Getting rid of main() may cause potential initialization problems of a program. To handle this problem, you may consider
writing a special function called program_init() that initializes your program upon startup. This function could then be
called either from the scripting language as the first operation, or when the SWIG generated module is loaded.

As a general note, many C programs only use the main() function to parse command line options and to set parameters.
However, by using a scripting language, you are probably trying to create a program that is more interactive. In many cases, th
old main() program can be completely replaced by a Perl, Python, or Tcl script.

Note: If some cases, you might be inclined to create a scripting language wrapper for main(). If you do this, the compilation
will probably work and your module might even load correctly. The only trouble is that when you call your main() wrapper,
you will find that it actually invokes the main() of the scripting language interpreter itself! This behavior is a side effect of the
symbol binding mechanism used in the dynamic linker. The bottom line: don't do this.

5.7.5 What to do with main() 51

6 SWIG and C++

» Comments on C++ Wrapping

» Approach

 Supported C++ features

« Command line options and compilation

 Simple C++ wrapping
¢ Constructors and destructors
+ Default constructors, copy constructors and implicit destructors
¢ When constructor wrappers aren't created

¢ Copy constructors
+ Member functions

+ Static members
¢+ Member data
« Default arguments
* Protection
» Enums and constants
* Friends
» References and pointers
« Pass and return by value
« Inheritance
« A brief discussion of multiple inheritance, pointers, and type checking
« Renaming
» Wrapping Overloaded Functions and Methods
¢ Dispatch function generation
+ Ambiguity in Overloading
¢ Ambiguity resolution and renaming
¢+ Comments on overloading
» Wrapping overloaded operators
» Class extension
» Templates
+ Namespaces
» Exception specifications
 Exception handling with %catches
 Pointers to Members
« Smatrt pointers and operator=>()

« Using declarations and inheritance
 Partial class definitions

« A brief rant about const—correctness
 Proxy classes
¢ Construction of proxy classes
+ Resource management in proxies
¢ Language specific details
» Where to go for more information

This chapter describes SWIG's support for wrapping C++. As a prerequisite, you should first read the chapter SWIG Basics to
how SWIG wraps ANSI C. Support for C++ builds upon ANSI C wrapping and that material will be useful in understanding this
chapter.

6.1 Comments on C++ Wrapping

Because of its complexity and the fact that C++ can be difficult to integrate with itself let alone other languages, SWIG only
provides support for a subset of C++ features. Fortunately, this is now a rather large subset.

6 SWIG and C++ 52

SWIG-1.3 Documentation

In part, the problem with C++ wrapping is that there is no semantically obvious (or automatic) way to map many of its advance
features into other languages. As a simple example, consider the problem of wrapping C++ multiple inheritance to a target
language with no such support. Similarly, the use of overloaded operators and overloaded functions can be problematic when 1
such capability exists in a target language.

A more subtle issue with C++ has to do with the way that some C++ programmers think about programming libraries. In the
world of SWIG, you are really trying to create binary—level software components for use in other languages. In order for this to
work, a "component" has to contain real executable instructions and there has to be some kind of binary linking mechanism for
accessing its functionality. In contrast, C++ has increasingly relied upon generic programming and templates for much of its
functionality. Although templates are a powerful feature, they are largely orthogonal to the whole notion of binary components
and libraries. For example, an STL vector does not define any kind of binary object for which SWIG can just create a wrapper.
To further complicate matters, these libraries often utilize a lot of behind the scenes magic in which the semantics of seemingly
basic operations (e.g., pointer dereferencing, procedure call, etc.) can be changed in dramatic and sometimes non-obvious we
Although this "magic" may present few problems in a C++-only universe, it greatly complicates the problem of crossing langua
boundaries and provides many opportunities to shoot yourself in the foot. You will just have to be careful.

6.2 Approach

To wrap C++, SWIG uses a layered approach to code generation. At the lowest level, SWIG generates a collection of procedur
ANSI-C style wrappers. These wrappers take care of basic type conversion, type checking, error handling, and other low-leve
details of the C++ binding. These wrappers are also sufficient to bind C++ into any target language that supports built—in
procedures. In some sense, you might view this layer of wrapping as providing a C library interface to C++. Optionally, SWIG
can also generate proxy classes that provide a natural OO interface to the underlying code. These proxies are built on top of th
low-level procedural wrappers and are typically written in the target language itself. For instance, in Python, a real Python clas
used to provide a wrapper around the underlying C++ object.

It is important to emphasize that SWIG takes a deliberately conservative and non-intrusive approach to C++ wrapping. SWIG
does not encapsulate C++ classes inside special C++ adaptor or proxy classes, it does not rely upon templates, nor does it use
inheritance when generating wrappers. The last thing that most C++ programs need is even more compiler magic. Therefore,
SWIG tries to maintain a very strict and clean separation between the implementation of your C++ application and the resulting
wrapper code. You might say that SWIG has been written to follow the principle of least surprise——it does not play sneaky trick
with the C++ type system, it doesn't mess with your class hierarchies, and it doesn't introduce new semantics. Although this
approach might not provide the most seamless integration with C++, it is safe, simple, portable, and debuggable.

Most of this chapter focuses on the low-level procedural interface to C++ that is used as the foundation for all language modul;
Keep in mind that most target languages also provide a high—level OO interface via proxy classes. A few general details about
proxies can be found at the end of this chapter. However, more detailed coverage can be found in the documentation for each
target language.

6.3 Supported C++ features
SWIG's currently supports the following C++ features :

* Classes.

* Constructors and destructors

* Virtual functions

* Public inheritance (including multiple inheritance)
* Static functions

 Function and method overloading.

» Operator overloading for many standard operators
* References

» Templates (including specialization and member templates).
* Pointers to members

* Namespaces

6.1 Comments on C++ Wrapping 53

SWIG-1.3 Documentation

The following C++ features are not currently supported :

* Nested classes
» Overloaded versions of certain operators (new, delete, etc.)

SWIG's C++ support is an ongoing project so some of these limitations may be lifted in future releases. However, we make no
promises. Also, submitting a bug report is a very good way to get problems fixed (wink).

6.4 Command line options and compilation

When wrapping C++ code, it is critical that SWIG be called with the "—c++' option. This changes the way a number of critical
features such as memory management are handled. It also enables the recognition of C++ keywords. Without the —c++ flag,
SWIG will either issue a warning or a large number of syntax errors if it encounters C++ code in an interface file.

When compiling and linking the resulting wrapper file, it is normal to use the C++ compiler. For example:

$ swig —c++ —tcl example.i
$ c++ —c example_wrap.cxx
$ c++ example_wrap.o $(OBJS) —o example.so

Unfortunately, the process varies slightly on each machine. Make sure you refer to the documentation on each target language
further details. The SWIG Wiki also has further details.

6.5 Simple C++ wrapping
The following code shows a SWIG interface file for a simple C++ class.

%module list
%

#include "list.h"
%0}

/I Very simple C++ example for linked list

class List {
public:
List();
~List();
int search(char *value);
void insert(char *);
void remove(char *);
char *get(int n);
int length;
static void print(List *1);

¥

To generate wrappers for this class, SWIG first reduces the class to a collection of low—level C-style accessor functions. The r
few sections describe this process. Later parts of the chapter describe a higher level interface based on proxy classes.

6.5.1 Constructors and destructors

C++ constructors and destructors are translated into accessor functions such as the following :

List * new_List(void) {
return new List;

void delete_List(List *I) {
delete I;

}

6.3 Supported C++ features 54

SWIG-1.3 Documentation

6.5.2 Default constructors, copy constructors and implicit destructors

Following the C++ rules for implicit constructor and destructors, SWIG will try to automatically generate them even when they
are not explicitly declared in the class interface.

In general then:

« If a C++ class does not declare any explicit constructor, SWIG will automatically generate one.
« If a C++ class does not declare a explicit copy constructor, SWIG will automatically generate one.
« If a C++ class does not declare an explicit destructor, SWIG will automatically create one.

And as in C++, a few rules that alters the previous behavior:

« A default constructor is not created if a class already defines a constructor with arguments.

 Default constructors are not generated for classes with pure virtual methods or for classes that inherit from an abstract
class, but don't provide definitions for all of the pure methods.

« A default constructor is not created unless all bases classes support a default constructor.

« Default constructors and implicit destructors are not created if a class defines them in a private or protected
section.

« Default constructors and implicit destructors are not created if any base class defines a non—public default constructor
destructor.

SWIG should never generate a default constructor, copy constructor or default destructor for a class in which it is illegal to do s
In some cases, however, it could be necessary (if the complete class declaration is not visible from SWIG, and one of the abov
rules is violated) or desired (to reduce the size of the final interface) to disable the implicit constructor/desctructor generation
manually.

To do so, the %nodefaultctor and %nodefaultdtor directives can be used. Note that these directives only affects the
implicit generation, and they have no effect if the default/copy constructors or destructor are explicitly declared in the class
interface.

For example:

%nodefaultctor Foo; // Disable the default constructor for class Foo.

class Foo { /I No default constructor is generated, unless is declared
¥

class Bar { /I A default constructor is generated, if possible

¥

The directive %nodefaultctor can also be applied "globally”, as in:

%nodefaultctor; // Disable creation of default constructors
class Foo { // No default constructor is generated, unless is declared

I3

class Bar {

public:

Bar(); /I The default constructor is generated, since is declared

I3

%clearnodefaultctor; // Enable the creation of default constructors again

The corresponding %nodefaultdtor directive can be used to disable the generation of the default or implicit destructor, if
needed. Be aware, however, that this could lead to memory leaks in the target language. Hence, it is recommended to use this
directive only in well known cases. For example:

%nodefaultdtor Foo; // Disable the implicit/default destructor for class Foo.
class Foo { /I No destructor is generated, unless is declared

6.5.2 Default constructors, copy constructors and implicit destructors 55

SWIG-1.3 Documentation
¥

Compatibility Note: The generation of default constructors/implicit destructors was made the default behavior in SWIG 1.3.7.
This may break certain older modules, but the old behavior can be easily restored using %nodefault or the —nodefault
command line option. Furthermore, in order for SWIG to properly generate (or not generate) default constructors, it must be ab
to gather information from both the private and protected sections (specifically, it needs to know if a private or protected
constructor/destructor is defined). In older versions of SWIG, it was fairly common to simply remove or comment out the private
and protected sections of a class due to parser limitations. However, this removal may now cause SWIG to erroneously genere
constructors for classes that define a constructor in those sections. Consider restoring those sections in the interface or using
%nodefault to fix the problem.

Note: The above described %nodefault directive/-nodefault option, which disable both the default constructor and the the
implicit destructors, could lead to memory leaks across the target languages, and is highly recommended you don't use them.

6.5.3 When constructor wrappers aren't created

If a class defines a constructor, SWIG normally tries to generate a wrapper for it. However, SWIG will not generate a construct
wrapper if it thinks that it will result in illegal wrapper code. There are really two cases where this might show up.

First, SWIG won't generate wrappers for protected or private constructors. For example:

class Foo {
protected:

Foo(); /I Not wrapped.
public:

¥

Next, SWIG won't generate wrappers for a class if it appears to be abstract-—that is, it has undefined pure virtual methods. Hel
are some examples:

class Bar {
public:
Bar(); /I Not wrapped. Bar is abstract.
virtual void spam(void) = 0;
¥
class Grok : public Bar {
public:
Grok(); /I Not wrapped. No implementation of abstract spam().
h

Some users are surprised (or confused) to find missing constructor wrappers in their interfaces. In almost all cases, this is caus
when classes are determined to be abstract. To see if this is the case, run SWIG with all of its warnings turned on:

% swig —Wall —python module.i

In this mode, SWIG will issue a warning for all abstract classes. It is possible to force a class to be non-abstract using this:

%feature("notabstract") Foo;
class Foo : public Bar {
public:
Foo(); // Generated no matter what——-not abstract.

¥

More information about %feature can be found in the Customization features chapter.

6.5.3 When constructor wrappers aren't created 56

SWIG-1.3 Documentation

6.5.4 Copy constructors

If a class defines more than one constructor, its behavior depends on the capabilities of the target language. If overloading is
supported, the copy constructor is accessible using the normal constructor function. For example, if you have this:

class List {
public:
List();
List(const List &); // Copy constructor

h
then the copy constructor can be used as follows:

X = new_List() # Create a list
y = new_List(x) # Copy list x

If the target language does not support overloading, then the copy constructor is available through a special function like this:

List *copy_List(List *f) {
return new List(*f);

}

Note: For a class X, SWIG only treats a constructor as a copy constructor if it can be applied to an object of type X or X *. If
more than one copy constructor is defined, only the first definition that appears is used as the copy constructor——other definitio
will result in a name—clash. Constructors such as X(const X &), X(X &), and X(X *) are handled as copy constructors in

SWIG.

Note: SWIG does not generate a copy constructor wrapper unless one is explicitly declared in the class. This differs from the
treatment of default constructors and destructors.

Compatibility note: Special support for copy constructors was not added until SWIG-1.3.12. In previous versions, copy
constructors could be wrapped, but they had to be renamed. For example:

class Foo {
public:
Foo();
%name(CopyFoo) Foo(const Foo &);

o

For backwards compatibility, SWIG does not perform any special copy—constructor handling if the constructor has been manue
renamed. For instance, in the above example, the name of the constructor is set to new_CopyFoo(). This is the same as in old:
versions.

6.5.5 Member functions

All member functions are roughly translated into accessor functions like this :

int List_search(List *obj, char *value) {
return obj—>search(value);

}

This translation is the same even if the member function has been declared as virtual.
It should be noted that SWIG does not actually create a C accessor function in the code it generates. Instead, member access

as obj—>search(value) is directly inlined into the generated wrapper functions. However, the name and calling convention
of the wrappers match the accessor function prototype described above.

6.5.4 Copy constructors 57

SWIG-1.3 Documentation

6.5.6 Static members

Static member functions are called directly without making any special transformations. For example, the static member functic
print(List *I) directly invokes List::print(List *l) in the generated wrapper code.

Usually, static members are accessed as functions with names in which the class name has been prepended with an undersco
For example, List_print.

6.5.7 Member data

Member data is handled in exactly the same manner as for C structures. A pair of accessor functions are effectively created. F
example :

int List_length_get(List *obj) {
return obj—>length;

int List_length_set(List *obj, int value) {

obj->length = value;
return value;

A read-only member can be created using the %immutable and %mutable directives. For example, we probably wouldn't
want the user to change the length of a list so we could do the following to make the value available, but read-only.

class List {
public:

%immutable;
int length;
%mutable;

3
Alternatively, you can specify an immutable member in advance like this:
%immutable List::length;
él.ass List {
mt length; /I Immutable by above directive
h

Similarly, all data attributes declared as const are wrapped as read—only members.

There are some subtle issues when wrapping data members that are themselves classes. For instance, if you had another clas
this,

class Foo {
public:
List items;

then access to the items member actually uses pointers. For example:

List *Foo_items_get(Foo *self) {
return &self->items;

}

void Foo_items_set(Foo *self, List *value) {
self->items = *value;

6.5.6 Static members 58

SWIG-1.3 Documentation
}

More information about this can be found in the SWIG Basics chapter, Structure data members section.

The wrapper code to generate the accessors for classes comes from the pointer typemaps. This can be somewhat unnatural fc
some types. For example, a user would expect the STL std::string class member variables to be wrapped as a string in the tarc
language, rather than a pointer to this class. The const reference typemaps offer this type of marshalling, so there is a feature t
tell SWIG to use the const reference typemaps rather than the pointer typemaps. It is the %naturalvar feature and is used as
follows:

/I All List variables will use const List& typemaps
%naturalvar List;

/I Only Foo::myList will use const List& typemaps
%naturalvar Foo::myList;

struct Foo {

List myList;

h

/I All variables will use const reference typemaps
%naturalvar;

The observant reader will notice that %naturalvar works like any other feature, except it can also be attached to class types.
The first of the example usages above show %naturalvar attaching to the List class. Effectively this feature changes the way
accessors are generated to the following:

const List &Foo_items_get(Foo *self) {
return self->items;
}

void Foo_items_set(Foo *self, const List &value) {
self->items = value;
}

In fact it is generally a good idea to use this feature globally as the reference typemaps have extra NULL checking compared t
the pointer typemaps. A pointer can be NULL, whereas a reference cannot, so the extra checking ensures that the target langu
user does not pass in a value that translates to a NULL pointer and thereby preventing any potential NULL pointer dereference
The %naturalvar feature will also apply to global variables in some language modules, eg C# and Java.

Other alternatives for turning this feature on globally are to use the swig —naturalvar commandline option or the module
mode option, %module(naturalvar=1)

Compatibility note: The %naturalvar feature was introduced in SWIG-1.3.28, prior to which it was necessary to manually
apply the const reference typemaps, eg %apply const std::string & { std::string * }, but this example would
also apply the typemaps to methods taking a std::string pointer.

Compatibility note: Read-only access used to be controlled by a pair of directives %readonly and %readwrite. Although
these directives still work, they generate a warning message. Simply change the directives to %immutable; and %mutable; to
silence the warning. Don't forget the extra semicolon!

Compatibility note: Prior to SWIG-1.3.12, all members of unknown type were wrapped into accessor functions using pointers.
For example, if you had a structure like this

struct Foo {
size_t len;

g

and nothing was known about size_t, then accessors would be written to work with size_t *. Starting in SWIG-1.3.12, this
behavior has been modified. Specifically, pointers will only be used if SWIG knows that a datatype corresponds to a structure c
class. Therefore, the above code would be wrapped into accessors involving size_t. This change is subtle, but it smooths over
few problems related to structure wrapping and some of SWIG's customization features.

6.5.7 Member data 59

SWIG-1.3 Documentation

6.6 Default arguments

SWIG will wrap all types of functions that have default arguments. For example member functions:

class Foo {
public:

void bar(int x, inty = 3, int z = 4);
b

SWIG handles default arguments by generating an extra overloaded method for each defaulted argument. SWIG is effectively
handling methods with default arguments as if it had wrapped the equivalent overloaded methods. Thus for the example above
is as if we had instead given the following to SWIG:

class Foo {

public:
void bar(int x, inty, int z);
void bar(int X, int y);
void bar(int x);

k

The wrappers produced are exactly the same as if the above code was instead fed into SWIG. Details of this is covered later ir
Wrapping Overloaded Functions and Methods section. This approach allows SWIG to wrap all possible default arguments, but
can be verbose. For example if a method has ten default arguments, then eleven wrapper methods are generated.

Please see the Features and default arguments section for more information on using %feature with functions with default
arguments. The Ambiguity resolution and renaming section also deals with using %rename and %ignore on methods with
default arguments. If you are writing your own typemaps for types used in methods with default arguments, you may also need
write a typecheck typemap. See the_Typemaps and overloading section for details or otherwise use the

compactdefaultargs feature as mentioned below.

Compatibility note: Versions of SWIG prior to SWIG-1.3.23 wrapped default arguments slightly differently. Instead a single
wrapper method was generated and the default values were copied into the C++ wrappers so that the method being wrapped \
then called with all the arguments specified. If the size of the wrappers are a concern then this approach to wrapping methods:
default arguments can be re—activated by using the compactdefaultargsfeature.

%feature("compactdefaultargs") Foo::bar;
class Foo {
public:
void bar(int x, inty = 3, int z = 4);
h

This is great for reducing the size of the wrappers, but the caveat is it does not work for the strongly typed languages which dol
have optional arguments in the language, such as C# and Java. Another restriction of this feature is that it cannot handle defau
arguments that are not public. The following example illustrates this:

class Foo {
private:
static const int spam;
public:
void bar(int x, inty = spam); // Won't work with %feature("compactdefaultargs") —
/I private default value

k

This produces uncompileable wrapper code because default values in C++ are evaluated in the same scope as the member
function whereas SWIG evaluates them in the scope of a wrapper function (meaning that the values have to be public).

This feature is automatically turned on when wrapping C code with default arguments and whenever keyword arguments (kwatr

are specified for either C or C++ code. Keyword arguments are a language feature of some scripting languages, for example R
and Python. SWIG is unable to support kwargs when wrapping overloaded methods, so the default approach cannot be used.

6.6 Default arguments 60

SWIG-1.3 Documentation

6.7 Protection

SWIG wraps class members that are public following the C++ conventions, i.e., by explicit public declaration or by the use of th
using directive. In general, anything specified in a private or protected section will be ignored, although the internal code
generator sometimes looks at the contents of the private and protected sections so that it can properly generate code for defau
constructors and destructors. Directors could also modify the way non—public virtual protected members are treated.

By default, members of a class definition are assumed to be private until you explicitly give a “public:' declaration (This is the
same convention used by C++).

6.8 Enums and constants

Enumerations and constants are handled differently by the different language modules and are described in detail in the
appropriate language chapter. However, many languages map enums and constants in a class definition into constants with th
classname as a prefix. For example :

class Swig {
public:

enum {ALE, LAGER, PORTER, STOUT};
b

Generates the following set of constants in the target scripting language :
Swig_ALE = Swig::ALE
Swig_LAGER = Swig::LAGER

Swig_PORTER = Swig::PORTER
Swig_STOUT = Swig::STOUT

Members declared as const are wrapped as read—only members and do not create constants.

6.9 Friends

Friend declarations are not longer ignored by SWIG. For example, if you have this code:

class Foo {
public:

%lr.iend void blah(Foo *f);
h
then the friend declaration does result in a wrapper code equivalent to one generated for the following declaration

class Foo {
public:

¥

void blah(Foo *f);

A friend declaration, as in C++, is understood to be in the same scope where the class is declared, hence, you can do

%ignore bar::blah(Foo *f);
namespace bar {

class Foo {

6.7 Protection 61

SWIG-1.3 Documentation
public:
friend void blah(Foo *):

N
}

and a wrapper for the method 'blah’ will not be generated.

6.10 References and pointers

C++ references are supported, but SWIG transforms them back into pointers. For example, a declaration like this :

class Foo {
public:

double bar(double &a);
}

is accessed using a function similar to this:
double Foo_bar(Foo *obj, double *a) {
obj—>bar(*a);

}

As a special case, most language modules pass const references to primitive datatypes (int, short, float, etc.) by value
instead of pointers. For example, if you have a function like this,

void foo(const int &x);
it is called from a script as follows:
foo(3) # Notice pass by value
Functions that return a reference are remapped to return a pointer instead. For example:

class Bar {
public:

Foo &spam();
b

Generates code like this:
Foo *Bar_spam(Bar *obj) {
Foo &result = obj—>spam();

return &result;

}

However, functions that return const references to primitive datatypes (int, short, etc.) normally return the result as a value
rather than a pointer. For example, a function like this,

const int &bar();
will return integers such as 37 or 42 in the target scripting language rather than a pointer to an integer.

Don't return references to objects allocated as local variables on the stack. SWIG doesn't make a copy of the objects so this wi
probably cause your program to crash.

Note: The special treatment for references to primitive datatypes is necessary to provide more seamless integration with more
advanced C++ wrapping applications——-especially related to templates and the STL. This was first added in SWIG-1.3.12.

6.9 Friends 62

SWIG-1.3 Documentation

6.11 Pass and return by value

Occasionally, a C++ program will pass and return class objects by value. For example, a function like this might appear:

Vector cross_product(Vector a, Vector b);

If no information is supplied about Vector, SWIG creates a wrapper function similar to the following:

Vector *wrap_cross_product(Vector *a, Vector *b) {
Vector x = *a,
Vector y = *b;
Vector r = cross_product(x,y);
return new Vector(r);

}

In order for the wrapper code to compile, Vector must define a copy constructor and a default constructor.

If Vector is defined as class in the interface, but it does not support a default constructor, SWIG changes the wrapper code by
encapsulating the arguments inside a special C++ template wrapper class. This produces a wrapper that looks like this:

Vector cross_product(Vector *a, Vector *b) {
SwigValueWrapper<Vector> x = *a;
SwigValueWrapper<Vector> y = *b;
SwigValueWrapper<Vector> r = cross_product(x,y);
return new Vector(r);

}

This transformation is a little sneaky, but it provides support for pass—by-value even when a class does not provide a default
constructor and it makes it possible to properly support a number of SWIG's customization options. The definition of
SwigValueWrapper can be found by reading the SWIG wrapper code. This class is really nothing more than a thin wrapper
around a pointer.

Note: this transformation has no effect on typemaps or any other part of SWIG—--it should be transparent except that you may
see this code when reading the SWIG output file.

Note: This template transformation is new in SWIG-1.3.11 and may be refined in future SWIG releases. In practice, it is only
necessary to do this for classes that don't define a default constructor.

Note: The use of this template only occurs when objects are passed or returned by value. It is not used for C++ pointers or
references.

Note: The performance of pass—by-value is especially bad for large objects and should be avoided if possible (consider using
references instead).

6.12 Inheritance

SWIG supports C++ inheritance of classes and allows both single and multiple inheritance, as limited or allowed by the target
language. The SWIG type—checker knows about the relationship between base and derived classes and allows pointers to any
object of a derived class to be used in functions of a base class. The type—checker properly casts pointer values and is safe to
with multiple inheritance.

SWIG treats private or protected inheritance as close to the C++ spirit, and target language capabilities, as possible. In most of
cases, this means that swig will parse the non—public inheritance declarations, but that will have no effect in the generated cod
besides the implicit policies derived for constructor and destructors.

The following example shows how SWIG handles inheritance. For clarity, the full C++ code has been omitted.

/I shapes.i

6.11 Pass and return by value 63

SWIG-1.3 Documentation

%module shapes
9%{

#include "shapes.h"
%0}

class Shape {
public:
double x,y;
virtual double area() = 0;
virtual double perimeter() = O;
void set_location(double x, double y);

h
class Circle : public Shape {
public:
Circle(double radius);
~Circle();
double area();
double perimeter();
¥
class Square : public Shape {
public:
Square(double size);
~Square();
double area();
double perimeter();
}

When wrapped into Python, we can now perform the following operations :

$ python

>>> import shapes

>>> circle = shapes.new_Circle(7)

>>> square = shapes.new_Square(10)
>>> print shapes.Circle_area(circle)
153.93804004599999757

>>> print shapes.Shape_area(circle)
153.93804004599999757

>>> print shapes.Shape_area(square)
100.00000000000000000

>>> shapes.Shape_set_location(square,2,-3)
>>> print shapes.Shape_perimeter(square)
40.00000000000000000

>>>

In this example, Circle and Square objects have been created. Member functions can be invoked on each object by making ca
Circle_area, Square_area, and so on. However, the same results can be accomplished by simply using the Shape_area
function on either object.

One important point concerning inheritance is that the low—level accessor functions are only generated for classes in which the
are actually declared. For instance, in the above example, the method set_location() is only accessible as
Shape_set_location() and not as Circle_set_location() or Square_set_location(). Of course, the

Shape_set_location() function will accept any kind of object derived from Shape. Similarly, accessor functions for the
attributes x and y are generated as Shape_x_get(), Shape_x_set(), Shape_y get(), and Shape_y_set().

Functions such as Circle_x_get() are not available—-instead you should use Shape_x_get().

Although the low-level C-like interface is functional, most language modules also produce a higher level OO interface using
proxy classes. This approach is described later and can be used to provide a more natural C++ interface.

Note: For the best results, SWIG requires all base classes to be defined in an interface. Otherwise, you may get an warning
message like this:

example:18. Nothing known about class 'Foo'. Ignored.

6.12 Inheritance 64

SWIG-1.3 Documentation

If any base class is undefined, SWIG still generates correct type relationships. For instance, a function accepting a Foo * will
accept any object derived from Foo regardless of whether or not SWIG actually wrapped the Foo class. If you really don't want
to generate wrappers for the base class, but you want to silence the warning, you might consider using the %import directive tc
include the file that defines Foo. %import simply gathers type information, but doesn't generate wrappers. Alternatively, you
could just define Foo as an empty class in the SWIG interface.

Note: typedef-names can be used as base classes. For example:

class Foo {
3
typedef Foo FooObyj;
class Bar : public FooObj { // Ok. Base class is Foo
3
Similarly, typedef allows unnamed structures to be used as base classes. For example:

typedef struct {

} I;.(.JO;

class Bar : public Foo { // Ok.
3

Compatibility Note: Starting in version 1.3.7, SWIG only generates low-level accessor wrappers for the declarations that are
actually defined in each class. This differs from SWIG1.1 which used to inherit all of the declarations defined in base classes at
regenerate specialized accessor functions such as Circle_x_get(), Square_x_get(), Circle_set_location(), and
Square_set_location(). This behavior resulted in huge amounts of replicated code for large class hierarchies and made it
awkward to build applications spread across multiple modules (since accessor functions are duplicated in every single module)
is also unnecessary to have such wrappers when advanced features like proxy classes are used. Note: Further optimizations a
enabled when using the —fvirtual option, which avoids the regenerating of wrapper functions for virtual members that are
already defined in a base class.

6.13 A brief discussion of multiple inheritance, pointers, and type checking

When a target scripting language refers to a C++ object, it normally uses a tagged pointer object that contains both the value o
pointer and a type string. For example, in Tcl, a C++ pointer might be encoded as a string like this:

_808fea88_p_Circle

A somewhat common question is whether or not the type—tag could be safely removed from the pointer. For instance, to get be
performance, could you strip all type tags and just use simple integers instead?

In general, the answer to this question is no. In the wrappers, all pointers are converted into a common data representation in t
target language. Typically this is the equivalent of casting a pointer to void *. This means that any C++ type information
associated with the pointer is lost in the conversion.

The problem with losing type information is that it is needed to properly support many advanced C++ features——especially
multiple inheritance. For example, suppose you had code like this:

class A{
public:
int X;

¥

class B {
public:

6.13 A brief discussion of multiple inheritance, pointers, and type checking 65

SWIG-1.3 Documentation

inty;
L

class C : public A, public B {
h

int A_function(A *a) {
return a—>x;

}

int B_function(B *b) {
return b—>y;

}
Now, consider the following code that uses void *.

C *c = new C();
void *p = (void *) c;

int x = A_function((A *) p);
inty = B_function((B *) p);

In this code, both A_function() and B_function() may legally accept an object of type C * (via inheritance). However,

one of the functions will always return the wrong result when used as shown. The reason for this is that even though p points tc
object of type C, the casting operation doesn't work like you would expect. Internally, this has to do with the data representatior
C. With multiple inheritance, the data from each base class is stacked together. For example:

Because of this stacking, a pointer of type C * may change value when it is converted to a A * or B *. However, this adjustment
does not occur if you are converting from a void *.

The use of type tags marks all pointers with the real type of the underlying object. This extra information is then used by SWIG
generated wrappers to correctly cast pointer values under inheritance (avoiding the above problem).

One might be inclined to fix this problem using some variation of dynamic_cast<>. The only problem is that it doesn't work
with void pointers, it requires RTTI support, and it only works with polymorphic classes (i.e., classes that define one or more
virtual functions).

The bottom line: learn to live with type—-tagged pointers.

6.14 Renaming

C++ member functions and data can be renamed with the %name directive. The %name directive only replaces the member
function name. For example :

class List {
public:
List();
%name(ListSize) List(int maxsize);
~List();
int search(char *value);
%name(find) void insert(char *);
%name(delete) void remove(char *);
char *get(int n);
int length;
static void print(List *1);

h
6.14 Renaming 66

SWIG-1.3 Documentation

This will create the functions List_find, List_delete, and a function named new_ListSize for the overloaded
constructor.

The %name directive can be applied to all members including constructors, destructors, static functions, data members, and
enumeration values.

The class name prefix can also be changed by specifying

%name(newname) class List {
}

Although the %name() directive can be used to help deal with overloaded methods, it really doesn't work very well because it
requires a lot of additional markup in your interface. Keep reading for a better solution.

6.15 Wrapping Overloaded Functions and Methods

In many language modules, SWIG provides partial support for overloaded functions, methods, and constructors. For example,
you supply SWIG with overloaded functions like this:

void foo(int x) {
printf("x is %d\n", X);

void foo(char *x) {
printf("x is '%s'\n", x);

}
The function is used in a completely natural way. For example:

>>> foo(3)

xis 3

>>> foo("hello")
x is 'hello’

>>>

Overloading works in a similar manner for methods and constructors. For example if you have this code,

class Foo {
public:
Foo();
Foo(const Foo &); // Copy constructor
void bar(int x);
void bar(char *s, int y);

h
it might be used like this

>>> f = Foo() # Create a Foo
>>> f.bar(3)

>>> g = Foo(f) # Copy Foo
>>> f.bar("hello",2)

6.15.1 Dispatch function generation

The implementation of overloaded functions and methods is somewhat complicated due to the dynamic nature of scripting
languages. Unlike C++, which binds overloaded methods at compile time, SWIG must determine the proper function as a runtir
check for scripting language targets. This check is further complicated by the typeless nature of certain scripting languages. Fo
instance, in Tcl, all types are simply strings. Therefore, if you have two overloaded functions like this,

6.15 Wrapping Overloaded Functions and Methods 67

SWIG-1.3 Documentation

void foo(char *x);
void foo(int x);

the order in which the arguments are checked plays a rather critical role.

For statically typed languages, SWIG uses the language's method overloading mechanism. To implement overloading for the
scripting languages, SWIG generates a dispatch function that checks the number of passed arguments and their types. To cre:
this function, SWIG first examines all of the overloaded methods and ranks them according to the following rules:

1. Number of required arguments. Methods are sorted by increasing number of required arguments.
2. Argument type precedence. All C++ datatypes are assigned a numeric type precedence value (which is determined by
the language module).

Type Precedence
TYPE * 0 (High)
void * 20

Integers 40

Floating point 60

char 80

Strings 100 (Low)

Using these precedence values, overloaded methods with the same number of required arguments are sorted in incre:
order of precedence values.

This may sound very confusing, but an example will help. Consider the following collection of overloaded methods:

void foo(double);

void foo(int);

void foo(Bar *);

void foo();

void foo(int X, int y, int z, int w);
void foo(int x, inty, int z = 3);
void foo(double x, double y);
void foo(double x, Bar *z);

The first rule simply ranks the functions by required argument count. This would produce the following list:

[0] foo()

[1] foo(double);

[2] foo(int);

[3] foo(Bar *);

[4] foo(intx, inty, intz = 3);
[5] foo(double x, double y)
[6] foo(double x, Bar *z)

[7] foo(int X, inty, int z, int w);

The second rule, simply refines the ranking by looking at argument type precedence values.

[0] foo()

[1] foo(Bar *);

[2] foo(int);

[3] foo(double);

[4] foo(intx, inty, intz = 3);
[5] foo(double x, Bar *z)

[6] foo(double x, double y)
[7] foo(intx, inty, int z, int w);

6.15.1 Dispatch function generation 68

SWIG-1.3 Documentation

Finally, to generate the dispatch function, the arguments passed to an overloaded method are simply checked in the same ord:
they appear in this ranking.

If you're still confused, don't worry about it———SWIG is probably doing the right thing.

6.15.2 Ambiguity in Overloading

Regrettably, SWIG is not able to support every possible use of valid C++ overloading. Consider the following example:

void foo(int x);
void foo(long x);

In C++, this is perfectly legal. However, in a scripting language, there is generally only one kind of integer object. Therefore,
which one of these functions do you pick? Clearly, there is no way to truly make a distinction just by looking at the value of the
integer itself (int and long may even be the same precision). Therefore, when SWIG encounters this situation, it may generate
a warning message like this for scripting languages:

example.i:4: Warning(509): Overloaded foo(long) is shadowed by foo(int) at example.i:3.
or for statically typed languages like Java:

example.i:4: Warning(516): Overloaded method foo(long) ignored. Method foo(int)
at example.i:3 used.

This means that the second overloaded function will be inaccessible from a scripting interface or the method won't be wrapped
all. This is done as SWIG does not know how to disambiguate it from an earlier method.

Ambiguity problems are known to arise in the following situations:

« Integer conversions. Datatypes such as int, long, and short cannot be disambiguated in some languages. Shown
above.

« Floating point conversion. float and double can not be disambiguated in some languages.

« Pointers and references. For example, Foo * and Foo &.

« Pointers and arrays. For example, Foo * and Foo [4].

« Pointers and instances. For example, Foo and Foo *. Note: SWIG converts all instances to pointers.

« Qualifiers. For example, const Foo * and Foo *.

« Default vs. non default arguments. For example, foo(int a, int b) and foo(int a, int b = 3).

When an ambiguity arises, methods are checked in the same order as they appear in the interface file. Therefore, earlier meth
will shadow methods that appear later.

When wrapping an overloaded function, there is a chance that you will get an error message like this:

example.i:3: Warning(467): Overloaded foo(int) not supported (no type checking
rule for 'int').

This error means that the target language module supports overloading, but for some reason there is no type—checking rule th:
can be used to generate a working dispatch function. The resulting behavior is then undefined. You should report this as a bug

the SWIG bug tracking database.
If you get an error message such as the following,

foo.i:6. Overloaded declaration ignored. Spam::foo(double)

foo.i:5. Previous declaration is Spam::foo(int)

foo.i:7. Overloaded declaration ignored. Spam::foo(Bar *,Spam *,int)
foo.i:5. Previous declaration is Spam::foo(int)

6.15.2 Ambiguity in Overloading 69

http://www.swig.org/bugs.html

SWIG-1.3 Documentation

it means that the target language module has not yet implemented support for overloaded functions and methods. The only wa
fix the problem is to read the next section.

6.15.3 Ambiguity resolution and renaming

If an ambiguity in overload resolution occurs or if a module doesn't allow overloading, there are a few strategies for dealing wit
the problem. First, you can tell SWIG to ignore one of the methods. This is easy——-simply use the %ignore directive. For
example:

%ignore foo(long);

void foo(int);
void foo(long); ~ // Ignored. Oh well.

The other alternative is to rename one of the methods. This can be done using %rename. For example:

%rename("foo_short") foo(short);
%rename(foo_long) foo(long);

void foo(int);
void foo(short); // Accessed as foo_short()
void foo(long); // Accessed as foo_long()

Note that the quotes around the new name are optional, however, should the new name be a C/C++ keyword they would be
essential in order to avoid a parsing error. The %ignore and %rename directives are both rather powerful in their ability to
match declarations. When used in their simple form, they apply to both global functions and methods. For example:

/* Forward renaming declarations */
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);

void foo(int); // Becomes 'foo_i'
void foo(char *c); /I Stays 'foo' (not renamed)

class Spam {
public:

void foo(int); // Becomes 'foo_1i'
void foo(double); // Becomes 'foo_d'

h
If you only want the renaming to apply to a certain scope, the C++ scope resolution operator (::) can be used. For example:

%rename(foo_i) ::foo(int); // Only rename foo(int) in the global scope.
/I (will not rename class members)

%rename(foo_i) Spam::foo(int); // Only rename foo(int) in class Spam

When a renaming operator is applied to a class as in Spam::foo(int), it is applied to that class and all derived classes. This
can be used to apply a consistent renaming across an entire class hierarchy with only a few declarations. For example:

%rename(foo_i) Spam::foo(int);
%rename(foo_d) Spam::foo(double);

class Spam {
public:

virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

N

class Bar : public Spam {
public:

6.15.3 Ambiguity resolution and renaming 70

SWIG-1.3 Documentation

virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d
¥

class Grok : public Bar {

public:
virtual void foo(int); ~ // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

h
It is also possible to include %rename specifications in the class definition itself. For example:

class Spam {
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);
public:
virtual void foo(int); // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

N

class Bar : public Spam {

public:
virtual void foo(int); ~ // Renamed to foo_i
virtual void foo(double); // Renamed to foo_d

3

In this case, the %rename directives still get applied across the entire inheritance hierarchy, but it's no longer necessary to
explicitly specify the class prefix Spam:..

A special form of %rename can be used to apply a renaming just to class members (of all classes):
%rename(foo_i) *::foo(int); // Only rename foo(int) if it appears in a class.

Note: the *:: syntax is non-standard C++, but the *' is meant to be a wildcard that matches any class name (we couldn't think ¢
a better alternative so if you have a better idea, send email to the swig—devel mailing list.

Although this discussion has primarily focused on %rename all of the same rules also apply to %ignore. For example:

%ignore foo(double); /Il lgnore all foo(double)

%ignore Spam::foo; /I Ilgnore foo in class Spam

%ignore Spam::foo(double); // Ignore foo(double) in class Spam
%ignore *::foo(double); /I lgnore foo(double) in all classes

When applied to a base class, %ignore forces all definitions in derived clases to disappear. For example, %ignore
Spam::foo(double) will eliminate foo(double) in Spam and all classes derived from Spam.

Notes on %rename and %ignore:

« Since, the %rename declaration is used to declare a renaming in advance, it can be placed at the start of an interface
This makes it possible to apply a consistent name resolution without having to modify header files. For example:

%module foo

/* Rename these overloaded functions */
%rename(foo_i) foo(int);
%rename(foo_d) foo(double);

%include "header.h"

6.15.3 Ambiguity resolution and renaming 71

http://www.swig.org/mail.html

SWIG-1.3 Documentation

» The scope qualifier (::) can also be used on simple names. For example:

%rename(bar) ::foo; /I Rename foo to bar in global scope only
%rename(bar) Spam::foo; // Rename foo to bar in class Spam only
%rename(bar) *::foo; // Rename foo in classes only
« Name matching tries to find the most specific match that is defined. A qualified name such as Spam::foo always has
higher precedence than an unqualified name foo. Spam::foo has higher precedence than *::foo and *::foo has
higher precedence than foo. A parameterized name has higher precedence than an unparameterized name within the
same scope level. However, an unparameterized name with a scope qualifier has higher precedence than a parametel
name in global scope (e.g., a renaming of Spam::foo takes precedence over a renaming of foo(int)).
» The order in which %rename directives are defined does not matter as long as they appear before the declarations to
renamed. Thus, there is no difference between saying:

%rename(bar) foo;
%rename(foo_i) Spam::foo(int);
%rename(Foo) Spam::foo;

and this

%rename(Foo) Spam::foo;
%rename(bar) foo;
%rename(foo_i) Spam::foo(int);

(the declarations are not stored in a linked list and order has no importance). Of course, a repeated %rename directive
will change the setting for a previous %rename directive if exactly the same name, scope, and parameters are suppliec
» For multiple inheritance where renaming rules are defined for multiple base classes, the first renaming rule found on a
depth—first traversal of the class hierarchy is used.
» The name matching rules strictly follow member qualification rules. For example, if you have a class like this:

class Spam {
public:

;/.é)id bar() const;
h
the declaration
%rename(name) Spam::bar();
will not apply as there is no unqualified member bar(). The following will apply as the qualifier matches correctly:
%rename(name) Spam::bar() const;

An often overlooked C++ feature is that classes can define two different overloaded members that differ only in their
qualifiers, like this:

class Spam {
public:

void bar(); /I Unqualified member
void bar() const; // Qualified member

N

%rename can then be used to target each of the overloaded methods individually. For example we can give them sepe
names in the target language:

%rename(namel) Spam::bar();
%rename(name2) Spam::bar() const;

6.15.3 Ambiguity resolution and renaming 72

SWIG-1.3 Documentation

Similarly, if you merely wanted to ignore one of the declarations, use %ignore with the full qualification. For example,
the following directive would tell SWIG to ignore the const version of bar() above:

%ignore Spam::bar() const; // Ignore bar() const, but leave other bar() alone
« The name matching rules also use default arguments for finer control when wrapping methods that have default
arguments. Recall that methods with default arguments are wrapped as if the equivalent overloaded methods had beel
parsed (Default arguments section). Let's consider the following example class:

class Spam {
public:

void bar(int i=—1, double d=0.0);
¥

The following %rename will match exactly and apply to all the target language overloaded methods because the
declaration with the default arguments exactly matches the wrapped method:

%rename(newbar) Spam::bar(int i=—1, double d=0.0);

The C++ method can then be called from the target language with the new name no matter how many arguments are
specified, for example: newbar(2, 2.0), newbar(2) or newbar(). However, if the %rename does not contain

the default arguments, it will only apply to the single equivalent target language overloaded method. So if instead we
have:

%rename(newbar) Spam::bar(int i, double d);

The C++ method must then be called from the target language with the new name newbar(2, 2.0) when both
arguments are supplied or with the original name as bar(2) (one argument) or bar() (no arguments). In fact it is
possible to use %rename on the equivalent overloaded methods, to rename all the equivalent overloaded methods:

%rename(bar_2args) Spam::bar(int i, double d);
%rename(bar_larg) Spam::bar(inti);
%rename(bar_default) Spam::bar();

Similarly, the extra overloaded methods can be selectively ignored using %ignore.

Compatibility note: The %rename directive introduced the default argument matching rules in SWIG-1.3.23 at the
same time as the changes to wrapping methods with default arguments was introduced.

6.15.4 Comments on overloading

Support for overloaded methods was first added in SWIG-1.3.14. The implementation is somewhat unusual when compared tc
similar tools. For instance, the order in which declarations appear is largely irrelevant in SWIG. Furthermore, SWIG does not re
upon trial execution or exception handling to figure out which method to invoke.

Internally, the overloading mechanism is completely configurable by the target language module. Therefore, the degree of

overloading support may vary from language to language. As a general rule, statically typed languages like Java are able to
provide more support than dynamically typed languages like Perl, Python, Ruby, and Tcl.

6.16 Wrapping overloaded operators

Starting in SWIG-1.3.10, C++ overloaded operator declarations can be wrapped. For example, consider a class like this:

class Complex {
private:

double rpart, ipart;
public:

6.15.4 Comments on overloading 73

SWIG-1.3 Documentation

Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
Complex &operator=(const Complex &c) {

rpart = c.rpart;

ipart = c.ipart;

return *this;

}
Complex operator+(const Complex &c) const {
return Complex(rpart+c.rpart, ipart+c.ipart);

}

Complex operator—(const Complex &c) const {
return Complex(rpart—c.rpart, ipart—c.ipart);

}

Complex operator*(const Complex &c) const {
return Complex(rpart*c.rpart — ipart*c.ipart,

rpart*c.ipart + c.rpart*ipart);

}

Complex operator—() const {
return Complex(-rpart, —ipart);

}
double re() const { return rpart; }
double im() const { return ipart; }

¥

When operator declarations appear, they are handled in exactly the same manner as regular methods. However, the names of
methods are set to strings like "operator +" or "operator —". The problem with these names is that they are illegal

identifiers in most scripting languages. For instance, you can't just create a method called "operator +" in Python——there

won't be any way to call it.

Some language modules already know how to automatically handle certain operators (mapping them into operators in the targs
language). However, the underlying implementation of this is really managed in a very general way using the %rename directiv
For example, in Python a declaration similar to this is used:

%rename(__add__) Complex::operator+;

This binds the + operator to a method called __add___ (which is conveniently the same name used to implement the Python +
operator). Internally, the generated wrapper code for a wrapped operator will look something like this pseudocode:

_wrap_Complex___add__(args) {
...getargs ...
obj—>operator+(args);

}
When used in the target language, it may now be possible to use the overloaded operator normally. For example:

>>> g = Complex(3,4)
>>> b = Complex(5,2)
>>>c=a+b # Invokes __add__ method

It is important to realize that there is nothing magical happening here. The %rename directive really only picks a valid method
name. If you wrote this:

%rename(add) operator+;
The resulting scripting interface might work like this:

a = Complex(3,4)
b = Complex(5,2)
c=a.add(b) # Call a.operator+(b)

All of the techniques described to deal with overloaded functions also apply to operators. For example:

6.16 Wrapping overloaded operators 74

SWIG-1.3 Documentation

%ignore Complex::operator=; /I lgnore = in class Complex
%ignore *::operator=; /l'lgnore = in all classes
%ignore operator=; /I lgnore = everywhere.

%rename(__sub__) Complex::operator—;
%rename(__neg__) Complex::operator—(); // Unary —

The last part of this example illustrates how multiple definitions of the operator- method might be handled.
Handling operators in this manner is mostly straightforward. However, there are a few subtle issues to keep in mind:

« In C++, it is fairly common to define different versions of the operators to account for different types. For example, a
class might also include a friend function like this:

class Complex {
public:
friend Complex operator+(Complex &, double);

%

Complex operator+(Complex &, double);

SWIG simply ignores all friend declarations. Furthermore, it doesn't know how to associate the associated
operator+ with the class (because it's not a member of the class).

It's still possible to make a wrapper for this operator, but you'll have to handle it like a normal function. For example:

%rename(add_complex_double) operator+(Complex &, double);
« Certain operators are ignored by default. For instance, new and delete operators are ignored as well as conversion
operators.
» The semantics of certain C++ operators may not match those in the target language.

6.17 Class extension

New methods can be added to a class using the %extend directive. This directive is primarily used in conjunction with proxy
classes to add additional functionality to an existing class. For example :

%module vector
%

#include "vector.h"
%0}

class Vector {
public:
double x,y,z;
Vector();
~Vector();
... bunch of C++ methods ...
%extend {
char* _str () {
static char temp[256];
sprintf(temp,"[%g, %g, %g]", self->x,self->y,self->z);
return &templ0];

k

This code adds a __str__method to our class for producing a string representation of the object. In Python, such a method
would allow us to print the value of an object using the print command.

>>>

>>> v = Vector();
>>>vy.Xx=3
>>>vy =4

6.17 Class extension 75

SWIG-1.3 Documentation

>>>v.z=0
>>> print(v)
[3.0,4.0,0.0]
>>>

The %extend directive follows all of the same conventions as its use with C structures. Please refer to the SWIG Basics chapte
for further details.

Compatibility note: The %extend directive is a new name for the %addmethods directive. Since %addmethods could be
used to extend a structure with more than just methods, a more suitable directive name has been chosen.

6.18 Templates

In all versions of SWIG, template type hames may appear anywhere a type is expected in an interface file. For example:

void foo(vector<int> *a, int n);
void bar(list<int,100> *x);

There are some restrictions on the use of non-type arguments. Specifically, they have to be simple literals and not expression:
For example:

void bar(list<int,100> *x); // OK
void bar(list<int,2*50> *x); // lllegal

The type system is smart enough to figure out clever games you might try to play with typedef. For instance, consider this
code:

typedef int Integer;
void foo(vector<int> *x, vector<integer> *y);

In this case, vector<Integer> is exactly the same type as vector<int>. The wrapper for foo() will accept either
variant.

Starting with SWIG-1.3.7, simple C++ template declarations can also be wrapped. SWIG-1.3.12 greatly expands upon the eat
implementation. Before discussing this any further, there are a few things you need to know about template wrapping. First, a k
C++ template does not define any sort of runnable object—-code for which SWIG can normally create a wrapper. Therefore, in
order to wrap a template, you need to give SWIG information about a particular template instantiation (e.g., vector<int>,
array<double>, etc.). Second, an instantiation name such as vector<int> is generally not a valid identifier name in most

target languages. Thus, you will need to give the template instantiation a more suitable name such as intvector when creating
a wrapper.

To illustrate, consider the following template definition:

template<class T> class List {
private:
T *data;
int nitems;
int maxitems;
public:
List(int max) {
data = new T [max];
nitems = 0;
maxitems = max;
}
~List() {
delete [] data;
h
void append(T obj) {
if (nitems < maxitems) {
data[nitems++] = obj;

6.18 Templates 76

SWIG-1.3 Documentation
}

}
int length() {
return nitems;

}
T get(int n) {
return data[n];

}
¥

By itself, this template declaration is useless——SWIG simply ignores it because it doesn't know how to generate any code until
unless a definition of T is provided.

One way to create wrappers for a specific template instantiation is to simply provide an expanded version of the class directly i
this:

%rename(intList) List<int>; /I Rename to a suitable identifier
class List<int> {
private:
int *data;
int nitems;
int maxitems;
public:
List(int max);
~List();
void append(int obj);
int length();
int get(int n);
¥

The %rename directive is needed to give the template class an appropriate identifier name in the target language (most langus
would not recognize C++ template syntax as a valid class name). The rest of the code is the same as what would appear in a
normal class definition.

Since manual expansion of templates gets old in a hurry, the %template directive can be used to create instantiations of a
template class. Semantically, %template is simply a shortcut———it expands template code in exactly the same way as shown
above. Here are some examples:

/* Instantiate a few different versions of the template */
%template(intList) List<int>;
%template(doubleList) List<double>;

The argument to %template() is the name of the instantiation in the target language. The name you choose should not conflict
with any other declarations in the interface file with one exception——-it is okay for the template name to match that of a typede
declaration. For example:

%template(intList) List<int>;
typedef List<int> intList; // OK
SWIG can also generate wrappers for function templates using a similar technique. For example:

/I Function template
template<class T> T max(T a, Th) {returna>b?a:b;}

/I Make some different versions of this function
Y%template(maxint) max<int>;
%template(maxdouble) max<double>;

In this case, maxint and maxdouble become unique names for specific instantiations of the function.

6.18 Templates 77

SWIG-1.3 Documentation

The number of arguments supplied to %template should match that in the original template definition. Template default
arguments are supported. For example:

template vector<typename T, int max=100> class vector {
h

%template(intvec) vector<int>; /I OK
%template(vec1000) vector<int,1000>; // OK

The %template directive should not be used to wrap the same template instantiation more than once in the same scope. This
will generate an error. For example:

%template(intList) List<int>;
%template(Listint) List<int>; // Error. Template already wrapped.

This error is caused because the template expansion results in two identical classes with the same name. This generates a syr
table conflict. Besides, it probably more efficient to only wrap a specific instantiation only once in order to reduce the potential f
code bloat.

Since the type system knows how to handle typedef, it is generally not necessary to instantiate different versions of a template
for typenames that are equivalent. For instance, consider this code:

%template(intList) vector<int>;
typedef int Integer;

void foo(vector<integer> *x);

In this case, vector<Integer> is exactly the same type as vector<int>. Any use of Vector<Integer> is mapped
back to the instantiation of vector<int> created earlier. Therefore, it is not necessary to instantiate a new class for the type
Integer (doing so is redundant and will simply result in code bloat).

When a template is instantiated using %template, information about that class is saved by SWIG and used elsewhere in the
program. For example, if you wrote code like this,

%template(intList) List<int>;
class UltraList : public List<int> {

N

then SWIG knows that List<int> was already wrapped as a class called intList and arranges to handle the inheritance
correctly. If, on the other hand, nothing is known about List<int>, you will get a warning message similar to this:

example.h:42. Nothing known about class 'List<int >' (ignored).
example.h:42. Maybe you forgot to instantiate 'List<int >' using %template.

If a template class inherits from another template class, you need to make sure that base classes are instantiated before derive
classes. For example:

template<class T> class Foo {

i';'

template<class T> class Bar : public Foo<T> {
h

/I Instantiate base classes first
%template(intFoo) Foo<int>;

6.18 Templates 78

SWIG-1.3 Documentation

%template(doubleFoo) Foo<double>;

/I Now instantiate derived classes
%template(intBar) Bar<int>;
%template(doubleBar) Bar<double>;

The order is important since SWIG uses the instantiation names to properly set up the inheritance hierarchy in the resulting
wrapper code (and base classes need to be wrapped before derived classes). Don't worry——if you get the order wrong, SWIG
should generate a warning message.

Occassionally, you may need to tell SWIG about base classes that are defined by templates, but which aren't supposed to be
wrapped. Since SWIG is not able to automatically instantiate templates for this purpose, you must do it manually. To do this,
simply use %template with no name. For example:

/I Instantiate traits<double,double>, but don't wrap it.
%template() traits<double,double>;

If you have to instantiate a lot of different classes for many different types, you might consider writing a SWIG macro. For
example:

%define TEMPLATE_WRAP(T,prefix)
Y%template(prefix ## Foo) Foo<T>;
%template(prefix ## Bar) Bar<T>;

%enddef

TEMPLATE_WRAP(int, int)
TEMPLATE_WRAP(double, double)
TEMPLATE_WRAP(char *, String)

The SWIG template mechanism does support specialization. For instance, if you define a class like this,

template<> class List<int> {
private:
int *data;
int nitems;
int maxitems;
public:
List(int max);
~List();
void append(int obj);
int length();
int get(int n);
h

then SWIG will use this code whenever the user expands List<int>. In practice, this may have very little effect on the
underlying wrapper code since specialization is often used to provide slightly modified method bodies (which are ignored by
SWIG). However, special SWIG directives such as %typemap, %extend, and so forth can be attached to a specialization to
provide customization for specific types.

Partial template specialization is partially supported by SWIG. For example, this code defines a template that is applied when tl
template argument is a pointer.

template<class T> class List<T*> {
private:

T *data;

int nitems;

int maxitems;
public:

List(int max);

~List();

void append(int obj);

6.18 Templates 79

SWIG-1.3 Documentation

int length();
T get(int n);
h

SWIG should be able to handle most simple uses of partial specialization. However, it may fail to match templates properly in
more complicated cases. For example, if you have this code,

template<class T1, class T2> class Foo<T1, T2 *>{ };

SWIG isn't able to match it properly for instantiations like Foo<int *, int *>. This problem is not due to parsing, but due
to the fact that SWIG does not currently implement all of the C++ argument deduction rules.

Member function templates are supported. The underlying principle is the same as for normal templates——SWIG can't create a
wrapper unless you provide more information about types. For example, a class with a member template might look like this:

class Foo {
public:
template<class T> void bar(T x, Ty){ ... };

h
To expand the template, simply use %template inside the class.

class Foo {
public:
template<class T> void bar(T x, Ty){ ... };

%template(barint) bar<int>;
%template(bardouble) bar<double>;

h
Or, if you want to leave the original class definition alone, just do this:

class Foo {
public:
template<class T> void bar(T x, Ty){ ... };

o

%extend Foo {
%template(barint) bar<int>;
%template(bardouble) bar<double>;

h
or simply

class Foo {
public:
template<class T> void bar(T x, Ty){ ... };

%template(bari) Foo::bar<int>;
%template(bard) Foo::bar<double>;

In this case, the %extend directive is not needed, and %template does the exactly same job, i.e., it adds two new methods to
the Foo class.

Note: because of the way that templates are handled, the %template directive must always appear after the definition of the
template to be expanded.

6.18 Templates 80

SWIG-1.3 Documentation

Now, if your target language supports overloading, you can even try

%template(bar) Foo::bar<int>;
%template(bar) Foo::bar<double>;

and since the two new wrapped methods have the same name 'bar’, they will be overloaded, and when called, the correct mett
will be dispatched depending on the argument type.

When used with members, the %template directive may be placed in another template class. Here is a slightly perverse
example:

/I A template
template<class T> class Foo {
public:
/I A member template
template<class S> T bar(Sx, Sy){... };

¥

/I Expand a few member templates
%extend Foo {
%template(bari) bar<int>;
%template(bard) bar<double>;

}

/I Create some wrappers for the template
%template(Fooi) Foo<int>;
%template(Food) Foo<double>;

Miraculously, you will find that each expansion of Foo has member functions bari() and bard() added.

A common use of member templates is to define constructors for copies and conversions. For example:

template<class T1, class T2> struct pair {
T1 first;
T2 second;
pair() : first(T1()), second(T2()) {}
pair(const T1 &x, const T2 &y) : first(x), second(y) { }
template<class U1, class U2> pair(const pair<U1,U2> &x)
: first(x.first),second(x.second) { }

¥

This declaration is perfectly acceptable to SWIG, but the constructor template will be ignored unless you explicitly expand it. Tc
do that, you could expand a few versions of the constructor in the template class itself. For example:

%extend pair {
%template(pair) pair<T1,T2>; /I Generate default copy constructor

h
When using %extend in this manner, notice how you can still use the template parameters in the original template definition.

Alternatively, you could expand the constructor template in selected instantiations. For example:

/I Instantiate a few versions
%template(pairii) pair<int,int>;
%template(pairdd) pair<double,double>;

/I Create a default constructor only
%extend pair<int,int> {
%template(paird) pair<int,int>; /I Default constructor

g

/I Create default and conversion constructors

6.18 Templates 81

SWIG-1.3 Documentation

%extend pair<double,double> {
%template(paird) pair<double,dobule>; // Default constructor
%template(pairc) pair<int,int>; /I Conversion constructor

h
And if your target language supports overloading, then you can try instead:

/I Create default and conversion constructors

%extend pair<double,double> {

%template(pair) pair<double,dobule>; // Default constructor
%template(pair) pair<int,int>; /I Conversion constructor

g

In this case, the default and conversion constructors have the same name. Hence, Swig will overload them and define an uniq
visible constructor, that will dispatch the proper call depending on the argument type.

If all of this isn't quite enough and you really want to make someone's head explode, SWIG directives such as %rename,
%extend, and %typemap can be included directly in template definitions. For example:

/I File : list.h
template<class T> class List {

public:
%rename(__getitem__) get(int);
List(int max);
~List();

T get(int index);
%extend {
char*__str () {
/* Make a string representation */

}
}
k

In this example, the extra SWIG directives are propagated to every template instantiation.

It is also possible to separate these declarations from the template class. For example:

%rename(__getitem__) List::get;
%extend List {
char* _str () {
/* Make a string representation */

}
/* Make a copy */

T*_copy_ (){
return new List<T>(*self);

}
h
template<class T> class List {

iauublic:
List({};

¥

When %extend is decoupled from the class definition, it is legal to use the same template parameters as provided in the class
definition. These are replaced when the template is expanded. In addition, the %extend directive can be used to add additional
methods to a specific instantiation. For example:

6.18 Templates 82

SWIG-1.3 Documentation
%template(intList) List<int>;

%extend List<int> {
void blah() {
printf("Hey, I'm an List<int>\n");
}

k

SWIG even supports overloaded templated functions. As usual the %template directive is used to wrap templated functions.
For example:

template<class T> void foo(T x) { };
template<class T> void foo(T x, Ty) { };

%template(foo) foo<int>;

This will generate two overloaded wrapper methods, the first will take a single integer as an argument and the second will take
two integer arguments.

Needless to say, SWIG's template support provides plenty of opportunities to break the universe. That said, an important final
point is that SWIG does not perform extensive error checking of templates! Specifically, SWIG does not perform type

checking nor does it check to see if the actual contents of the template declaration make any sense. Since the C++ compiler w
hopefully check this when it compiles the resulting wrapper file, there is no practical reason for SWIG to duplicate this
functionality (besides, none of the SWIG developers are masochistic enough to want to implement this right now).

Compatibility Note: The first implementation of template support relied heavily on macro expansion in the preprocessor.
Templates have been more tightly integrated into the parser and type system in SWIG-1.3.12 and the preprocessor is no longe
used. Code that relied on preprocessing features in template expansion will no longer work. However, SWIG still allows the #
operator to be used to generate a string from a template argument.

Compatibility Note: In earlier versions of SWIG, the %template directive introduced a new class name. This hame could then
be used with other directives. For example:

%template(vectori) vector<int>;
%extend vectori {
void somemethod() { }

h
This behavior is no longer supported. Instead, you should use the original template name as the class name. For example:

%template(vectori) vector<int>;
%extend vector<int> {
void somemethod() { }

k

Similar changes apply to typemaps and other customization features.

6.19 Namespaces

Support for C++ namespaces is a relatively late addition to SWIG, first appearing in SWIG-1.3.12. Before describing the
implementation, it is worth nothing that the semantics of C++ namespaces is extremely non-trivial-—especially with regard to t
C++ type system and class machinery. At a most basic level, namespaces are sometimes used to encapsulate common
functionality. For example:

namespace math {
double sin(double);
double cos(double);

class Complex {
double im,re;

6.19 Namespaces 83

SWIG-1.3 Documentation

Members of the namespace are accessed in C++ by prepending the namespace prefix to names. For example:

double x = math::sin(1.0);
double magnitude(math::Complex *c);
math::Complex c;

At this level, namespaces are relatively easy to manage. However, things start to get very ugly when you throw in the other wa
namespace can be used. For example, selective symbols can be exported from a namespace with using.

using math::Complex;
double magnitude(Complex *c); /I Namespace prefix stripped

Similarly, the contents of an entire namespace can be made available like this:

using namespace math;
double x = sin(1.0);
double magnitude(Complex *c);

Alternatively, a namespace can be aliased:

namespace M = math;
double x = M::sin(1.0);
double magnitude(M::Complex *c);

Using combinations of these features, it is possible to write head—exploding code like this:

namespace A {
class Foo {
h

}

namespace B {
namespace C {
using namespace A,

}
typedef C::Foo FooClass;

}

namespace BIGB = B;

namespace D {
using BIGB::FooClass;
class Bar : public FooClass {

}
¥

class Spam : public D::Bar {

¥

void evil(A::Foo *a, B::FooClass *b, B::C::Foo *c, BIGB::FooClass *d,
BIGB::C::Foo *e, D::FooClass *f);

Given the possibility for such perversion, it's hard to imagine how every C++ programmer might want such code wrapped into t
target language. Clearly this code defines three different classes. However, one of those classes is accessible under at least si
different class names!

6.19 Namespaces 84

SWIG-1.3 Documentation

SWIG fully supports C++ namespaces in its internal type system and class handling code. If you feed SWIG the above code, it
will be parsed correctly, it will generate compilable wrapper code, and it will produce a working scripting language module.
However, the default wrapping behavior is to flatten namespaces in the target language. This means that the contents of all
namespaces are merged together in the resulting scripting language module. For example, if you have code like this,

%module foo
namespace foo {
void bar(int);
void spam();

}

namespace bar {
void blah();

}

then SWIG simply creates three wrapper functions bar(), spam(), and blah() in the target language. SWIG does not
prepend the names with a namespace prefix nor are the functions packaged in any kind of nested scope.

There is some rationale for taking this approach. Since C++ namespaces are often used to define modules in C++, there is a
natural correlation between the likely contents of a SWIG module and the contents of a namespace. For instance, it would not |
unreasonable to assume that a programmer might make a separate extension module for each C++ namespace. In this case, i
would be redundant to prepend everything with an additional namespace prefix when the module itself already serves as a
namespace in the target language. Or put another way, if you want SWIG to keep namespaces separate, simply wrap each
namespace with its own SWIG interface.

Because namespaces are flattened, it is possible for symbols defined in different namespaces to generate a name conflict in th
target language. For example:

namespace A {
void foo(int);

}
namespace B {
void foo(double);

}
When this conflict occurs, you will get an error message that resembles this:

example.i:26. Error. 'foo' is multiply defined in the generated module.
example.i:23. Previous declaration of 'foo'

To resolve this error, simply use %rename to disambiguate the declarations. For example:

%rename(B_foo) B::foo;

namespace A {
void foo(int);

}
namespace B {
void foo(double); // Gets renamed to B_foo

}

Similarly, %ignore can be used to ignore declarations.

using declarations do not have any effect on the generated wrapper code. They are ignored by SWIG language modules and t
do not result in any code. However, these declarations are used by the internal type system to track type—names. Therefore, if
have code like this:

namespace A {
typedef int Integer;
}

6.19 Namespaces 85

SWIG-1.3 Documentation

using namespace A,
void foo(Integer x);

SWIG knows that Integer is the same as A::Integer which is the same as int.

Namespaces may be combined with templates. If necessary, the %template directive can be used to expand a template define
in a different namespace. For example:

namespace foo {
template<typename T> T max(T a, Tb) {returna>b ?a:b;}

}
using foo::max;

%template(maxint) max<int>; /I Okay.
%template(maxfloat) foo::max<float>; // Okay (qualified name).

namespace bar {
using namespace foo;
%template(maxdouble) max<double>; // Okay.

}

The combination of namespaces and other SWIG directives may introduce subtle scope-related problems. The key thing to ke
in mind is that all SWIG generated wrappers are produced in the global namespace. Symbols from other namespaces are alwe
accessed using fully qualified names———-names are never imported into the global space unless the interface happens to do sc
a using declaration. In almost all cases, SWIG adjusts typenames and symbols to be fully qualified. However, this is not done it
code fragments such as function bodies, typemaps, exception handlers, and so forth. For example, consider the following:

namespace foo {
typedef int Integer;
class bar {
public:

Y
}

%extend foo::bar {
Integer add(Integer x, Integer y) {
Integerr=x +vy; /I Error. Integer not defined in this scope
returnr;

}
¥

In this case, SWIG correctly resolves the added method parameters and return type to foo::Integer. However, since function
bodies aren't parsed and such code is emitted in the global namespace, this code produces a compiler error about Integer. To
fix the problem, make sure you use fully qualified names. For example:

%extend foo::bar {
Integer add(Integer x, Integer y) {
foo::Integerr=x +vy; Il Ok.
returnr;

}
¥

Note: SWIG does not propagate using declarations to the resulting wrapper code. If these declarations appear in an interface,
they should also appear in any header files that might have been included in a %{ ... %} section. In other words, don't insert
extra using declarations into a SWIG interface unless they also appear in the underlying C++ code.

Note: Code inclusion directives such as %f{ ... %} or %inline %{ ... %} should not be placed inside a namespace

declaration. The code emitted by these directives will not be enclosed in a namespace and you may get very strange results. If
need to use namespaces with these directives, consider the following:

6.19 Namespaces 86

SWIG-1.3 Documentation

// Good version

%inline %{

namespace foo {
void bar(int) { ... }

}
%}

/I Bad version. Emitted code not placed in namespace.
namespace foo {
%inline %{

void bar(int) { ... } /*I'm bad */

"
}

Note: When the %extend directive is used inside a namespace, the namespace name is included in the generated functions. F
example, if you have code like this,

namespace foo {
class bar {
public:
%extend {
int blah(int x);
h
¥
}

the added method blah() is mapped to a function int foo_bar_blah(foo::bar *self, int x). This function
resides in the global namespace.

Note: Although namespaces are flattened in the target language, the SWIG generated wrapper code observes the same name
conventions as used in the input file. Thus, if there are no symbol conflicts in the input, there will be no conflicts in the generate
code.

Note: Namespaces have a subtle effect on the wrapping of conversion operators. For instance, suppose you had an interface |
this:

namespace foo {
class bar;
class spam {
public:

operator bar(); // Conversion of spam —> bar

B
)

To wrap the conversion function, you might be inclined to write this:

%rename(tofoo) foo::spam::operator bar();

The only problem is that it doesn't work. The reason it doesn't work is that bar is not defined in the global scope. Therefore, to
make it work, do this instead:

%rename(tofoo) foo::spam::operator foo::bar();
Note: The flattening of namespaces is only intended to serve as a basic namespace implementation. Since namespaces are a

addition to SWIG, none of the target language modules are currently programmed with any namespace awareness. In the futur
language modules may or may not provide more advanced namespace support.

6.19 Namespaces 87

SWIG-1.3 Documentation
6.20 Exception specifications

When C++ programs utilize exceptions, exceptional behavior is sometimes specified as part of a function or method declaratiol
For example:

class Error { };

class Foo {
public:

;/.(.)id blah() throw(Error);
2

If an exception specification is used, SWIG automatically generates wrapper code for catching the indicated exception and, wh
possible, rethrowing it into the target language, or converting it into an error in the target language otherwise. For example, in
Python, you can write code like this:

f=Foo()
try:
f.blah()
except Error,e:
e is a wrapped instance of "Error"

Details of how to tailor code for handling the caught C++ exception and converts it into the target language's exception/error
handling mechanism is outlined in the "throws" typemap section.

Since exception specifications are sometimes only used sparingly, this alone may not be enough to properly handle C++
exceptions. To do that, a different set of special SWIG directives are used. Consult the "Exception handling with %exception”
section for details. The next section details a way of simulating an exception specification or replacing an existing one.

6.21 Exception handling with %catches

Exceptions are automatically handled for methods with an exception specification. Similar handling can be achieved for methoc
without exception specifications through the %catches feature. It is also possible to replace any declared exception specificatic
using the %catches feature. In fact, %catches uses the same "throws" typemaps that SWIG uses for exception specifications
in handling exceptions. The %catches feature must contain a list of possible types that can be thrown. For each type that is in
the list, SWIG will generate a catch handler, in the same way that it would for types declared in the exception specification. Not
that the list can also include the catch all specification "...". For example,

struct EBase { virtual ~EBase(); };
struct Errorl : EBase { };
struct Error2 : EBase {};
struct Error3 : EBase { };
struct Error4 : EBase { };

%catches(Errorl,Error2,...) Foo::bar();
%catches(EBase) Foo::blah();

class Foo {
public:

void bar();
void blah() throw(Errorl,Error2,Error3,Error4);

o

For the Foo::bar() method, which can throw anything, SWIG will generate catch handlers for Errorl, Error2 as well as a
catch all handler (...). Each catch handler will convert the caught exception and convert it into a target language error/exceptior
The catch all handler will convert the caught exception into an unknown error/exception.

6.20 Exception specifications 88

SWIG-1.3 Documentation

Without the %catches feature being attached to Foo::blah(), SWIG will generate catch handlers for all of the types in the
exception specification, that is, Errorl, Error2, Error3, Error4. However, with the %catches feature above, just a

single catch handler for the base class, EBase will be generated to convert the C++ exception into a target language
error/exception.

6.22 Pointers to Members

Starting with SWIG1.3.7, there is limited parsing support for pointers to C++ class members. For example:

double do_op(Object *o, double (Object::*callback)(double,double));
extern double (Object::*fooptr)(double,double);
%constant double (Object::*FOQO)(double,double) = &Object::foo;

Although these kinds of pointers can be parsed and represented by the SWIG type system, few language modules know how t
handle them due to implementation differences from standard C pointers. Readers are strongly advised to consult an advancec
such as the "The Annotated C++ Manual" for specific details.

When pointers to members are supported, the pointer value might appear as a special string like this:

>>> print example.FOO

_ff0d54a800000000_m_Object__f double_double__double
>>>

In this case, the hexadecimal digits represent the entire value of the pointer which is usually the contents of a small C++ struct
on most machines.

SWIG's type—checking mechanism is also more limited when working with member pointers. Normally SWIG tries to keep track
of inheritance when checking types. However, no such support is currently provided for member pointers.

6.23 Smart pointers and operator—>()

In some C++ programs, objects are often encapsulated by smart—pointers or proxy classes. This is sometimes done to implem
automatic memory management (reference counting) or persistence. Typically a smart—pointer is defined by a template class
where the —> operator has been overloaded. This class is then wrapped around some other class. For example:

/I Smart-pointer class

template<class T> class SmartPtr {
T *pointee;

public:

T *operator—>() {
return pointee;

}
N

// Ordinary class
class Foo_Impl {
public:

int x;

virtual void bar();

N

/I Smart—pointer wrapper
typedef SmartPtr<Foo_Impl> Foo;

/I Create smart pointer Foo
Foo make_Foo() {
return SmartPtr(new Foo_Impl());

}

6.21 Exception handling with %catches 89

SWIG-1.3 Documentation

/I Do something with smart pointer Foo
void do_something(Foo f) {

printf("x = %d\n", f->x);

f->bar();
}

A key feature of this approach is that by defining operator—> the methods and attributes of the object wrapped by a smart
pointer are transparently accessible. For example, expressions such as these (from the previous example),

f->x
f->bar()

are transparently mapped to the following

(f.operator—>())—>Xx;
(f.operator—>())—>bar();

When generating wrappers, SWIG tries to emulate this functionality to the extent that it is possible. To do this, whenever
operator—>() is encountered in a class, SWIG looks at its returned type and uses it to generate wrappers for accessing
attributes of the underlying object. For example, wrapping the above code produces wrappers like this:

int Foo_x_get(Foo *f) {
return (*f)—>x;

}
void Foo_x_set(Foo *f, int value) {
(*f)->x = value;

}

void Foo_bar(Foo *f) {
(*f)—>bar();

}

These wrappers take a smart—pointer instance as an argument, but dereference it in a way to gain access to the object returne
operator—>(). You should carefully compare these wrappers to those in the first part of this chapter (they are slightly
different).

The end result is that access looks very similar to C++. For example, you could do this in Python:

>>> f = make_Foo()
>>> print f.x

0

>>> f.bar()

>>>

When generating wrappers through a smart—pointer, SWIG tries to generate wrappers for all methods and attributes that might
accessible through operator—>(). This includes any methods that might be accessible through inheritance. However, there are
a number of restrictions:

* Member variables and methods are wrapped through a smart pointer. Enumerations, constructors, and destructors are
wrapped.

« If the smart—pointer class and the underlying object both define a method or variable of the same name, then the
smart—pointer version has precedence. For example, if you have this code

class Foo {
public:
int x;

k

class Bar {
public:
int x;
Foo *operator—>();

6.23 Smart pointers and operator—>() 20

SWIG-1.3 Documentation
¥

then the wrapper for Bar::x accesses the x defined in Bar, and not the x defined in Foo.

If your intent is to only expose the smart—pointer class in the interface, it is not necessary to wrap both the smart—pointer class
the class for the underlying object. However, you must still tell SWIG about both classes if you want the technique described in
this section to work. To only generate wrappers for the smart—pointer class, you can use the %ignore directive. For example:

%ignore Foo;
class Foo { // lgnored

k

class Bar {
public:
Foo *operator—>();

N

Alternatively, you can import the definition of Foo from a separate file using %import.

Note: When a class defines operator—>(), the operator itself is wrapped as a method __deref__ (). For example:

f=Foo() # Smart—pointer
p="f_ deref_() # Raw pointer from operator—>

Note: To disable the smart—pointer behavior, use %ignore to ignore operator—>(). For example:
%ignore Bar::operator—>;

Note: Smart pointer support was first added in SWIG-1.3.14.

6.24 Using declarations and inheritance

using declarations are sometimes used to adjust access to members of base classes. For example:

class Foo {
public:

int blah(int x);
h

class Bar {
public:

double blah(double x);
h

class FooBar : public Foo, public Bar {
public:

using Foo::blah;

using Bar::blah;

char *blah(const char *x);

¥

In this example, the using declarations make different versions of the overloaded blah() method accessible from the derived
class. For example:

FooBar *f;

f->blah(3); /I Ok. Invokes Foo::blah(int)

f->blah(3.5); /I Ok. Invokes Bar::blah(double)
f->blah("hello"); // Ok. Invokes FooBar::blah(const char *);

6.24 Using declarations and inheritance 91

SWIG-1.3 Documentation

SWIG emulates the same functionality when creating wrappers. For example, if you wrap this code in Python, the module work
just like you would expect:

>>> import example

>>> f = example.FooBar()
>>> f.blah(3)

>>> f.blah(3.5)

>>> f.blah("hello")

using declarations can also be used to change access when applicable. For example:

class Foo {
protected:

int x;

int blah(int x);
¥

class Bar : public Foo {
public:
using Foo::x; /I Make x public
using Foo::blah; // Make blah public
¥

This also works in SWIG—---the exposed declarations will be wrapped normally.

When using declarations are used as shown in these examples, declarations from the base classes are copied into the derivec
class and wrapped normally. When copied, the declarations retain any properties that might have been attached using %renan
%ignore, or %feature. Thus, if a method is ignored in a base class, it will also be ignored by a using declaration.

Because a using declaration does not provide fine—grained control over the declarations that get imported, it may be difficult to
manage such declarations in applications that make heavy use of SWIG customization features. If you can't get using to work
correctly, you can always change the interface to the following:

class FooBar : public Foo, public Bar {
public:
#ifndef SWIG
using Foo::blah;
using Bar::blah;
#else
int blah(int x); /I explicitly tell SWIG about other declarations
double blah(double x);
#endif

char *blah(const char *x);

¥
Notes:

« If a derived class redefines a method defined in a base class, then a using declaration won't cause a conflict. For
example:

class Foo {
public:

int blah(int);

double blah(double);
X

class Bar : public Foo {

public:
using Foo::blah; // Only imports blah(double);
int blah(int);

6.24 Using declarations and inheritance 92

SWIG-1.3 Documentation

» Resolving ambiguity in overloading may prevent declarations from being imported by using. For example:

%rename(blah_long) Foo::blah(long);
class Foo {
public:
int blah(int);
long blah(long); // Renamed to blah_long
h

class Bar : public Foo {

public:
using Foo::blah; // Only imports blah(int)
double blah(double x);

h

6.25 Partial class definitions

Since SWIG is still limited in its support of C++, it may be necessary to use partial class information in an interface file. Howeve
since SWIG does not need the entire class specification to work, conditional compilation can be used to comment out problems
parts. For example, if you had a nested class definition, you might do this:

class Foo {
public:
#ifndef SWIG
class Bar {
public:
¥
#endif

Foo();
~Foo();

N

Also, as a rule of thumb, SWIG should not be used on raw C++ source files.

6.26 A brief rant about const—correctness

A common issue when working with C++ programs is dealing with all possible ways in which the const qualifier (or lack
thereof) will break your program, all programs linked against your program, and all programs linked against those programs.

Although SWIG knows how to correctly deal with const in its internal type system and it knows how to generate wrappers that
are free of const-related warnings, SWIG does not make any attempt to preserve const—correctness in the target language. Tt
is possible to pass const qualified objects to non—const methods and functions. For example, consider the following code in
C++:

const Object * foo();
void bar(Object *);

/I C++ code
void blah() {
bar(foo()); Il Error: bar discards const

h
Now, consider the behavior when wrapped into a Python module:

>>> bhar(foo()) # Okay
>>>

6.25 Partial class definitions 93

SWIG-1.3 Documentation

Although this is clearly a violation of the C++ type—system, fixing the problem doesn't seem to be worth the added
implementation complexity that would be required to support it in the SWIG run-time type system. There are no plans to chang
this in future releases (although we'll never rule anything out entirely).

The bottom line is that this particular issue does not appear to be a problem for most SWIG projects. Of course, you might wan
consider using another tool if maintaining constness is the most important part of your project.

6.27 Proxy classes

In order to provide a more natural API, SWIG's target languages wrap C++ classes with special proxy classes. These proxy clg
are typically implemented in the target language itself. For example, if you're building a Python module, each C++ class is
wrapped by a Python class. Or if you're building a Java module, each C++ class is wrapped by a Java class.

6.27.1 Construction of proxy classes

Proxy classes are always constructed as an extra layer of wrapping that uses the low-level accessor functions described in the
previous section. To illustrate, suppose you had a C++ class like this:

class Foo {
public:
Foo();
~Foo();
int bar(int x);
int x;

h
Using C++ as pseudocode, a proxy class looks something like this:

class FooProxy {
private:
Foo *self;
public:
FooProxy() {
self = new_Foo();

~FooProxy() {
delete_Foo(self);

}
int bar(int x) {

return Foo_bar(self,x);
}

int x_get() {
return Foo_x_get(self);

void x_set(int x) {
Foo_x_set(self,x);
}
h

Of course, always keep in mind that the real proxy class is written in the target language. For example, in Python, the proxy mif
look roughly like this:

class Foo:
def __init__(self):
self.this = new_Foo()
def _ del__(self):
delete_Foo(self.this)
def bar(self,x):
return Foo_bar(self.this,x)
def __getattr__(self,name):
if name == 'x"
return Foo_x_get(self.this)

6.26 A brief rant about const—correctness 94

SWIG-1.3 Documentation

def __setattr__(self,name,value):
if name == 'x"
Foo_x_set(self.this,value)

Again, it's important to emphasize that the low-level accessor functions are always used to construct the proxy classes.

Whenever possible, proxies try to take advantage of language features that are similar to C++. This might include operator
overloading, exception handling, and other features.

6.27.2 Resource management in proxies

A major issue with proxies concerns the memory management of wrapped objects. Consider the following C++ code:

class Foo {
public:
Foo();
~Foo();
int bar(int x);
int x;
h
class Spam {

public:
Foo *value;

¥

Now, consider some script code that uses these classes:

f=Foo() # Creates a new Foo

s = Spam() # Creates a new Spam

s.value =f # Stores a reference to f inside s
g = s.value # Returns stored reference
g=4 # Reassign g to some other value
del f # Destroy f

Now, ponder the resulting memory management issues. When objects are created in the script, the objects are wrapped by ne'
created proxy classes. That is, there is both a new proxy class instance and a new instance of the underlying C++ class. In this
example, both f and s are created in this way. However, the statement s.value is rather curious——-when executed, a pointer to
f is stored inside another object. This means that the scripting proxy class AND another C++ class share a reference to the san
object. To make matters even more interesting, consider the statement g = s.value. When executed, this creates a new proxy
class g that provides a wrapper around the C++ object stored in s.value. In general, there is no way to know where this object
came from——-it could have been created by the script, but it could also have been generated internally. In this particular exam|
the assignment of g results in a second proxy class for f. In other words, a reference to f is nhow shared by two proxy classes ar
a C++ class.

Finally, consider what happens when objects are destroyed. In the statement, g=4, the variable g is reassigned. In many
languages, this makes the old value of g available for garbage collection. Therefore, this causes one of the proxy classes to be
destroyed. Later on, the statement del f destroys the other proxy class. Of course, there is still a reference to the original object
stored inside another C++ object. What happens to it? Is it the object still valid?

To deal with memory management problems, proxy classes always provide an API for controlling ownership. In C++ pseudoco
ownership control might look roughly like this:

class FooProxy {

public:
Foo *self;
int thisown;

6.27.1 Construction of proxy classes 95

SWIG-1.3 Documentation

FooProxy() {
self = new_Foo();
thisown = 1, /I Newly created object

~FooProxy() {
if (thisown) delete_Foo(self);

}

/I Ownership control API
void disown() {
thisown = 0;

void acquire() {
thisown = 1;
}
h

class FooPtrProxy: public FooProxy {
public:
FooPtrProxy(Foo *s) {
self = s;
thisown = 0;
}
h

class SpamProxy {

FooProxy *value_get() {
return FooPtrProxy(Spam_value_get(self));

void value_set(FooProxy *v) {
Spam_value_set(self,v—>self);
v—>disown();

}
Yo

Looking at this code, there are a few central features:

» Each proxy class keeps an extra flag to indicate ownership. C++ objects are only destroyed if the ownership flag is set
* When new objects are created in the target language, the ownership flag is set.

* When a reference to an internal C++ object is returned, it is wrapped by a proxy class, but the proxy class does not ha
ownership.

« In certain cases, ownership is adjusted. For instance, when a value is assigned to the member of a class, ownership is
» Manual ownership control is provided by special disown() and acquire() methods.

Given the tricky nature of C++ memory management, it is impossible for proxy classes to automatically handle every possible
memory management problem. However, proxies do provide a mechanism for manual control that can be used (if necessary) t
address some of the more tricky memory management problems.

6.27.3 Language specific details

Language specific details on proxy classes are contained in the chapters describing each target language. This chapter has m«
introduced the topic in a very general way.

6.28 Where to go for more information

If you're wrapping serious C++ code, you might want to pick up a copy of "The Annotated C++ Reference Manual" by Ellis and
Stroustrup. This is the reference document we use to guide a lot of SWIG's C++ support.

6.27.2 Resource management in proxies 96

7 Preprocessing

« File inclusion
« File imports
 Conditional Compilation

« Macro Expansign
« SWIG Macros

¢ C99 and GNU Extensions

« Preprocessing and %f{ ... %} blocks
* Preprocessing and { ... }

« Viewing preprocessor output

 The #error and #warning directives

SWIG includes its own enhanced version of the C preprocessor. The preprocessor supports the standard preprocessor directiv

and macro expansion rules. However, a number of modifications and enhancements have been made. This chapter describes
of these modifications.

7.1 File inclusion

To include another file into a SWIG interface, use the %include directive like this:
%include "pointer.i"

Unlike, #include, %include includes each file once (and will not reload the file on subsequent %include declarations).
Therefore, it is not necessary to use include—guards in SWIG interfaces.

By default, the #include is ignored unless you run SWIG with the —includeall option. The reason for ignoring traditional

includes is that you often don't want SWIG to try and wrap everything included in standard header system headers and auxillial
files.

7.2 File imports

SWIG provides another file inclusion directive with the %import directive. For example:
%import "foo.i"

The purpose of %import is to collect certain information from another SWIG interface file or a header file without actually
generating any wrapper code. Such information generally includes type declarations (e.g., typedef) as well as C++ classes that
might be used as base-classes for class declarations in the interface. The use of %import is also important when SWIG is use
to generate extensions as a collection of related modules. This is an advanced topic and is described in a later chapter.

The —importall directive tells SWIG to follow all #include statements as imports. This might be useful if you want to
extract type definitions from system header files without generating any wrappers.

7.3 Conditional Compilation

SWIG fully supports the use of #if, #ifdef, #ifndef, #else, #endif to conditionally include parts of an interface. The
following symbols are predefined by SWIG when it is parsing the interface:

SWIG Always defined when SWIG is processing a file
SWIGIMPORTED Defined when SWIG is importing a file with %import
SWIGMAC Defined when running SWIG on the Macintosh
SWIGWIN Defined when running SWIG under Windows
SWIG_VERSION Hexadecimal number containing SWIG version,

such as 0x010311 (corresponding to SWIG-1.3.11).

7 Preprocessing 97

SWIG-1.3 Documentation

SWIGCHICKEN Defined when using CHICKEN
SWIGCSHARP Defined when using C#
SWIGGUILE Defined when using Guile
SWIGJAVA Defined when using Java
SWIGLUA Defined when using Lua
SWIGMODULA3 Defined when using Modula-3
SWIGMZSCHEME Defined when using Mzscheme
SWIGOCAML Defined when using Ocaml
SWIGPERL Defined when using Perl
SWIGPERL5 Defined when using Perl5
SWIGPHP Defined when using PHP
SWIGPHP4 Defined when using PHP4
SWIGPIKE Defined when using Pike
SWIGPYTHON Defined when using Python
SWIGRUBY Defined when using Ruby
SWIGSEXP Defined when using S—expressions
SWIGTCL Defined when using Tcl

SWIGTCLS8 Defined when using Tcl8.0
SWIGXML Defined when using XML

In addition, SWIG defines the following set of standard C/C++ macros:

__LINE__ Current line number

__FILE__ Current file name

__STDC__ Defined to indicate ANSI C
__cplusplus Defined when —c++ option used

Interface files can look at these symbols as necessary to change the way in which an interface is generated or to mix SWIG
directives with C code. These symbols are also defined within the C code generated by SWIG (except for the symbol "SWIG'
which is only defined within the SWIG compiler).

7.4 Macro Expansion

Traditional preprocessor macros can be used in SWIG interfaces. Be aware that the #define statement is also used to try and
detect constants. Therefore, if you have something like this in your file,

#ifndef _FOO_H 1
#define _FOO_H 1

#endif
you may get some extra constants such as _FOO_H showing up in the scripting interface.

More complex macros can be defined in the standard way. For example:

#define EXTERN extern
#ifdef _ STDC___

#define _ANSI(args) (args)
#else

#define _ANSI(args) ()
#endif

The following operators can appear in macro definitions:

o #X
Converts macro argument x to a string surrounded by double quotes ("x").
e X ##Y
Concatenates x and y together to form xy.
° \X\
If x is a string surrounded by double quotes, do nothing. Otherwise, turn into a string like #x. This is a non-standard
SWIG extension.

7.3 Conditional Compilation 98

SWIG-1.3 Documentation

7.5 SWIG Macros

SWIG provides an enhanced macro capability with the %define and %enddef directives. For example:

%define ARRAYHELPER(type,name)
%inline %{
type *new_ ## name (int nitems) {

return (type *) malloc(sizeof(type)*nitems);

void delete_ ## name(type *t) {
free(t);

}

type name ## _get(type *t, int index) {
return t[index];

}
void name ## _set(type *t, int index, type val) {

tlindex] = val,

}
%}
%enddef

ARRAYHELPER(int, IntArray)
ARRAYHELPER(double, DoubleArray)

The primary purpose of %define is to define large macros of code. Unlike normal C preprocessor macros, it is not necessary to
terminate each line with a continuation character (\)-—-the macro definition extends to the first occurrence of %enddef.
Furthermore, when such macros are expanded, they are reparsed through the C preprocessor. Thus, SWIG macros can contal
other preprocessor directives except for nested %define statements.

The SWIG macro capability is a very quick and easy way to generate large amounts of code. In fact, many of SWIG's advance
features and libraries are built using this mechanism (such as C++ template support).

7.6 C99 and GNU Extensions
SWIG-1.3.12 and newer releases support variadic preprocessor macros. For example:
#define DEBUGF(fmt,...) fprintf(stderr,fmt,_ VA_ARGS_)

When used, any extra arguments to ... are placed into the special variable __ VA_ARGS__. This also works with special SWIG
macros defined using %define.

SWIG allows a variable number of arguments to be empty. However, this often results in an extra comma (,) and syntax error il
the resulting expansion. For example:

DEBUGF("hello"); —-> fprintf(stderr,"hello",);
To get rid of the extra comma, use ## like this:
#define DEBUGF(fmt,...) fprintf(stderr,fmt, # VA _ARGS_)

SWIG also supports GNU-style variadic macros. For example:

#define DEBUGF(fmt, args...) fprintf(stdout,fmt,args)

Comment: It's not entirely clear how variadic macros might be useful to interface building. However, they are used internally to
implement a number of SWIG directives and are provided to make SWIG more compatible with C99 code.

7.5 SWIG Macros 99

SWIG-1.3 Documentation

7.7 Preprocessing and %({ ... %} blocks

The SWIG preprocessor does not process any text enclosed in a code block %{ ... %}. Therefore, if you write code like this,

%{
#ifdef NEED_BLAH
int blah() {

}
#endif

%}

the contents of the %{ ... %} block are copied without modification to the output (including all preprocessor directives).

7.8 Preprocessing and { ... }

SWIG always runs the preprocessor on text appearing inside { ... }. However, sometimes it is desirable to make a
preprocessor directive pass through to the output file. For example:

%extend Foo {
void bar() {
#ifdef DEBUG
printf("I'm in bar\n");
#endif
}
}

By default, SWIG will interpret the #ifdef DEBUG statement. However, if you really wanted that code to actually go into the
wrapper file, prefix the preprocessor directives with % like this:

%extend Foo {
void bar() {
%#ifdef DEBUG
printf("I'm in bar\n");
Y%ttendif

}
}

SWIG will strip the extra % and leave the preprocessor directive in the code.

7.9 Viewing preprocessor output

Like many compilers, SWIG supports a —E command line option to display the output from the preprocessor. When the —E swit
is used, SWIG will not generate any wrappers. Instead the results after the preprocessor has run are displayed. This might be
useful as an aid to debugging and viewing the results of macro expansions.

7.10 The #error and #warning directives

SWIG supports the commonly used #warning and #error preprocessor directives. The #warning directive will cause
SWIG to issue a warning then continue processing. The #error directive will cause SWIG to exit with a fatal error. Example
usage:

#error "This is a fatal error message"
#warning "This is a warning message"

The #error behaviour can be made to work like #warning if the —cpperraswarn commandline option is used.
Alternatively, the #pragma directive can be used to the same effect, for example:

/* Modified behaviour: #error does not cause SWIG to exit with error */

7.7 Preprocessing and %f{ ... %} blocks 100

SWIG-1.3 Documentation
#pragma SWIG cpperraswarn=1

/* Normal behaviour: #error does cause SWIG to exit with error */
#pragma SWIG cpperraswarn=0

7.10 The #error and #warning directives 101

8 SWIG library

» The %include directive and library search path
« C Arrays and Pointers
¢ cpointer.i

¢ carrays.i
¢ cmalloc.i

¢ cdata.i
« C String Handling
¢ Default string handling
¢ Passing binary data
¢ Using %newobject to release memory
¢ cstring.i
e STL/C++ Library
¢ std_string.i
¢ std_vector.i
¢ STL exceptions
« Utility Libraries
¢+ exception.i

To help build extension modules, SWIG is packaged with a library of support files that you can include in your own interfaces.
These files often define new SWIG directives or provide utility functions that can be used to access parts of the standard C anc
C++ libraries. This chapter provides a reference to the current set of supported library files.

Compatibility note: Older versions of SWIG included a number of library files for manipulating pointers, arrays, and other

structures. Most these files are now deprecated and have been removed from the distribution. Alternative libraries provide simi
functionality. Please read this chapter carefully if you used the old libraries.

8.1 The %include directive and library search path

Library files are included using the %include directive. When searching for files, directories are searched in the following
order:

 The current directory

« Directories specified with the =I command line option

* ./swig_lib

« Jusr/local/lib/swig_lib (or wherever you installed SWIG)

» On Windows, SWIG also looks for the library relative to the location of swig.exe.

Within each directory, SWIG first looks for a subdirectory corresponding to a target language (e.g., python, tcl, etc.). If found,
SWIG will search the language specific directory first. This allows for language—specific implementations of library files.

You can override the location of the SWIG library by setting the SWIG_LIB environment variable.

8.2 C Arrays and Pointers

This section describes library modules for manipulating low-level C arrays and pointers. The primary use of these modules is i
supporting C declarations that manipulate bare pointers such as int *, double *, or void *. The modules can be used to

allocate memory, manufacture pointers, dereference memory, and wrap pointers as class-like objects. Since these functions
provide direct access to memory, their use is potentially unsafe and you should exercise caution.

8.2.1 cpointer.i

The cpointer.i module defines macros that can be used to used to generate wrappers around simple C pointers. The primary

8 SWIG library 102

SWIG-1.3 Documentation

use of this module is in generating pointers to primitive datatypes such as int and double.
%pointer_functions(type,name)

Generates a collection of four functions for manipulating a pointer type *:

type *new_name()

Creates a new object of type type and returns a pointer to it. In C, the object is created using calloc(). In C++, new
is used.

type *copy_name(type value)

Creates a new object of type type and returns a pointer to it. An initial value is set by copying it from value. In C, the
object is created using calloc(). In C++, new is used.

type *delete_name(type *obj)
Deletes an object type type.

void name_assign(type *obj, type value)
Assigns *obj = value.

type name_value(type *obj)
Returns the value of *obj.

When using this macro, type may be any type and name must be a legal identifier in the target language. name should not
correspond to any other name used in the interface file.

Here is a simple example of using %pointer_functions():

%module example
%include "cpointer.i"

[* Create some functions for working with "int *" */
%pointer_functions(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);

Now, in Python:

>>> jmport example
>>> ¢ = example.new_intp() # Create an "int" for storing result

>>> example.add(3,4,c) # Call function
>>> example.intp_value(c) # Dereference
7

>>> example.delete_intp(c) # Delete
%pointer_class(type,name)
Wraps a pointer of type * inside a class—based interface. This interface is as follows:

struct name {

name(); /I Create pointer object
~name(); /I Delete pointer object
void assign(type value); /I Assign value

8.2.1 cpointer.i 103

SWIG-1.3 Documentation

type value(); /I Get value

type *cast(); /I Cast the pointer to original type

static name *frompointer(type *); // Create class wrapper from existing
I pointer

k

When using this macro, type is restricted to a simple type name like int, float, or Foo. Pointers and other complicated
types are not allowed. name must be a valid identifier not already in use. When a pointer is wrapped as a class, the "class'
may be transparently passed to any function that expects the pointer.

If the target language does not support proxy classes, the use of this macro will produce the example same functions as
%pointer_functions() macro.

It should be noted that the class interface does introduce a new object or wrap a pointer inside a special structure. Instead
raw pointer is used directly.

Here is the same example using a class instead:

%module example
%include "cpointer.i"

/* Wrap a class interface around an "int *" */
%pointer_class(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);

Now, in Python (using proxy classes)

>>> import example

>>> ¢ = example.intp() # Create an "int" for storing result
>>> example.add(3,4,c) # Call function

>>> c.value() # Dereference

7

Of the two macros, %pointer_class is probably the most convenient when working with simple pointers. This is
because the pointers are access like objects and they can be easily garbage collected (destruction of the pointer object
destroys the underlying object).
%pointer_cast(typel, type2, name)
Creates a casting function that converts typel to type2. The name of the function is name. For example:
%pointer_cast(int *, unsigned int *, int_to_uint);
In this example, the function int_to_uint() would be used to cast types in the target language.

Note: None of these macros can be used to safely work with strings (char * or char **).

Note: When working with simple pointers, typemaps can often be used to provide more seamless operation.
8.2.2 carrays.i

This module defines macros that assist in wrapping ordinary C pointers as arrays. The module does not provide any safety or ¢
extra layer of wrapping—-it merely provides functionality for creating, destroying, and modifying the contents of raw C array
data.

%array_functions(type,name)

8.2.2 carrays.i 104

SWIG-1.3 Documentation

Creates four functions.
type *new_name(int nelements)
Creates a new array of objects of type type. In C, the array is allocated using calloc(). In C++, new [] is used.
type *delete_name(type *ary)
Deletes an array. In C, free() is used. In C++, delete [] is used.
type name_getitem(type *ary, int index)
Returns the value ary[index].
void name_setitem(type *ary, int index, type value)
Assigns ary[index] = value.

When using this macro, type may be any type and name must be a legal identifier in the target language. name should not
correspond to any other name used in the interface file.

Here is an example of %array_functions(). Suppose you had a function like this:

void print_array(double x[10]) {
inti;
for (i=0;i<10;i++){
printf("[%d] = %g\n", i, X[i]);
}
}

To wrap it, you might write this:

%module example

%include "carrays.i"
%array_functions(double, doubleArray);

void print_array(double x[10]);
Now, in a scripting language, you might write this:
a = new_doubleArray(10) # Create an array
for i in range(0,10):
doubleArray_setitem(a,i,2*i) # Set a value

print_array(a) #Passto C
delete_doubleArray(a) # Destroy array

%array_class(type,name)

Wraps a pointer of type * inside a class—based interface. This interface is as follows:

struct name {

name(int nelements); /I Create an array
~name(); /I Delete array

type getitem(int index); /I Return item

void setitem(int index, type value); // Set item
type *cast(); /I Cast to original type

static name *frompointer(type *); // Create class wrapper from
/I existing pointer

8.2.2 carrays.i 105

SWIG-1.3 Documentation

When using this macro, type is restricted to a simple type name like int or float. Pointers and other complicated types
are not allowed. name must be a valid identifier not already in use. When a pointer is wrapped as a class, it can be
transparently passed to any function that expects the pointer.

When combined with proxy classes, the %array_class() macro can be especially useful. For example:

%module example
%include "carrays.i"
%array_class(double, doubleArray);

void print_array(double x[10]);
Allows you to do this:

import example
¢ = example.doubleArray(10) # Create double[10]
for i in range(0,10):

cfi] = 2% # Assign values
example.print_array(c) #PasstoC

Note: These macros do not encapsulate C arrays inside a special data structure or proxy. There is no bounds checking or safe
any kind. If you want this, you should consider using a special array object rather than a bare pointer.

Note: %array_functions() and %array_class() should not be used with types of char or char *.

8.2.3 cmalloc.i

This module defines macros for wrapping the low-level C memory allocation functions malloc(), calloc(), realloc(),
and free().

%malloc(type [,name=type])
Creates a wrapper around malloc() with the following prototype:
type *malloc_name(int nbytes = sizeof(type));

If type is void, then the size parameter nbytes is required. The hame parameter only needs to be specified when
wrapping a type that is not a valid identifier (e.g., "int *", "double **", etc.).

%ocalloc(type [,name=type])
Creates a wrapper around calloc() with the following prototype:
type *calloc_name(int nobj =1, int sz = sizeof(type));
If type is void, then the size parameter sz is required.
%realloc(type [,name=type])
Creates a wrapper around realloc() with the following prototype:
type *realloc_name(type *ptr, int nitems);

Note: unlike the C realloc(), the wrapper generated by this macro implicitly includes the size of the corresponding type.
For example, realloc_int(p, 100) reallocates p so that it holds 100 integers.

%free(type [,name=type])

8.2.3 cmalloc.i 106

SWIG-1.3 Documentation

Creates a wrapper around free() with the following prototype:
void free_name(type *ptr);
%sizeof(type [,name=type])
Creates the constant:
%constant int sizeof_name = sizeof(type);
%allocators(type [,name=type])
Generates wrappers for all five of the above operations.

Here is a simple example that illustrates the use of these macros:

/I SWIG interface
%module example
%include "cmalloc.i"

%malloc(int);
%free(int);

%malloc(int *, intp);
%free(int *, intp);

%allocators(double);
Now, in a script:

>>> from example import *
>>> a = malloc_int()

>>> a

'_000efa70_p_int'

>>> free_int(a)

>>> b = malloc_intp()

>>> b
'_000efb20_p_p_int'

>>> free_intp(b)

>>> ¢ = calloc_double(50)
>>> ¢

' 000fab98 p_double’
>>> ¢ = realloc_double(100000)
>>> free_double(c)

>>> print sizeof_double

8

>>>

8.2.4 cdata.i

The cdata.i module defines functions for converting raw C data to and from strings in the target language. The primary
applications of this module would be packing/unpacking of binary data structures———for instance, if you needed to extract data
from a buffer. The target language must support strings with embedded binary data in order for this to work.

char *cdata(void *ptr, int nbytes)

Converts nbytes of data at ptr into a string. ptr can be any pointer.

void memmove(void *ptr, char *s)

8.2.4 cdata.i 107

SWIG-1.3 Documentation

Copies all of the string data in s into the memory pointed to by ptr. The string may contain embedded NULL bytes. The
length of the string is implicitly determined in the underlying wrapper code.

One use of these functions is packing and unpacking data from memory. Here is a short example:

/I SWIG interface
%module example
%include "carrays.i"
%include "cdata.i"

%array_class(int, intArray);
Python example:
>>> a = intArray(10)
>>> for i in range(0,10):
afij=i
>>> b = cdata(a,40)
>>> b
"\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04
\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\t'
>>> ¢ = intArray(10)
>>> memmove(c,b)
>>> print c[4]

4
>>>

Since the size of data is not always known, the following macro is also defined:
%cdata(type [,name=type])
Generates the following function for extracting C data for a given type.
char *cdata_name(type* ptr, int nitems)
nitems is the number of items of the given type to extract.

Note: These functions provide direct access to memory and can be used to overwrite data. Clearly they are unsafe.

8.3 C String Handling

A common problem when working with C programs is dealing with functions that manipulate raw character data using char *.
In part, problems arise because there are different interpretations of char *~——it could be a NULL-terminated string or it could
point to binary data. Moreover, functions that manipulate raw strings may mutate data, perform implicit memory allocations, or
utilize fixed-sized buffers.

The problems (and perils) of using char * are well-known. However, SWIG is not in the business of enforcing morality. The
modules in this section provide basic functionality for manipulating raw C strings.

8.3.1 Default string handling

Suppose you have a C function with this prototype:
char *foo(char *s);

The default wrapping behavior for this function is to set s to a raw char * that refers to the internal string data in the target
language. In other words, if you were using a language like Tcl, and you wrote this,

% foo Hello

8.3 C String Handling 108

SWIG-1.3 Documentation

then s would point to the representation of "Hello" inside the Tcl interpreter. When returning a char *, SWIG assumes that it is
a NULL-terminated string and makes a copy of it. This gives the target language its own copy of the result.

There are obvious problems with the default behavior. First, since a char * argument points to data inside the target language,
is NOT safe for a function to modify this data (doing so may corrupt the interpreter and lead to a crash). Furthermore, the defat
behavior does not work well with binary data. Instead, strings are assumed to be NULL-terminated.

8.3.2 Passing binary data

If you have a function that expects binary data,
int parity(char *str, int len, int initial);

you can wrap the parameters (char *str, int len) as a single argument using a typemap. Just do this:
%apply (char *STRING, int LENGTH) { (char *str, int len) };
|nt parity(char *str, int len, int initial);

Now, in the target language, you can use binary string data like this:

>>> s = "H\x00\x15eg\x09\x20"
>>> parity(s,0)

In the wrapper function, the passed string will be expanded to a pointer and length parameter.

8.3.3 Using %newobject to release memory

If you have a function that allocates memory like this,

char *foo() {
char *result = (char *) malloc(...);

return result;

}

then the SWIG generated wrappers will have a memory leak——the returned data will be copied into a string object and the old
contents ignored.

To fix the memory leak, use the %newobject directive.
%newobiject foo;
char *foo();

This will release the result.

8.3.4 cstring.i

The cstring.i library file provides a collection of macros for dealing with functions that either mutate string arguments or
which try to output string data through their arguments. An example of such a function might be this rather questionable
implementation:

void get_path(char *s) {
/I Potential buffer overflow——-uh, oh.
sprintf(s,"%s/%s", base_directory, sub_directory);

}

/I Somewhere else in the C program

8.3.1 Default string handling 109

SWIG-1.3 Documentation

{
char path[1024];

éét_path(path);
}

(Off topic rant: If your program really has functions like this, you would be well-advised to replace them with safer alternatives
involving bounds checking).

The macros defined in this module all expand to various combinations of typemaps. Therefore, the same pattern matching rule
and ideas apply.

%ocstring_bounded_output(parm, maxsize)

Turns parameter parm into an output value. The output string is assumed to be NULL-terminated and smaller than
maxsize characters. Here is an example:

%cstring_bounded_output(char *path, 1024);
void get_path(char *path);
In the target language:

>>> get_path()
/home/beazley/packages/Foo/Bar
>>>

Internally, the wrapper function allocates a small buffer (on the stack) of the requested size and passes it as the pointer va
Data stored in the buffer is then returned as a function return value. If the function already returns a value, then the return
value and the output string are returned together (multiple return values). If more than maxsize bytes are written, your
program will crash with a buffer overflow!

%ocstring_chunk_output(parm, chunksize)

Turns parameter parm into an output value. The output string is always chunksize and may contain binary data. Here is
an example:

%cstring_chunk_output(char *packet, PACKETSIZE);
void get_packet(char *packet);
In the target language:

>>> get_packet()
\xa9Y:\xf6\xd7\xe 1\x87\xdbH;y\x97\x7f\xd3\x99\x14V\xec\x06\xea\xa2\x88'
>>>

This macro is essentially identical to %cstring_bounded_output. The only difference is that the result is always
chunksize characters. Furthermore, the result can contain binary data. If more than maxsize bytes are written, your
program will crash with a buffer overflow!

%ocstring_bounded_mutable(parm, maxsize)

Turns parameter parm into a mutable string argument. The input string is assumed to be NULL-terminated and smaller th:
maxsize characters. The output string is also assumed to be NULL-terminated and less than maxsize characters.

%cstring_bounded_mutable(char *ustr, 1024);

void make_upper(char *ustr);

8.3.4 cstring.i 110

SWIG-1.3 Documentation

In the target language:

>>> make_upper("hello world")
'HELLO WORLD'
>>>

Internally, this macro is almost exactly the same as %cstring_bounded_output. The only difference is that the

parameter accepts an input value that is used to initialize the internal buffer. It is important to emphasize that this function
does not mutate the string value passed——-instead it makes a copy of the input value, mutates it, and returns it as a resul
more than maxsize bytes are written, your program will crash with a buffer overflow!

%cstring_mutable(parm [, expansion])

Turns parameter parm into a mutable string argument. The input string is assumed to be NULL-terminated. An optional
parameter expansion specifies the number of extra characters by which the string might grow when it is modified. The
output string is assumed to be NULL-terminated and less than the size of the input string plus any expansion characters.

%cstring_mutable(char *ustr);
void make_upper(char *ustr);
%cstring_mutable(char *hstr, HEADER_SIZE);

void attach_header(char *hstr);

In the target language:

>>> make_upper("hello world")
'HELLO WORLD'

>>> attach_header("Hello world")
‘header: Hello world'

>>>

This macro differs from %cstring_bounded_mutable() in that a buffer is dynamically allocated (on the heap using
malloc/new). This buffer is always large enough to store a copy of the input value plus any expansion bytes that might
have been requested. It is important to emphasize that this function does not directly mutate the string value
passed—-—-instead it makes a copy of the input value, mutates it, and returns it as a result. If the function expands the resu
by more than expansion extra bytes, then the program will crash with a buffer overflow!

%cstring_output_maxsize(parm, maxparm)
This macro is used to handle bounded character output functions where both a char * and a maximum length parameter al
provided. As input, a user simply supplies the maximum length. The return value is assumed to be a NULL-terminated
string.
%cstring_output_maxsize(char *path, int maxpath);
;/.(.)id get_path(char *path, int maxpath);
In the target language:

>>> get_path(1024)
‘'home/beazley/Packages/Foo/Bar'
>>>

This macro provides a safer alternative for functions that need to write string data into a buffer. User supplied buffer size is
used to dynamically allocate memory on heap. Results are placed into that buffer and returned as a string object.

%ocstring_output_withsize(parm, maxparm)

8.3.4 cstring.i 111

SWIG-1.3 Documentation

This macro is used to handle bounded character output functions where both a char * and a pointer int * are passed.
Initially, the int * parameter points to a value containing the maximum size. On return, this value is assumed to contain

the actual number of bytes. As input, a user simply supplies the maximum length. The output value is a string that may
contain binary data.

%cstring_output_withsize(char *data, int *maxdata);

void get_data(char *data, int *maxdata);
In the target language:

>>> get_data(1024)
'x627388912'

>>> get_data(1024)
'xyzzy'

>>>

This macro is a somewhat more powerful version of %cstring_output_chunk(). Memory is dynamically allocated

and can be arbitrary large. Furthermore, a function can control how much data is actually returned by changing the value ¢
the maxparm argument.

%ocstring_output_allocate(parm, release)

This macro is used to return strings that are allocated within the program and returned in a parameter of type char **. For
example:

void foo(char **s) {
*s = (char *) malloc(64);
sprintf(*s, "Hello world\n");

}

The returned string is assumed to be NULL-terminated. release specifies how the allocated memory is to be released (if
applicable). Here is an example:

%cstring_output_allocate(char **s, free(*$1));
void foo(char **s);
In the target language:

>>> foo()
'Hello world\n'
>>>

%cstring_output_allocate_size(parm, szparm, release)

This macro is used to return strings that are allocated within the program and returned in two parameters of type char **
and int *. For example:

void foo(char **s, int *sz) {
*s = (char *) malloc(64);

*sz = 64,
/I Write some binary data

-

The returned string may contain binary data. release specifies how the allocated memory is to be released (if applicable).
Here is an example:

%cstring_output_allocate_size(char **s, int *slen, free(*$1));

8.3.4 cstring.i 112

SWIG-1.3 Documentation

void foo(char **s, int *slen);

In the target language:

>>> foo()
\xa9Y:\xf6\xd7\xe 1\x87\xdbH;y\x97\x7f\xd3\x99\x 14V\xec\x06\xea\xa2\x88'
>>>

This is the safest and most reliable way to return binary string data in SWIG. If you have functions that conform to another
prototype, you might consider wrapping them with a helper function. For example, if you had this:

char *get_data(int *len);
You could wrap it with a function like this:

void my_get_data(char **result, int *len) {
*result = get_data(len);

}

Comments:

 Support for the cstring.i module depends on the target language. Not all SWIG modules currently support this
library.

* Reliable handling of raw C strings is a delicate topic. There are many ways to accomplish this in SWIG. This library
provides support for a few common techniques.

« If used in C++, this library uses new and delete [] for memory allocation. If using ANSI C, the library uses
malloc() and free().

 Rather than manipulating char * directly, you might consider using a special string structure or class instead.

8.4 STL/C++ Library

The library modules in this section provide access to parts of the standard C++ library including the STL. SWIG support for the
STL is an ongoing effort. Support is quite comprehensive for some language modules but some of the lesser used modules do
have quite as much library code written.

The following table shows which C++ classes are supported and the equivalent SWIG interface library file for the C++ library.

C++ class|C++ Library file [SWIG Interface library file
std::dequgdeque std_deque.i

std::list |list std_list.i

std::map |map std_map.i

std::pair |utility std_pair.i

std::set |set std_set.i

std::string|string std_string.i
std::vectofvector std_vector.i

The list is by no means complete; some language modules support a subset of the above and some support additional STL cla
Please look for the library files in the appropriate language library directory.

8.4.1 std_string.i

The std_string.i library provides typemaps for converting C++ std::string objects to and from strings in the target
scripting language. For example:

%module example
%include "std_string.i"

8.4 STL/C++ Library 113

SWIG-1.3 Documentation

std::string foo();
void bar(const std::string &x);

In the target language:

x = foo(); # Returns a string object
bar("Hello World"); # Pass string as std::string

A common problem that people encounter is that of classes/structures containing a std::string. This can be overcome by
defining a typemap. For example:

%module example
%include "std_string.i"

%apply const std::string& {std::string* foo};
struct my_struct

{
std::string foo;

%
In the target language:

X = my_struct();
x.foo="Hello World"; # assign with string
print x.foo; # print as string

This module only supports types std::string and const std::string &. Pointers and non—const references are left
unmodified and returned as SWIG pointers.

This library file is fully aware of C++ namespaces. If you export std::string or rename it with a typedef, make sure you
include those declarations in your interface. For example:

%module example
%include "std_string.i"

using namespace std;
typedef std::string String;

void foo(string s, const String &t); // std_string typemaps still applied

Note: The std_string library is incompatible with Perl on some platforms. We're looking into it.

8.4.2 std_vector.i

The std_vector.i library provides support for the C++ vector class in the STL. Using this library involves the use of the
%template directive. All you need to do is to instantiate different versions of vector for the types that you want to use. For
example:

%module example
%include "std_vector.i"

namespace std {
%template(vectori) vector<int>;
%template(vectord) vector<double>;

g

When a template vector<X> is instantiated a number of things happen:

8.4.1 std_string.i 114

SWIG-1.3 Documentation

« A class that exposes the C++ API is created in the target language . This can be used to create objects, invoke methoc
etc. This class is currently a subset of the real STL vector class.

« Input typemaps are defined for vector<X>, const vector<X> &, and const vector<X> *. For each of these,
a pointer vector<X> * may be passed or a native list object in the target language.

» An output typemap is defined for vector<X>. In this case, the values in the vector are expanded into a list object in the
target language.

« For all other variations of the type, the wrappers expect to receive a vector<X> * object in the usual manner.

» An exception handler for std::out_of range is defined.

 Optionally, special methods for indexing, item retrieval, slicing, and element assignment may be defined. This depends
on the target language.

To illustrate the use of this library, consider the following functions:

/* File : example.h */

#include <vector>
#include <algorithm>
#include <functional>
#include <numeric>

double average(std::vector<int> v) {
return std::accumulate(v.begin(),v.end(),0.0)/v.size();

}

std::vector<double> half(const std::vector<double>& v) {
std::vector<double> w(V);
for (unsigned int i=0; i<w.size(); i++)
wli] /= 2.0;
return w;

}

void halve_in_place(std::vector<double>& v) {
std::transform(v.begin(),v.end(),v.begin(),
std::bind2nd(std::divides<double>(),2.0));
}

To wrap with SWIG, you might write the following:

%module example
%f

#include "example.h"
9%}

%include "std_vector.i"
/I Instantiate templates used by example
namespace std {
%template(IntVector) vector<int>;
%template(DoubleVector) vector<double>;

}

/I Include the header file with above prototypes
%include "example.h"

Now, to illustrate the behavior in the scripting interpreter, consider this Python example:

>>> from example import *
>>> jv = IntVector(4) # Create an vector<int>
>>> for i in range(0,4):

iv[i] =i

>>> average(iv) # Call method
15

>>> average([0,1,2,3]) # Call with list
15

>>> half([1,2,3]) # Half a list

8.4.2 std_vector.i 115

SWIG-1.3 Documentation

(0.5,1.0,1.5)
>>> halve_in_place([1,2,3]) # Oops
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: Type error. Expected _p_std__ vectorTdouble_t
>>> dv = DoubleVector(4)
>>> for i in range(0,4):

dvfi] =i
>>> halve_in_place(dv) # Ok
>>>foriin dv:
print i

0.0
0.5
1.0
15
>>> dv[20] = 4.5
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "example.py", line 81, in __setitem___

def __setitem__(*args): return apply(examplec.DoubleVector___setitem__,args)

IndexError: vector index out of range
>>>

This library module is fully aware of C++ namespaces. If you use vectors with other names, make sure you include the
appropriate using or typedef directives. For example:

%include "std_vector.i"

namespace std {
%template(IntVector) vector<int>;

}

using namespace std;
typedef std::vector Vector;

void foo(vector<int> *x, const Vector &x);

Note: This module makes use of several advanced SWIG features including templatized typemaps and template partial
specialization. If you are tring to wrap other C++ code with templates, you might look at the code contained in std_vector.i.
Alternatively, you can show them the code if you want to make their head explode.

Note: This module is defined for all SWIG target languages. However argument conversion details and the public APl exposed
the interpreter vary.

Note: std_vector.i was written by Luigi "The Amazing" Ballabio.

8.4.3 STL exceptions

Many of the STL wrapper functions add parameter checking and will throw a language dependent error/exception should the
values not be valid. The classic example is array bounds checking. The library wrappers are written to throw a C++ exception i
the case of error. The C++ exception in turn gets converted into an appropriate error/exception for the target language. By and
large this handling should not need customising, however, customisation can easily be achieved by supplying appropriate
"throws" typemaps. For example:

%module example

%include "std_vector.i"

%typemap(throws) std::out_of_range {
/I custom exception handler

}

%template(Vectint) std::vector<int>;

8.4.3 STL exceptions 116

SWIG-1.3 Documentation

The custom exception handler might, for example, log the exception then convert it into a specific error/exception for the target
language.

When using the STL it is advisable to add in an exception handler to catch all STL exceptions. The %exception directive can
be used by placing the following code before any other methods or libraries to be wrapped:

%include "exception.i"

%exception {
try {
$action
} catch (const std::exception& e) {
SWIG_exception(SWIG_RuntimeError, e.what());
}
}

Any thrown STL exceptions will then be gracefully handled instead of causing a crash.

8.5 Utility Libraries

8.5.1 exception.i

The exception.i library provides a language-independent function for raising a run—time exception in the target language.
This library is largely used by the SWIG library writers. If possible, use the error handling scheme available to your target
language as there is greater flexibility in what errors/exceptions can be thrown.

SWIG_exception(int code, const char *message)

Raises an exception in the target language. code is one of the following symbolic constants:

SWIG_MemoryError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError

message is a string indicating more information about the problem.

The primary use of this module is in writing language—independent exception handlers. For example:

%include "exception.i"
%exception std::vector::getitem {
try {
$action
} catch (std::out_of_range& e) {
SWIG_exception(SWIG_IndexError,const_cast<char*>(e.what()));
}
}

8.5 Utility Libraries 117

9 Argument Handling

 The typemaps.i library
¢ Introduction
¢ Input parameters
¢ Output parameters
¢ Input/Output parameters
¢ Using different names
« Applying constraints to input values
¢ Simple constraint example
+ Constraint methods

¢ Applying constraints to new datatypes

Disclaimer: This chapter is under construction.

In Chapter 3, SWIG's treatment of basic datatypes and pointers was described. In particular, primitive types such as int and
double are mapped to corresponding types in the target language. For everything else, pointers are used to refer to structures,
classes, arrays, and other user—defined datatypes. However, in certain applications it is desirable to change SWIG's handling ¢
specific datatype. For example, you might want to return multiple values through the arguments of a function. This chapter
describes some of the techniques for doing this.

9.1 The typemaps.i library
This section describes the typemaps.i library file——commonly used to change certain properties of argument conversion.

9.1.1 Introduction

Suppose you had a C function like this:

void add(double a, double b, double *result) {
*result = a + b;

}

From reading the source code, it is clear that the function is storing a value in the double *result parameter. However, since
SWIG does not examine function bodies, it has no way to know that this is the underlying behavior.

One way to deal with this is to use the typemaps.i library file and write interface code like this:

/I Simple example using typemaps
%module example
%include "typemaps.i"

%apply double *OUTPUT { double *result };

%inlne %({

extern void add(double a, double b, double *result);
%0}

The %apply directive tells SWIG that you are going to apply a special type handling rule to a type. The "double *OUTPUT"
specification is the name of a rule that defines how to return an output value from an argument of type double *. This rule gets
applied to all of the datatypes listed in curly braces—- in this case "double *result".

When the resulting module is created, you can now use the function like this (shown for Python):

>>> a = add(3,4)
>>> print a

7

>>>

9 Argument Handling 118

SWIG-1.3 Documentation

In this case, you can see how the output value normally returned in the third argument has magically been transformed into a
function return value. Clearly this makes the function much easier to use since it is no longer necessary to manufacture a spec
double * object and pass it to the function somehow.

Once a typemap has been applied to a type, it stays in effect for all future occurrences of the type and name. For example, you
could write the following:

%module example
%include "typemaps.i"

%apply double *OUTPUT { double *result };

%inline %({

extern void add(double a, double b, double *result);
extern void sub(double a, double b, double *result);
extern void mul(double a, double b, double *result);
extern void div(double a, double b, double *result);
%0}

In this case, the double *OUTPUT rule is applied to all of the functions that follow.

Typemap transformations can even be extended to multiple return values. For example, consider this code:

%include "typemaps.i"
%apply int *OUTPUT { int *width, int *height };

/I Returns a pair (width,height)
void getwinsize(int winid, int *width, int *height);

In this case, the function returns multiple values, allowing it to be used like this:

>>> w,h = genwinsize(wid)
>>> print w

400

>>> print h

300

>>>

It should also be noted that although the %apply directive is used to associate typemap rules to datatypes, you can also use th
rule names directly in arguments. For example, you could write this:

/I Simple example using typemaps

%module example

%include "typemaps.i"

9%{

extern void add(double a, double b, double *OUTPUT);

9%}
extern void add(double a, double b, double *OUTPUT);

Typemaps stay in effect until they are explicitly deleted or redefined to something else. To clear a typemap, the %clear directiv
should be used. For example:

%clear double *result; // Remove all typemaps for double *result
9.1.2 Input parameters

The following typemaps instruct SWIG that a pointer really only holds a single input value:

int *INPUT
short *INPUT

9.1.1 Introduction 119

SWIG-1.3 Documentation

long *INPUT

unsigned int *INPUT
unsigned short *INPUT
unsigned long *INPUT
double *INPUT

float *INPUT

When used, it allows values to be passed instead of pointers. For example, consider this function:

double add(double *a, double *b) {
return *a+*b;

}
Now, consider this SWIG interface:

%module example
%include "typemaps.i"

9%{
extern double add(double *, double *);

9%}
extern double add(double *INPUT, double *INPUT);

When the function is used in the scripting language interpreter, it will work like this:

result = add(3,4)
9.1.3 Output parameters

The following typemap rules tell SWIG that pointer is the output value of a function. When used, you do not need to supply the
argument when calling the function. Instead, one or more output values are returned.

int *OUTPUT

short *OUTPUT

long *OUTPUT

unsigned int *OUTPUT
unsigned short *OUTPUT
unsigned long *OUTPUT
double *OUTPUT

float *OUTPUT

These methods can be used as shown in an earlier example. For example, if you have this C function :

void add(double a, double b, double *c) {
*c = atb;

}
A SWIG interface file might look like this :

%module example
%include "typemaps.i"

%inline %{
extern void add(double a, double b, double *OUTPUT);
9%}

In this case, only a single output value is returned, but this is not a restriction. An arbitrary number of output values can be
returned by applying the output rules to more than one argument (as shown previously).

9.1.2 Input parameters 120

SWIG-1.3 Documentation

If the function also returns a value, it is returned along with the argument. For example, if you had this:
extern int foo(double a, double b, double *OUTPUT);
The function will return two values like this:

iresult, dresult = foo(3.5, 2)

9.1.4 Input/Output parameters

When a pointer serves as both an input and output value you can use the following typemaps :

int *INOUT

short *INOUT

long *INOUT

unsigned int *INOUT
unsigned short *INOUT
unsigned long *INOUT
double *INOUT

float *INOUT

A C function that uses this might be something like this:

void negate(double *x) {
% ==(%);
}

To make x function as both and input and output value, declare the function like this in an interface file :

%module example
%include typemaps.i

9%{
extern void negate(double *);

9%}
extern void negate(double *INOUT);

Now within a script, you can simply call the function normally :

a = negate(3); # a = -3 after calling this

One subtle point of the INOUT rule is that many scripting languages enforce mutability constraints on primitive objects (meanin
that simple objects like integers and strings aren't supposed to change). Because of this, you can't just modify the object's valu
place as the underlying C function does in this example. Therefore, the INOUT rule returns the modified value as a new object
rather than directly overwriting the value of the original input object.

Compatibility note : The INOUT rule used to be known as BOTH in earlier versions of SWIG. Backwards compatibility is
preserved, but deprecated.

9.1.5 Using different names

As previously shown, the %apply directive can be used to apply the INPUT, OUTPUT, and INOUT typemaps to different
argument names. For example:

/I Make double *result an output value
%apply double *OUTPUT { double *result };

/I Make Int32 *in an input value

9.1.3 Output parameters 121

SWIG-1.3 Documentation
%apply int *INPUT { Int32 *in };
/I Make long *x inout
%apply long *INOUT {long *x};
To clear a rule, the %clear directive is used:

%clear double *result;
%clear Int32 *in, long *x;

Typemap declarations are lexically scoped so a typemap takes effect from the point of definition to the end of the file or a
matching %clear declaration.

9.2 Applying constraints to input values

In addition to changing the handling of various input values, it is also possible to use typemaps to apply constraints. For exampg
maybe you want to insure that a value is positive, or that a pointer is non—NULL. This can be accomplished including the
constraints.i library file.

9.2.1 Simple constraint example

The constraints library is best illustrated by the following interface file :

Il Interface file with constraints
%module example
%include "constraints.i"

double exp(double x);

double log(double POSITIVE); /I Allow only positive values
double sgrt(double NONNEGATIVE); // Non—-negative values only
double inv(double NONZERO); /I Non-zero values

void free(void *NONNULL); /I Non—NULL pointers only

The behavior of this file is exactly as you would expect. If any of the arguments violate the constraint condition, a scripting
language exception will be raised. As a result, it is possible to catch bad values, prevent mysterious program crashes and so o

9.2.2 Constraint methods

The following constraints are currently available

POSITIVE Any number > 0 (not zero)
NEGATIVE Any number < 0 (not zero)
NONNEGATIVE Any number >=0
NONPOSITIVE Any number <=0

NONZERO Nonzero number

NONNULL Non—-NULL pointer (pointers only).

9.2.3 Applying constraints to new datatypes

The constraints library only supports the primitive C datatypes, but it is easy to apply it to new datatypes using %apply. For
example :

/I Apply a constraint to a Real variable
%apply Number POSITIVE { Real in };

/I Apply a constraint to a pointer type
%apply Pointer NONNULL { Vector * },

9.1.5 Using different names 122

SWIG-1.3 Documentation

The special types of "Number" and "Pointer" can be applied to any numeric and pointer variable type respectively. To later
remove a constraint, the %clear directive can be used :

%clear Real in;
%clear Vector *;

9.2.3 Applying constraints to new datatypes 123

10 Typemaps

« Introduction

¢ Type conversion
¢ Typemaps
¢ Pattern matching
¢ Reusing typemaps
+ What can be done with typemaps?
+ What can't be done with typemaps?
¢ The rest of this chapter
« Typemap specifications
¢ Defining a typemap
¢ Typemap scope
¢ Copying a typemap
¢ Deleting a typemap
¢ Placement of typemaps
- Pattern matching rules
¢ Basic matching rules
¢ Typedef reductions
+ Default typemaps
+ Mixed default typemaps
¢ Multi—-arguments typemaps
» Code generation rules
¢ Scope
¢ Declaring new local variables
¢ Special variables
« Common typemap methods
"In" typema

"typecheck" typemap
"out" typema

"arginit" typemap
"default" typemap
"check" typemap
"argout" typemap
"freearq" typemap
"newfree" typemap
"memberin" typemap
"varin" typemap
"varout" typemap
+ "throws" typemap
+ Some typemap examples
¢ Typemaps for arrays
+ Implementing constraints with typemaps
» Typemaps for multiple languages
e Multi-argument typemaps
 The run—time type checker
¢ Implementation
¢+ Usage
« Typemaps and overloading
» More abou®oapply and %clear
« Reducing wrapper code size
 Passing data between typemaps
» Where to go for more information?

E

%

LR R IR JEE R N BE JNR 2R B R 2

Disclaimer: This chapter is under construction!

10 Typemaps 124

SWIG-1.3 Documentation
10.1 Introduction

Chances are, you are reading this chapter for one of two reasons; you either want to customize SWIG's behavior or you overhe
someone mumbling some incomprehensible drivel about "typemaps" and you asked yourself "typemaps, what are those?" Tha
said, let's start with a short disclaimer that "typemaps" are an advanced customization feature that provide direct access to SW
low-level code generator. Not only that, they are an integral part of the SWIG C++ type system (a non-trivial topic of its own).
Typemaps are generally not a required part of using SWIG. Therefore, you might want to re-read the earlier chapters if you ha
found your way to this chapter with only a vaque idea of what SWIG already does by default.

10.1.1 Type conversion

One of the most important problems in wrapper code generation is the conversion of datatypes between programming languag
Specifically, for every C/C++ declaration, SWIG must somehow generate wrapper code that allows values to be passed back a
forth between languages. Since every programming language represents data differently, this is not a simple of matter of simpl
linking code together with the C linker. Instead, SWIG has to know something about how data is represented in each language
how it can be manipulated.

To illustrate, suppose you had a simple C function like this:
int factorial(int n);
To access this function from Python, a pair of Python API functions are used to convert integer values. For example:

long PyInt_AsLong(PyObject *obj); /* Python ——> C */
PyObject *PyInt_FromLong(long x); /* C ——> Python */

The first function is used to convert the input argument from a Python integer object to C long. The second function is used to
convert a value from C back into a Python integer object.

Inside the wrapper function, you might see these functions used like this:

PyObject *wrap_factorial(PyObject *self, PyObject *args) {
int argl,;
int result;
PyObiject *obj1;
PyObiject *resultobj;

if (IPyArg_ParseTuple("O:factorial", &obj1)) return NULL;
argl = PyInt_AsLong(obj1);

result = factorial(argl);
resultobj = PyInt_FromLong(result);

return resultobj;

}

Every target language supported by SWIG has functions that work in a similar manner. For example, in Perl, the following
functions are used:

IV SVIV(SV *sv); /* Perl ——> C */
void sv_setiv(SV *sv, IV val); [* C ——> Perl */

In Tcl:

int Tcl_GetLongFromObj(Tcl_Interp *interp, Tcl_Obj *obj, long *value);
Tcl_Obj *Tcl_NewIntObj(long value);

The precise details are not so important. What is important is that all of the underlying type conversion is handled by collection:

of utility functions and short bits of C code like this——-you simply have to read the extension documentation for your favorite
language to know how it works (an exercise left to the reader).

10.1 Introduction 125

SWIG-1.3 Documentation

10.1.2 Typemaps

Since type handling is so central to wrapper code generation, SWIG allows it to be completely defined (or redefined) by the use
To do this, a special %typemap directive is used. For example:

[* Convert from Python ——> C */
%typemap(in) int {

$1 = PyInt_AsLong($input);
}

/* Convert from C ——> Python */
%typemap(out) int {

$result = PyInt_FromLong($1);
}

At first glance, this code will look a little confusing. However, there is really not much to it. The first typemap (the "in" typemap)
is used to convert a value from the target language to C. The second typemap (the "out" typemap) is used to convert in the oth
direction. The content of each typemap is a small fragment of C code that is inserted directly into the SWIG generated wrapper
functions. Within this code, a number of special variables prefixed with a $ are expanded. These are really just placeholders fol
variables that are generated in the course of creating the wrapper function. In this case, $input refers to an input object that
needs to be converted to C and $result refers to an object that is going to be returned by a wrapper function. $1 referstoa C
variable that has the same type as specified in the typemap declaration (an int in this example).

A short example might make this a little more clear. If you were wrapping a function like this:
int gcd(int x, int y);
A wrapper function would look approximately like this:

PyObject *wrap_gcd(PyObject *self, PyObject *args) {
int argl;
int arg2;
int result;
PyObiject *obj1;
PyObject *obj2;
PyObject *resultobj;

if (\PyArg_ParseTuple("O0:gcd", &obj1, &obj2)) return NULL;
/*"in" typemap, argument 1 */

{
argl = PyInt_AsLong(obj1);

}
/*"in" typemap, argument 2 */

arg2 = PyInt_AsLong(obj2);
}

result = gcd(argl,arg?);

/* "out" typemap, return value */

{
resultobj = PyInt_FromLong(result);
}
return resultobj;
}

In this code, you can see how the typemap code has been inserted into the function. You can also see how the special $ varial
have been expanded to match certain variable names inside the wrapper function. This is really the whole idea behind
typemaps——they simply let you insert arbitrary code into different parts of the generated wrapper functions. Because arbitrary

10.1.2 Typemaps 126

SWIG-1.3 Documentation

code can be inserted, it possible to completely change the way in which values are converted.

10.1.3 Pattern matching

As the name implies, the purpose of a typemap is to "map" C datatypes to types in the target language. Once a typemap is def
for a C datatype, it is applied to all future occurrences of that type in the input file. For example:

/* Convert from Perl ——> C */
%typemap(in) int {

$1 = SvIV($input);
}

int factorial(int n);
int gcd(int x, int y);
int count(char *s, char *t, int max);

The matching of typemaps to C datatypes is more than a simple textual match. In fact, typemaps are fully built into the underlyi
type system. Therefore, typemaps are unaffected by typedef, namespaces, and other declarations that might hide the underlyir
type. For example, you could have code like this:

/* Convert from Ruby——> C */
%typemap(in) int {

$1 = NUM2INT($input);
}

typedef int Integer;
namespace foo {
typedef Integer Number;

g

int foo(int x);
int bar(Integer y);
int spam(foo::Number a, foo::Number b);

In this case, the typemap is still applied to the proper arguments even though typenames don't always match the text “int". This
ability to track types is a critical part of SWIG——in fact, all of the target language modules work merely define a set of typemaps
for the basic types. Yet, it is never necessary to write new typemaps for typenames introduced by typedef.

In addition to tracking typenames, typemaps may also be specialized to match against a specific argument name. For example
you could write a typemap like this:

%typemap(in) double nonnegative {
$1 = PyFloat_AsDouble($input);
if ($1 < 0) {
PyErr_SetString(PyExc_ValueError,"argument must be nonnegative.");
return NULL;
}
}

double sin(double x);
double cos(double x);
double sqgrt(double nonnegative);

typedef double Real;
double log(Real nonnegative);

For certain tasks such as input argument conversion, typemaps can be defined for sequences of consecutive arguments. For
example:

%typemap(in) (char *str, int len) {

10.1.3 Pattern matching 127

SWIG-1.3 Documentation

$1 = PyString_AsString($input); /* char *str */
$2 = PyString_Size($input); /*intlen */
}

int count(char *str, int len, char c);

In this case, a single input object is expanded into a pair of C arguments. This example also provides a hint to the unusual vari
naming scheme involving $1, $2, and so forth.

10.1.4 Reusing typemaps

Typemaps are normally defined for specific type and argument name patterns. However, typemaps can also be copied and reu
One way to do this is to use assignment like this:

%typemap(in) Integer = int;
%typemap(in) (char *buffer, int size) = (char *str, int len);

A more general form of copying is found in the %apply directive like this:

%typemap(in) int {
/* Convert an integer argument */

}
%typemap(out) int {
/* Return an integer value */

-

/* Apply all of the integer typemaps to size_t */
%apply int { size_t };

%apply merely takes all of the typemaps that are defined for one type and applies them to other types. Note: you can include a
comma separated set of types in the { ... } part of %apply.

It should be noted that it is not necessary to copy typemaps for types that are related by typedef. For example, if you have this,
typedef int size_t;

then SWIG already knows that the int typemaps apply. You don't have to do anything.

10.1.5 What can be done with typemaps?

The primary use of typemaps is for defining wrapper generation behavior at the level of individual C/C++ datatypes. There are
currently six general categories of problems that typemaps address:

Argument handling
int foo(int x, double y, char *s);

* Input argument conversion ("in" typemap).

« Input argument type checking ("typecheck" typemap).
 Output argument handling ("argout" typemap).

« Input argument value checking ("check" typemap).

* Input argument initialization ("arginit" typemap).

Default arguments ("default” typemap).

« Input argument resource management (“freearg" typemap).

Return value handling

10.1.4 Reusing typemaps 128

SWIG-1.3 Documentation

int foo(int x, double y, char *s);
« Function return value conversion ("out" typemap).
 Return value resource management ("ret" typemap).
» Resource management for newly allocated objects ("newfree" typemap).
Exception handling
int foo(int x, double y, char *s) throw(MemoryError, IndexError);
« Handling of C++ exception specifications. ("throw" typemap).
Global variables

int foo;

» Assignment of a global variable. ("varin" typemap).
» Reading a global variable. ("varout" typemap).

Member variables
struct Foo {
int x[20];
h
» Assignment of data to a class/structure member. ("memberin” typemap).

Constant creation

#define FOO 3
%constant int BAR = 42;
enum { ALE, LAGER, STOUT };

« Creation of constant values. ("consttab" or "constcode” typemap).
Details of each of these typemaps will be covered shortly. Also, certain language modules may define additional typemaps that

expand upon this list. For example, the Java module defines a variety of typemaps for controlling additional aspects of the Jave
bindings. Consult language specific documentation for further details.

10.1.6 What can't be done with typemaps?

Typemaps can't be used to define properties that apply to C/C++ declarations as a whole. For example, suppose you had a
declaration like this,

Foo *make_Foo();
and you wanted to tell SWIG that make_Foo() returned a newly allocated object (for the purposes of providing better memory
management). Clearly, this property of make_Foo() is not a property that would be associated with the datatype Foo * by
itself. Therefore, a completely different SWIG customization mechanism (%feature) is used for this purpose. Consult the
Customization Features chapter for more information about that.
Typemaps also can't be used to rearrange or transform the order of arguments. For example, if you had a function like this:
void foo(int, char *);

you can't use typemaps to interchange the arguments, allowing you to call the function like this:

foo("hello",3) # Reversed arguments

10.1.5 What can be done with typemaps? 129

SWIG-1.3 Documentation

If you want to change the calling conventions of a function, write a helper function instead. For example:

%rename(foo) wrap_foo;

%inline %{

void wrap_foo(char *s, int x) {
foo(x,s);

}
%)

10.1.7 The rest of this chapter

The rest of this chapter provides detailed information for people who want to write new typemaps. This information is of
particular importance to anyone who intends to write a new SWIG target language module. Power users can also use this
information to write application specific type conversion rules.

Since typemaps are strongly tied to the underlying C++ type system, subsequent sections assume that you are reasonably fan
with the basic details of values, pointers, references, arrays, type qualifiers (e.g., const), structures, namespaces, templates, al
memory management in C/C++. If not, you would be well-advised to consult a copy of "The C Programming Language" by
Kernighan and Ritchie or "The C++ Programming Language" by Stroustrup before going any further.

10.2 Typemap specifications
This section describes the behavior of the %typemap directive itself.

10.2.1 Defining a typemap

New typemaps are defined using the %typemap declaration. The general form of this declaration is as follows (parts enclosed i
[...] are optional):

%typemap(method [, modifiers]) typelist code ;

method is a simply a name that specifies what kind of typemap is being defined. It is usually a name like "in",
"argout". The purpose of these methods is described later.

out”, or

modifiers is an optional comma separated list of name="value" values. These are sometimes to attach extra information to a
typemap and is often target-language dependent.

typelist is a list of the C++ type patterns that the typemap will match. The general form of this list is as follows:

typelist : typepattern [, typepattern, typepattern, ...] ;
typepattern : type [(parms) |

| type name [(parms)]
| (typelist) [(parms)]

Each type pattern is either a simple type, a simple type and argument name, or a list of types in the case of multi-argument
typemaps. In addition, each type pattern can be parameterized with a list of temporary variables (parms). The purpose of these
variables will be explained shortly.

code specifies the C code used in the typemap. It can take any one of the following forms:
code {0}
| %f ... %}

Here are some examples of valid typemap specifications:

10.1.6 What can't be done with typemaps? 130

SWIG-1.3 Documentation

/* Simple typemap declarations */
%typemap(in) int {

$1 = PyInt_AsLong($input);
}
%typemap(in) int "$1 = PyInt_AsLong($input);";
%typemap(in) int %{

$1 = PyInt_AsLong($input);
%0}

/* Typemap with extra argument name */
%typemap(in) int nonnegative {

}

/* Multiple types in one typemap */
%typemap(in) int, short, long {

$1 = SvIV($input);
}

/* Typemap with modifiers */
%typemap(in,doc="integer") int "$1 = gh_scm2int($input);";

/* Typemap applied to patterns of multiple arguments */
%typemap(in) (char *str, int len),
(char *buffer, int size)

$1 = PyString_AsString($input);
$2 = PyString_Size($input);
}

[* Typemap with extra pattern parameters */
%typemap(in, numinputs=0) int *output (int temp),
long *output (long temp)
{
$1 = &temp;
}

Admittedly, it's not the most readable syntax at first glance. However, the purpose of the individual pieces will become clear.

10.2.2 Typemap scope

Once defined, a typemap remains in effect for all of the declarations that follow. A typemap may be redefined for different
sections of an input file. For example:

/I typemapl
%typemap(in) int {

}

int fact(int); Il typemapl
int gcd(int x, int y); /I typemapl

Il typemap2
%typemap(in) int {

)

int isprime(int); Il typemap2

One exception to the typemap scoping rules pertains to the %extend declaration. %extend is used to attach new declarations t
a class or structure definition. Because of this, all of the declarations in an %extend block are subject to the typemap rules that
are in effect at the point where the class itself is defined. For example:

class Foo {

10.2.1 Defining a typemap 131

SWIG-1.3 Documentation
h
%typemap(in) int {
}...

%extend Foo {
int blah(int x); // typemap has no effect. Declaration is attached to Foo which
/I appears before the %typemap declaration.

X
10.2.3 Copying a typemap
A typemap is copied by using assignment. For example:
%typemap(in) Integer = int;
or this:
%typemap(in) Integer, Number, int32_t = int;
Types are often managed by a collection of different typemaps. For example:

%typemap(in) int{...}
%typemap(out) int{...}
%typemap(varin) int{...}
%typemap(varout) int { ... }

To copy all of these typemaps to a new type, use %apply. For example:

%apply int { Integer }; /I Copy all int typemaps to Integer
%apply int { Integer, Number }; // Copy all int typemaps to both Integer and Number

The patterns for %apply follow the same rules as for %typemap. For example:

%apply int *output { Integer *output }; /I Typemap with name
%apply (char *buf, int len) { (char *buffer, int size) }; // Multiple arguments

10.2.4 Deleting a typemap

A typemap can be deleted by simply defining no code. For example:

%typemap(in) int; /I Clears typemap for int
%typemap(in) int, long, short; // Clears typemap for int, long, short
%typemap(in) int *output;

The %clear directive clears all typemaps for a given type. For example:

%clear int; /I Removes all types for int
%clear int *output, long *output;

Note: Since SWIG's default behavior is defined by typemaps, clearing a fundamental type like int will make that type unusable
unless you also define a new set of typemaps immediately after the clear operation.

10.2.5 Placement of typemaps

Typemap declarations can be declared in the global scope, within a C++ namespace, and within a C++ class. For example:

%typemap(in) int {

10.2.2 Typemap scope 132

SWIG-1.3 Documentation
}

namespace std {
class string;
%typemap(in) string {

}
}

class Bar {
public:

typedef const int & const_reference;
%typemap(out) const_reference {

}
k

When a typemap appears inside a namespace or class, it stays in effect until the end of the SWIG input (just like before).
However, the typemap takes the local scope into account. Therefore, this code

namespace std {
class string;
%typemap(in) string {

}
}

is really defining a typemap for the type std::string. You could have code like this:

namespace std {
class string;
%typemap(in) string { [* std::string */

}
}

namespace Foo {
class string;
%typemap(in) string { [* Foo::string */

}
}

In this case, there are two completely distinct typemaps that apply to two completely different types (std::string and
Foo::string).

It should be noted that for scoping to work, SWIG has to know that string is a typename defined within a particular namespace.
In this example, this is done using the class declaration class string.

10.3 Pattern matching rules
The section describes the pattern matching rules by which C datatypes are associated with typemaps.

10.3.1 Basic matching rules

Typemaps are matched using both a type and a name (typically the name of a argument). For a given TYPE NAME pair, the
following rules are applied, in order, to find a match. The first typemap found is used.

» Typemaps that exactly match TYPE and NAME.
« Typemaps that exactly match TYPE only.

10.2.5 Placement of typemaps 133

SWIG-1.3 Documentation

If TYPE includes qualifiers (const, volatile, etc.), they are stripped and the following checks are made:

» Typemaps that match the stripped TYPE and NAME.
» Typemaps that match the stripped TYPE only.

If TYPE is an array. The following transformation is made:
* Replace all dimensions to [ANY] and look for a generic array typemap.

To illustrate, suppose that you had a function like this:
int foo(const char *s);

To find a typemap for the argument const char *s, SWIG will search for the following typemaps:

const char *s Exact type and name match

const char * Exact type match

char *s Type and name match (stripped qualifiers)
char * Type match (stripped qualifiers)

When more than one typemap rule might be defined, only the first match found is actually used. Here is an example that shows
how some of the basic rules are applied:

%typemap(in) int *x {

... typemap 1

}

%typemap(in) int * {
... typemap 2

}

%typemap(in) const int *z {
... typemap 3

}

%typemap(in) int [4] {
... typemap 4

}

%typemap(in) int [ANY] {
... typemap 5

}

void A(int *x); /l'int *x rule (typemap 1)
void B(int *y); /lint*rule (typemap 2)
void C(const int *x); // int *x rule (typemap 1)
void D(const int *z); //int*rule (typemap 3)
void E(int x[4]); //int[4] rule (typemap 4)
void F(int x[1000]); // int [ANY] rule (typemap 5)

10.3.2 Typedef reductions

If no match is found using the rules in the previous section, SWIG applies a typedef reduction to the type and repeats the typer
search for the reduced type. To illustrate, suppose you had code like this:

%typemap(in) int {
... typemap 1
}

typedef int Integer;
void blah(Integer x);

10.3.1 Basic matching rules 134

SWIG-1.3 Documentation

To find the typemap for Integer x, SWIG will first search for the following typemaps:

Integer x
Integer

Finding no match, it then applies a reduction Integer —> int to the type and repeats the search.

int x
int ——>match: typemap 1

Even though two types might be the same via typedef, SWIG allows typemaps to be defined for each typename independently.
This allows for interesting customization possibilities based solely on the typename itself. For example, you could write code lik
this:

typedef double pdouble; // Positive double

/l typemap 1
%typemap(in) double {
... get a double ...
}
/I typemap 2
%typemap(in) pdouble {
... get a positive double ...

double sin(double x); /I typemap 1
pdouble sgrt(pdouble x); /I typemap 2

When reducing the type, only one typedef reduction is applied at a time. The search process continues to apply reductions unti
match is found or until no more reductions can be made.

For complicated types, the reduction process can generate a long list of patterns. Consider the following:

typedef int Integer;
typedef Integer Row4[4];
void foo(Row4 rows[10]);

To find a match for the Row4 rows[10] argument, SWIG would check the following patterns, stopping only when it found a
match:

Row4 rows[10]
Row4 [10]

Row4 rows[ANY]
Row4 [ANY]

Reduce Row4 ——> Integer[4]
Integer rows[10][4]

Integer [10][4]

Integer rows[ANY][ANY]
Integer [ANY][ANY]

Reduce Integer ——> int
int rows[10][4]

int [10][4]

int rows[ANY][ANY]

int [ANY][ANY]

For parametized types like templates, the situation is even more complicated. Suppose you had some declarations like this:

typedef int Integer;
typedef foo<Integer,Integer> fooii;
void blah(fooii *x);

10.3.2 Typedef reductions 135

SWIG-1.3 Documentation

In this case, the following typemap patterns are searched for the argument fooii *x:

fooii *x
fooii *

Reduce fooii ——> foo<Integer,Integer>
foo<Integer,Integer> *x
foo<Integer,Integer> *

Reduce Integer —> int
foo<int, Integer> *x
foo<int, Integer> *

Reduce Integer —> int
foo<int, int> *x
foo<int, int> *

Typemap reductions are always applied to the left-most type that appears. Only when no reductions can be made to the left-n
type are reductions made to other parts of the type. This behavior means that you could define a typemap for

foo<int,Integer>, but a typemap for foo<Integer,int> would never be matched. Admittedly, this is rather

esoteric——there's little practical reason to write a typemap quite like that. Of course, you could rely on this to confuse your
coworkers even more.

10.3.3 Default typemaps

Most SWIG language modules use typemaps to define the default behavior of the C primitive types. This is entirely
straightforward. For example, a set of typemaps are written like this:

%typemap(in) int “"convert an int";
%typemap(in) short "convert a short";
%typemap(in) float "convert a float";

Since typemap matching follows all typedef declarations, any sort of type that is mapped to a primitive type through typedef
will be picked up by one of these primitive typemaps.

The default behavior for pointers, arrays, references, and other kinds of types are handled by specifying rules for variations of t
reserved SWIGTYPE type. For example:

%typemap(in) SWIGTYPE * { ... default pointer handling ... }
%typemap(in) SWIGTYPE & { ... default reference handling ... }
%typemap(in) SWIGTYPE [] { ... default array handling ... }

%typemap(in) enum SWIGTYPE { ... default handling for enum values ... }
%typemap(in) SWIGTYPE (CLASS::*) {... default pointer member handling ... }

These rules match any kind of pointer, reference, or array——even when multiple levels of indirection or multiple array dimensiol
are used. Therefore, if you wanted to change SWIG's default handling for all types of pointers, you would simply redefine the rt
for SWIGTYPE *.

Finally, the following typemap rule is used to match against simple types that don't match any other rules:

%typemap(in) SWIGTYPE { ... handle an unknown type ... }

This typemap is important because it is the rule that gets triggered when call or return by value is used. For instance, if you ha\
declaration like this:

double dot_product(Vector a, Vector b);

The Vector type will usually just get matched against SWIGTYPE. The default implementation of SWIGTYPE is to convert the
value into pointers (as described in chapter 3).

10.3.3 Default typemaps 136

SWIG-1.3 Documentation

By redefining SWIGTYPE it may be possible to implement other behavior. For example, if you cleared all typemaps for
SWIGTYPE, SWIG simply won't wrap any unknown datatype (which might be useful for debugging). Alternatively, you might
modify SWIGTYPE to marshal objects into strings instead of converting them to pointers.

The best way to explore the default typemaps is to look at the ones already defined for a particular language module. Typemar
definitions are usually found in the SWIG library in a file such as python.swg, tcl8.swg, etc.

10.3.4 Mixed default typemaps

The default typemaps described above can be mixed with const and with each other. For example the SWIGTYPE * typemap i
for default pointer handling, but if a const SWIGTYPE * typemap is defined it will be used instead for constant pointers. Some
further examples follow:

%typemap(in) enum SWIGTYPE & { ... enum references ... }
%typemap(in) const enum SWIGTYPE & { ... const enum references ... }
%typemap(in) SWIGTYPE *& { ... pointers passed by reference ... }
%typemap(in) SWIGTYPE * const & { ... constant pointers passed by reference ... }
%typemap(in) SWIGTYPE[ANY][ANY] {... 2D arrays ... }

Note that the the typedef reduction described earlier is also used with these mixed default typemaps. For example, say the
following typemaps are defined and SWIG is looking for the best match for the enum shown below:

%typemap(in) const Hello & {...}
%typemap(in) const enum SWIGTYPE & { ...}
%typemap(in) enum SWIGTYPE & {...}
%typemap(in) SWIGTYPE & {..}
%typemap(in) SWIGTYPE {..}

enum Hello {};
const Hello &hi;

The typemap at the top of the list will be chosen, not because it is defined first, but because it is the closest match for the type
being wrapped. If any of the typemaps in the above list were not defined, then the next one on the list would have precedence.
other words the typemap chosen is the closest explicit match.

Compatibility note: The mixed default typemaps were introduced in SWIG-1.3.23, but were not used much in this version.
Expect to see them being used more and more within the various libraries in later versions of SWIG.

10.3.5 Multi-arguments typemaps

When multi—-argument typemaps are specified, they take precedence over any typemaps specified for a single type. For examy

%typemap(in) (char *buffer, int len) {
/I typemap 1
}

%typemap(in) char *buffer {
/I typemap 2
}

void foo(char *buffer, int len, int count); // (char *buffer, int len)
void bar(char *buffer, int blah); /I char *buffer

Multi—-argument typemaps are also more restrictive in the way that they are matched. Currently, the first argument follows the
matching rules described in the previous section, but all subsequent arguments must match exactly.

10.4 Code generation rules

This section describes rules by which typemap code is inserted into the generated wrapper code.

10.3.4 Mixed default typemaps 137

SWIG-1.3 Documentation

10.4.1 Scope

When a typemap is defined like this:

%typemap(in) int {
$1 = PyiInt_AsLong($input);
}

the typemap code is inserted into the wrapper function using a new block scope. In other words, the wrapper code will look like
this:

wrap_whatever() {
/I Typemap code

argl = PyInt_AsLong(obj1);
}

}

Because the typemap code is enclosed in its own block, it is legal to declare temporary variables for use during typemap
execution. For example:

%typemap(in) short {
long temp; /* Temporary value */
if (Tcl_GetLongFromObj(interp, $input, &temp) != TCL_OK) {
return TCL_ERROR;

}
$1 = (short) temp;
}

Of course, any variables that you declare inside a typemap are destroyed as soon as the typemap code has executed (they are
visible to other parts of the wrapper function or other typemaps that might use the same variable names).

Occasionally, typemap code will be specified using a few alternative forms. For example:
%typemap(in) int "$1 = PyInt_AsLong($input);";
%typemap(in) int %f{
$1 = PyInt_AsLong($input);
%}

These two forms are mainly used for cosmetics——the specified code is not enclosed inside a block scope when it is emitted. Tt
sometimes results in a less complicated looking wrapper function.

10.4.2 Declaring new local variables

Sometimes it is useful to declare a new local variable that exists within the scope of the entire wrapper function. A good examp
of this might be an application in which you wanted to marshal strings. Suppose you had a C++ function like this

int foo(std::string *s);

and you wanted to pass a native string in the target language as an argument. For instance, in Perl, you wanted the function to
work like this:

$x = foo("Hello World");

To do this, you can't just pass a raw Perl string as the std::string * argument. Instead, you have to create a temporary
std::string object, copy the Perl string data into it, and then pass a pointer to the object. To do this, simply specify the
typemap with an extra parameter like this:

10.4.1 Scope 138

SWIG-1.3 Documentation

%typemap(in) std::string * (std::string temp) {
unsigned int len;

char *s;

s = SvPV($input,len); /* Extract string data */
temp.assign(s,len); /* Assign to temp */

$1 = &temp; /* Set argument to point to temp */

}
In this case, temp becomes a local variable in the scope of the entire wrapper function. For example:

wrap_foo() {
std::string temp; <——- Declaration of temp goes here

/* Typemap code */

temp.assign(s,len);

}

When you set temp to a value, it persists for the duration of the wrapper function and gets cleaned up automatically on exit.

It is perfectly safe to use more than one typemap involving local variables in the same declaration. For example, you could dec
a function as :

void foo(std::string *x, std::string *y, std::string *z);

This is safely handled because SWIG actually renames all local variable references by appending an argument number suffix.
Therefore, the generated code would actually look like this:

wrap_foo() {
int *argl; /* Actual arguments */
int *arg2;
int *arg3;
std::string templ; /* Locals declared in the typemap */
std::string temp2;
std::string temp3;

{
char *s;
unsigned int len;
templ.assign(s,len);
argl = *templ;
char *s;
unsigned int len;
temp2.assign(s,len);
arg2 = &temp2;
char *s;

unsigned int len;

temp3.assign(s,len);
arg3 = &temp3;

10.4.2 Declaring new local variables 139

SWIG-1.3 Documentation

Some typemaps do not recognize local variables (or they may simply not apply). At this time, only typemaps that apply to
argument conversion support this.

10.4.3 Special variables

Within all typemaps, the following special variables are expanded.

Variable Meaning
$n A C local variable corresponding to type n in the typemap pattern.
$argnum Argument number. Only available in typemaps related to argument conversion

$n_name Argument name

$n_type Real C datatype of type n.

$n_ltype Itype of type n

$n_mangle [Mangled form of type n. For example _p_Foo

Type descriptor structure for type n. For example SWIGTYPE_p_Foo. This is primarily used when interafting
with the run—time type checker (described later).

$*n_type Real C datatype of type n with one pointer removed.
$*n_Itype Itype of type n with one pointer removed.

$*n_mangle |Mangled form of type n with one pointer removed.
$*n_descriptdiype descriptor structure for type n with one pointer removed.
$&n_type Real C datatype of type n with one pointer added.

$&n_ltype [ltype of type n with one pointer added.

$&n_mangle [Mangled form of type n with one pointer added.
$&n_descriptpFype descriptor structure for type n with one pointer added.
$n_basetype |Base typename with all pointers and qualifiers stripped.

$n_descriptor

Within the table, $n refers to a specific type within the typemap specification. For example, if you write this
%typemap(in) int *INPUT {
}
then $1 refers to int *INPUT. If you have a typemap like this,
%typemap(in) (int argc, char *argv[]) {
}...

then $1 refers to int argc and $2 refers to char *argv([].

Substitutions related to types and names always fill in values from the actual code that was matched. This is useful when a
typemap might match multiple C datatype. For example:

%typemap(in) int, short, long {
$1 = ($1_ltype) PyInt_AsLong(Sinput);
}

In this case, $1_ltype is replaced with the datatype that is actually matched.

When typemap code is emitted, the C/C++ datatype of the special variables $1 and $2 is always an "ltype." An "ltype" is simply
a type that can legally appear on the left—hand side of a C assignment operation. Here are a few examples of types and Itypes:

type Itype

10.4.3 Special variables 140

SWIG-1.3 Documentation

int int

const int int
conts int * int *
int [4] int *

int [4][5] int (*)[5]

In most cases a ltype is simply the C datatype with qualifiers stripped off. In addition, arrays are converted into pointers.

Variables such as $&1 type and $*1_type are used to safely modify the type by removing or adding pointers. Although not
needed in most typemaps, these substitutions are sometimes needed to properly work with typemaps that convert values betw
pointers and values.

If necessary, type related substitutions can also be used when declaring locals. For example:
%typemap(in) int * ($*1_type temp) {
temp = PyInt_AsLong($input);
$1 = &temp;
}

There is one word of caution about declaring local variables in this manner. If you declare a local variable using a type
substitution such as $1_Itype temp, it won't work like you expect for arrays and certain kinds of pointers. For example, if you
wrote this,

%typemap(in) int [10][20] {
$1_Itype temp;
}
then the declaration of temp will be expanded as

int (*)[20] temp;

This is illegal C syntax and won't compile. There is currently no straightforward way to work around this problem in SWIG due t
the way that typemap code is expanded and processed. However, one possible workaround is to simply pick an alternative typ
such as void * and use casts to get the correct type when needed. For example:

%typemap(in) int [10][20] {
void *temp;

.(.(.$1_Itype) temp)[i][j] = x; /* set a value */
}
Another approach, which only works for arrays is to use the $1_basetype substitution. For example:

%typemap(in) int [10][20] {
$1_basetype temp[10][20];

iémp[i][j] =x; [*setavalue*/
-
10.5 Common typemap methods
The set of typemaps recognized by a language module may vary. However, the following typemap methods are nearly univers:
10.5.1 "in" typemap
The "in" typemap is used to convert function arguments from the target language to C. For example:
%typemap(in) int {

10.5 Common typemap methods 141

SWIG-1.3 Documentation

$1 = PyInt_AsLong($input);
}

The following special variables are available:

$input - Input object holding value to be converted.
$symname - Name of function/method being wrapped

This is probably the most commonly redefined typemap because it can be used to implement customized conversions.
In addition, the "in" typemap allows the number of converted arguments to be specified. For example:

/I lgnored argument.

%typemap(in, numinputs=0) int *out (int temp) {

$1 = &temp;
}

At this time, only zero or one arguments may be converted.
Compatibility note: Specifying numinputs=0 is the same as the old "ignore" typemap.
10.5.2 "typecheck" typemap

The "typecheck" typemap is used to support overloaded functions and methods. It merely checks an argument to see whether
not it matches a specific type. For example:

%typemap(typecheck,precedence=SWIG_TYPECHECK_INTEGER) int {
$1 = PyInt_Check($input) ? 1 : 0;
}

For typechecking, the $1 variable is always a simple integer that is set to 1 or 0 depending on whether or not the input argumel
the correct type.

If you define new "in" typemaps and your program uses overloaded methods, you should also define a collection of "typecheck
typemaps. More details about this follow in a later section on "Typemaps and Overloading."

10.5.3 "out" typemap

The "out" typemap is used to convert function/method return values from C into the target language. For example:
%typemap(out) int {
$result = PyInt_FromLong($1);
}
The following special variables are available.

$result - Result object returned to target language.
$symname - Name of function/method being wrapped

10.5.4 "arginit" typemap

The "arginit" typemap is used to set the initial value of a function argument—-before any conversion has occurred. This is not
normally necessary, but might be useful in highly specialized applications. For example:

/I Set argument to NULL before any conversion occurs
%typemap(arginit) int *data {

$1 = NULL;
}

10.5.1 "in" typemap 142

SWIG-1.3 Documentation

10.5.5 "default” typemap

The "default” typemap is used to turn an argument into a default argument. For example:

%typemap(default) int flags {
$1 = DEFAULT_FLAGS;

}

int foo(int x, int y, int flags);

The primary use of this typemap is to either change the wrapping of default arguments or specify a default argument in a langu
where they aren't supported (like C). Target languages that do not support optional arguments, such as Java and C#, effecivel
ignore the value specified by this typemap as all arguments must be given.

Once a default typemap has been applied to an argument, all arguments that follow must have default values. See the
Default/optional arguments section for further information on default argument wrapping.

10.5.6 "check" typemap

The "check" typemap is used to supply value checking code during argument conversion. The typemap is applied after argume
have been converted. For example:

%typemap(check) int positive {
if ($1 <=0) {
SWIG_exception(SWIG_ValueError,"Expected positive value.");

}
}

10.5.7 "argout" typemap

The "argout" typemap is used to return values from arguments. This is most commonly used to write wrappers for C/C++
functions that need to return multiple values. The "argout" typemap is almost always combined with an "in" typemap——-—possibl
to ignore the input value. For example:

/* Set the input argument to point to a temporary variable */
%typemap(in, numinputs=0) int *out (int temp) {

$1 = &temp;
}

%typemap(argout) int *out {
/I Append output value $1 to $result

}

The following special variables are available.

$result — Result object returned to target language.
$input - The original input object passed.
$symname - Name of function/method being wrapped

The code supplied to the "argout" typemap is always placed after the "out" typemap. If multiple return values are used, the extr
return values are often appended to return value of the function.

See the typemaps.i library for examples.
10.5.8 "freearg" typemap

The "freearg" typemap is used to cleanup argument data. It is only used when an argument might have allocated resources the
need to be cleaned up when the wrapper function exits. The "freearg" typemap usually cleans up argument resources allocatec

10.5.5 "default" typemap 143

SWIG-1.3 Documentation

the "in" typemap. For example:

/I Get a list of integers
%typemap(in) int *items {
int nitems = Length($input);
$1 = (int *) malloc(sizeof(int)*nitems);

}
/I Free the list

%typemap(freearg) int *items {
free($1);
}

The "freearg" typemap inserted at the end of the wrapper function, just before control is returned back to the target language. T
code is also placed into a special variable $cleanup that may be used in other typemaps whenever a wrapper function needs tc
abort prematurely.

10.5.9 "newfree" typemap

The "newfree" typemap is used in conjunction with the %newobject directive and is used to deallocate memory used by the
return result of a function. For example:

%typemap(newfree) string * {
delete $1;

}
%typemap(out) string * {

$result = PyString_FromString($1->c_str());
}

%newobiject foo;
gt.ring *foo();
10.5.10 "memberin" typemap

The "memberin" typemap is used to copy data from an already converted input value into a structure member. It is typically use
to handle array members and other special cases. For example:

%typemap(memberin) int [4] {
memmove($1, $input, 4*sizeof(int));

}

It is rarely necessary to write "'memberin” typemaps———SWIG already provides a default implementation for arrays, strings, anc
other objects.

10.5.11 "varin" typemap

The "varin" typemap is used to convert objects in the target language to C for the purposes of assigning to a C/C++ global
variable. This is implementation specific.

10.5.12 "varout" typemap

The "varout" typemap is used to convert a C/C++ object to an object in the target language when reading a C/C++ global varial
This is implementation specific.

10.5.13 "throws" typemap

The "throws" typemap is only used when SWIG parses a C++ method with an exception specification or has the %catches
feature attached to the method. It provides a default mechanism for handling C++ methods that have declared the exceptions i

10.5.8 "freearg" typemap 144

SWIG-1.3 Documentation

will throw. The purpose of this typemap is to convert a C++ exception into an error or exception in the target language. It is
slightly different to the other typemaps as it is based around the exception type rather than the type of a parameter or variable.
example:

%typemap(throws) const char * %{
PyErr_SetString(PyExc_RuntimeError, $1);
SWIG_fail;

%0}

void bar() throw (const char *);

As can be seen from the generated code below, SWIG generates an exception handler with the catch block comprising the
"throws" typemap content.

try {
bar();

}

catch(char const *_e) {
PyErr_SetString(PyExc_RuntimeError, _e);
SWIG _fail;

Note that if your methods do not have an exception specification yet they do throw exceptions, SWIG cannot know how to deal
with them. For a neat way to handle these, see the Exception handling with %exception section.

10.6 Some typemap examples

This section contains a few examples. Consult language module documentation for more examples.

10.6.1 Typemaps for arrays

A common use of typemaps is to provide support for C arrays appearing both as arguments to functions and as structure mem

For example, suppose you had a function like this:

void set_vector(int type, float value[4]);

If you wanted to handle float value[4] as a list of floats, you might write a typemap similar to this:

%typemap(in) float value[4] (float temp[4]) {
inti;
if ('PySequence_Check($input)) {
PyErr_SetString(PyExc_ValueError,"Expected a sequence");
return NULL;
}
if (PySequence_Length($input) = 4) {
PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected 4 elements");
return NULL;
}
for (i=0;i<4;i++){
PyObiject *o = PySequence_Getltem($input,i);
if (PyNumber_Check(0)) {
templi] = (float) PyFloat_AsDouble(0);
}else {
PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
return NULL;
}

}
$1 = temp;

10.5.13 "throws" typemap 145

SWIG-1.3 Documentation
}

In this example, the variable temp allocates a small array on the C stack. The typemap then populates this array and passes it
the underlying C function.

When used from Python, the typemap allows the following type of function call:
>>> set_vector(type, [1, 2.5, 5,20])
If you wanted to generalize the typemap to apply to arrays of all dimensions you might write this:

%typemap(in) float value[ANY] (float temp[$1_dimOQ]) {
inti;
if ('PySequence_Check($input)) {
PyErr_SetString(PyExc_ValueError,"Expected a sequence");
return NULL;
}
if (PySequence_Length($input) != $1_dim0) {
PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected $1_dim0 elements");
return NULL;
}
for (i=0;i<$1_dimO; i++) {
PyObiject *o = PySequence_Getltem($input,i);
if (PyNumber_Check(0)) {
templi] = (float) PyFloat_AsDouble(0);
}else {
PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
return NULL;
}
}
$1 = temp;
}

In this example, the special variable $1_dim0 is expanded with the actual array dimensions. Multidimensional arrays can be
matched in a similar manner. For example:

%typemap(in) float matrix]ANY][ANY] (float temp[$1_dimO][$1_dim1]) {
... convert a 2d array ...

}

For large arrays, it may be impractical to allocate storage on the stack using a temporary variable as shown. To work with heay
allocated data, the following technique can be used.

%typemap(in) float value[ANY] {

inti;

if ("PySequence_Check($input)) {
PyErr_SetString(PyExc_ValueError,"Expected a sequence");
return NULL;

}

if (PySequence_Length($input) != $1_dim0) {
PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected $1_dim0 elements");
return NULL;

$1 = (float *) malloc($1_dimO*sizeof(float));
for (i=0;i<$1_dimoO; i++) {

PyObiject *o = PySequence_Getltem($input,i);

if (PyNumber_Check(0)) {
$1[i] = (float) PyFloat_AsDouble(o);

}else {
PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
free($1);
return NULL;

}

}

10.6.1 Typemaps for arrays 146

SWIG-1.3 Documentation

}
%typemap(freearg) float value[ANY] {

if ($1) free($1);
}

In this case, an array is allocated using malloc. The freearg typemap is then used to release the argument after the function
has been called.

Another common use of array typemaps is to provide support for array structure members. Due to subtle differences between
pointers and arrays in C, you can't just "assign" to a array structure member. Instead, you have to explicitly copy elements into
array. For example, suppose you had a structure like this:

struct SomeObject {
float value[4];

h
When SWIG runs, it won't produce any code to set the vec member. You may even get a warning message like this:

swig —python example.i
Generating wrappers for Python
example.i:10. Warning. Array member value will be read-only.

These warning messages indicate that SWIG does not know how you want to set the vec field.

To fix this, you can supply a special "memberin" typemap like this:

%typemap(memberin) float [ANY] {
inti;
for (i=0;i<$1_dimo; i++) {
$1[i] = $input[i];

}

The memberin typemap is used to set a structure member from data that has already been converted from the target language
In this case, $input is the local variable in which converted input data is stored. This typemap then copies this data into the
structure.

When combined with the earlier typemaps for arrays, the combination of the "in" and "memberin" typemap allows the following
usage:

>>> s = SomeObject()
>>>s.x=[1, 2.5, 5, 10]

Related to structure member input, it may be desirable to return structure members as a new kind of object. For example, in thi
example, you will get very odd program behavior where the structure member can be set nicely, but reading the member simpl
returns a pointer:

>>> s = SomeObiject()
>>>s.x=[1, 25,5, 10]
>>> print s.xX
_1008fea8_p_float
>>>

To fix this, you can write an "out" typemap. For example:

%typemap(out) float [ANY] {
inti;
$result = PyList_New($1_dim0);
for (i=0;i<$1_dimo; i++) {
PyObiject *o = PyFloat_FromDouble((double) $1[i]);

10.6.1 Typemaps for arrays 147

SWIG-1.3 Documentation

PyList_Setltem($result,i,0);
}
}

Now, you will find that member access is quite nice:

>>> s = SomeObject()
>>>s.x =1, 2.5, 5, 10]
>>> print .X
[1,25,5,10]

Compatibility Note: SWIGL1.1 used to provide a special "memberout” typemap. However, it was mostly useless and has since
been eliminated. To return structure members, simply use the "out" typemap.

10.6.2 Implementing constraints with typemaps

One particularly interesting application of typemaps is the implementation of argument constraints. This can be done with the
"check" typemap. When used, this allows you to provide code for checking the values of function arguments. For example :

%module math

%typemap(check) double posdouble {
if ($1<0){
croak("Expecting a positive number");
}

double sqgrt(double posdouble);

This provides a sanity check to your wrapper function. If a negative number is passed to this function, a Perl exception will be
raised and your program terminated with an error message.

This kind of checking can be particularly useful when working with pointers. For example :

%typemap(check) Vector * {
if ($1==0) {
PyErr_SetString(PyExc_TypeError,"NULL Pointer not allowed");
return NULL;

}
}

will prevent any function involving a Vector * from accepting a NULL pointer. As a result, SWIG can often prevent a
potential segmentation faults or other run—time problems by raising an exception rather than blindly passing values to the
underlying C/C++ program.

Note: A more advanced constraint checking system is in development. Stay tuned.

10.7 Typemaps for multiple languages

The code within typemaps is usually language dependent, however, many languages support the same typemaps. In order to
distinguish typemaps across different languages, the preprocessor should be used. For example, the "in" typemap for Perl and
Ruby could be written as:

#if defined(SWIGPERL)

%typemap(in) int "$1 = NUM2INT($input);"
#elif defined(SWIGRUBY)

%typemap(in) int "$1 = ($1_Itype) SvIV($input);"
#else

10.6.2 Implementing constraints with typemaps 148

SWIG-1.3 Documentation

#warning no "in" typemap defined
#endif

The full set of language specific macros is defined in_ the Conditional Compilation section. The example above also shows a
common approach of issuing a warning for an as yet unsupported language.

Compatibility note: In SWIG-1.1 different languages could be distinguished with the language name being put within the
%typemap directive, for example,
%typemap(ruby,in) int "$1 = NUM2INT($input);".

10.8 Multi-argument typemaps

So far, the typemaps presented have focused on the problem of dealing with single values. For example, converting a single in
object to a single argument in a function call. However, certain conversion problems are difficult to handle in this manner. As ar
example, consider the example at the very beginning of this chapter:

int foo(int argc, char *argv[]);
Suppose that you wanted to wrap this function so that it accepted a single list of strings like this:

>>> foo(["ale","lager","stout"])

To do this, you not only need to map a list of strings to char *argv([], but the value of int argc is implicitly determined by
the length of the list. Using only simple typemaps, this type of conversion is possible, but extremely painful. Therefore, SWIGL1.
introduces the notion of multi—-argument typemaps.

A multi-argument typemap is a conversion rule that specifies how to convert a single object in the target language to set of
consecutive function arguments in C/C++. For example, the following multi-argument maps perform the conversion described
the above example:

%typemap(in) (int argc, char *argv[]) {
inti;
if (\PyList_Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expecting a list");
return NULL;
}
$1 = PyList_Size($input);
$2 = (char **) malloc(($1+1)*sizeof(char *));
for (i=0;i<$1;i++){
PyObject *s = PyList_Getltem($input,i);
if (PyString_Check(s)) {
free($2);
PyErr_SetString(PyExc_ValueError, "List items must be strings");
return NULL;
}
$2[i] = PyString_AsString(s);

}
$2[i] = 0;
}

%typemap(freearg) (int argc, char *argv[]) {
if ($2) free($2);
}

A multi—argument map is always specified by surrounding the arguments with parentheses as shown. For example:
%typemap(in) (int argc, char *argv[]) { ... }

Within the typemap code, the variables $1, $2, and so forth refer to each type in the map. All of the usual substitutions
apply——just use the appropriate $1 or $2 prefix on the variable name (e.g., $2_type, $1_ltype, etc.)

10.7 Typemaps for multiple languages 149

SWIG-1.3 Documentation

Multi-argument typemaps always have precedence over simple typemaps and SWIG always performs longest—-match searchir
Therefore, you will get the following behavior:

%typemap(in) int argc {..typemap1...}
%typemap(in) (int argc, char *argv[]) {..typemap 2 ... }
%typemap(in) (int argc, char *argv[], char *env[]) { ... typemap 3 ... }
int foo(int argc, char *argv[]); /I Uses typemap 2

int bar(int argc, int x); /I Uses typemap 1

int spam(int argc, char *argv[], char *env[]); // Uses typemap 3

It should be stressed that multi-argument typemaps can appear anywhere in a function declaration and can appear more than
For example, you could write this:

%typemap(in) (int scount, char *swords[]) { ... }
%typemap(in) (int wcount, char *words[]) { ... }

void search_words(int scount, char *swords[], int wcount, char *words[], int maxcount);

Other directives such as %apply and %clear also work with multi—argument maps. For example:

%apply (int argc, char *argv[]) {
(int scount, char *swords[]),
(int weount, char *words[])

g

%clear (int scount, char *swordsl[]), (int wcount, char *words[]);

Although multi-argument typemaps may seem like an exotic, little used feature, there are several situations where they make
sense. First, suppose you wanted to wrap functions similar to the low-level read() and write() system calls. For example:

typedef unsigned int size_t;

int read(int fd, void *rbuffer, size_t len);
int write(int fd, void *wbuffer, size_t len);

As is, the only way to use the functions would be to allocate memory and pass some kind of pointer as the second argument—-
process that might require the use of a helper function. However, using multi-argument maps, the functions can be transforme
into something more natural. For example, you might write typemaps like this:

/I typemap for an outgoing buffer
%typemap(in) (void *wbuffer, size_t len) {
if (\PyString_Check($input)) {
PyErr_SetString(PyExc_ValueError, "Expecting a string");
return NULL;
}
$1 = (void *) PyString_AsString($input);
$2 = PyString_Size($input);
}

/l typemap for an incoming buffer
%typemap(in) (void *rbuffer, size_t len) {
if ('PyInt_Check(S$input)) {
PyErr_SetString(PyExc_ValueError, "Expecting an integer");
return NULL;

}
$2 = PyInt_AsLong($input);
if ($2 < 0) {

PyErr_SetString(PyExc_ValueError, "Positive integer expected");
return NULL;

}
$1 = (void *) malloc($2);
}

10.8 Multi-argument typemaps 150

SWIG-1.3 Documentation

/I Return the buffer. Discarding any previous return result
%typemap(argout) (void *rbuffer, size_t len) {
Py _XDECREF($result); /* Blow away any previous result */
if (result<0){ /* Check for I/O error */
free($1);
PyErr_SetFromErrno(PyExc_IOError);
return NULL;

$result = PyString_FromStringAndSize($1,result);

free($1);
}

(note: In the above example, $result and result are two different variables. result is the real C datatype that was returned
by the function. $result is the scripting language object being returned to the interpreter.).

Now, in a script, you can write code that simply passes buffers as strings like this:

>>> f = example.open("Makefile")
>>> example.read(f,40)

"TOP =../.\nSWIG = $(TOP)/.!
>>> example.read(f,40)

"Iswig\nSRCS = example.c\nTARGET
>>> example.close(f)

0

>>> g = example.open(“foo”, example.O_WRONLY | example.O_CREAT, 0644)
>>> example.write(g,"Hello world\n")

12

>>> example.write(g,"This is a test\n")

15

>>> example.close(g)

0

>>>

A number of multi-argument typemap problems also arise in libraries that perform matrix—calculations——especially if they are
mapped onto low-level Fortran or C code. For example, you might have a function like this:

int is_symmetric(double *mat, int rows, int columns);

In this case, you might want to pass some kind of higher—level object as an matrix. To do this, you could write a multi-argumer
typemap like this:

%typemap(in) (double *mat, int rows, int columns) {
MatrixObject *a;
a = GetMatrixFromObject($input); /* Get matrix somehow */

/* Get matrix properties */
$1 = GetPointer(a);
$2 = GetRows(a);
$3 = GetColumns(a);
}

This kind of technique can be used to hook into scripting—language matrix packages such as Numeric Python. However, it shol
also be stressed that some care is in order. For example, when crossing languages you may need to worry about issues such
row—-major vs. column—major ordering (and perform conversions if needed).

10.9 The run—time type checker

Most scripting languages need type information at run—time. This type information can include how to construct types, how to
garbage collect types, and the inheritance relationships between types. If the language interface does not provide its own type
information storage, the generated SWIG code needs to provide it.

10.9 The run—-time type checker 151

SWIG-1.3 Documentation

Requirements for the type system:

« Store inheritance and type equivalence information and be able to correctly re—create the type pointer.
 Share type information between modules.

* Modules can be loaded in any order, irregardless of actual type dependency.

« Avoid the use of dynamically allocated memory, and library/system calls in general.

* Provide a reasonably fast implementation, minimizing the lookup time for all language modules.

» Custom, language specific information can be attached to types.

* Modules can be unloaded from the type system.

10.9.1 Implementation

The run—-time type checker is used by many, but not all, of SWIG's supported target languages. The run-time type checker
features are not required and are thus not used for strongly typed languages such as Java and C#. The scripting and scheme |
languages rely on it and it forms a critical part of SWIG's operation for these languages.

When pointers, arrays, and objects are wrapped by SWIG, they are normally converted into typed pointer objects. For example
instance of Foo * might be a string encoded like this:

_108e688 p_Foo

At a basic level, the type checker simply restores some type—safety to extension modules. However, the type checker is also
responsible for making sure that wrapped C++ classes are handled correctly-——especially when inheritance is used. This is
especially important when an extension module makes use of multiple inheritance. For example:

class Foo {
int x;

k

class Bar {
inty;
h

class FooBar : public Foo, public Bar {
int z;

g

When the class FooBar is organized in memory, it contains the contents of the classes Foo and Bar as well as its own data
members. For example:

FooBar ——> | ~——————————— | <--Foo
| intx |
|- | <--Bar
| inty |
Eaa— !
| intz |

Because of the way that base class data is stacked together, the casting of a Foobar * to either of the base classes may chang
the actual value of the pointer. This means that it is generally not safe to represent pointers using a simple integer or a bare vo
*———type tags are needed to implement correct handling of pointer values (and to make adjustments when needed).

In the wrapper code generated for each language, pointers are handled through the use of special type descriptors and conver
functions. For example, if you look at the wrapper code for Python, you will see code like this:

if ((SWIG_ConvertPtr(objo,(void **) &argl, SWIGTYPE_p_Fo0,1)) == —1) return NULL,;

In this code, SWIGTYPE_p_Foo is the type descriptor that describes Foo *. The type descriptor is actually a pointer to a
structure that contains information about the type name to use in the target language, a list of equivalent typenames (via typed

10.9.1 Implementation 152

SWIG-1.3 Documentation

inheritance), and pointer value handling information (if applicable). The SWIG_ConvertPtr() function is simply a utility

function that takes a pointer object in the target language and a type—descriptor objects and uses this information to generate &
C++ pointer. However, the exact name and calling conventions of the conversion function depends on the target language (see€
language specific chapters for details).

The actual type code is in swigrun.swg, and gets inserted near the top of the generated swig wrapper file. The phrase "a type >
that can cast into a type Y" means that given a type X, it can be converted into a type Y. In other words, X is a derived class of
or X is a typedef of Y. The structure to store type information looks like this:

[* Structure to store information on one type */

typedef struct swig_type_info {
const char *name; /* mangled name of this type */
const char *str; /* human readable name for this type */
swig_dycast_func dcast; /* dynamic cast function down a hierarchy */
struct swig_cast_info *cast; /* Linked list of types that can cast into this type */
void *clientdata; [* Language specific type data */

} swig_type_info;

[* Structure to store a type and conversion function used for casting */
typedef struct swig_cast_info {
swig_type_info *type; * pointer to type that is equivalent to this type */
swig_converter_func converter; /* function to cast the void pointers */
struct swig_cast_info *next; /* pointer to next cast in linked list */
struct swig_cast_info *prev; /* pointer to the previous cast */
} swig_cast_info;

Each swig_type_info stores a linked list of types that it is equivalent to. Each entry in this doubly linked list stores a pointer
back to another swig_type_info structure, along with a pointer to a conversion function. This conversion function is used to solv
the above problem of the FooBar class, correctly returning a pointer to the type we want.

The basic problem we need to solve is verifying and building arguments passed to functions. So going back to the
SWIG_ConvertPtr() function example from above, we are expecting a Foo * and need to check if obj0 is in fact a Foo

*, From before, SWIGTYPE_p_Foo is just a pointer to the swig_type_info structure describing Foo *. So we loop though

the linked list of swig_cast_info structures attached to SWIGTYPE_p_Foo. If we see that the type of obj0 is in the linked

list, we pass the object through the associated conversion function and then return a positive. If we reach the end of the linked
without a match, then objO can not be converted to a Foo * and an error is generated.

Another issue needing to be addressed is sharing type information between multiple modules. More explicitly, we need to have
ONE swig_type_info for each type. If two modules both use the type, the second module loaded must lookup and use the
swig_type_info structure from the module already loaded. Because no dynamic memory is used and the circular dependencies
the casting information, loading the type information is somewhat tricky, and not explained here. A complete description is in th
Lib/swiginit.swg file (and near the top of any generated file).

Each module has one swig_module_info structure which looks like this:

/* Structure used to store module information

* Each module generates one structure like this, and the runtime collects

* all of these structures and stores them in a circularly linked list.*/

typedef struct swig_module_info {
swig_type_info **types; * Array of pointers to swig_type_info structs in this module */
int size; /* Number of types in this module */
struct swig_module_info *next; /* Pointer to next element in circularly linked list */
swig_type_info **type_initial; /* Array of initially generated type structures */
swig_cast_info **cast_initial; /* Array of initially generated casting structures */
void *clientdata; /* Language specific module data */

} swig_module_info;

Each module stores an array of pointers to swig_type_info structures and the number of types in this module. So when a
second module is loaded, it finds the swig_module_info structure for the first module and searches the array of types. If any
of its own types are in the first module and have already been loaded, it uses those swig_type_info structures rather than
creating new ones. These swig_module_info structures are chained together in a circularly linked list.

10.9.1 Implementation 153

SWIG-1.3 Documentation
10.9.2 Usage

This section covers how to use these functions from typemaps. To learn how to call these functions from external files (not the
generated _wrap.c file), see the External access to the run—time system section.

When pointers are converted in a typemap, the typemap code often looks similar to this:

%typemap(in) Foo * {
if (SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor)) == —1) return NULL;
}

The most critical part is the typemap is the use of the $1_descriptor special variable. When placed in a typemap, this is
expanded into the SWIGTYPE_* type descriptor object above. As a general rule, you should always use $1_descriptor
instead of trying to hard—code the type descriptor name directly.

There is another reason why you should always use the $1_descriptor variable. When this special variable is expanded,

SWIG marks the corresponding type as "in use." When type-tables and type information is emitted in the wrapper file, descript
information is only generated for those datatypes that were actually used in the interface. This greatly reduces the size of the ty
tables and improves efficiency.

Occassionally, you might need to write a typemap that needs to convert pointers of other types. To handle this, a special macrc
substition $descriptor(type) can be used to generate the SWIG type descriptor name for any C datatype. For example:

%typemap(in) Foo * {
if (SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor)) == -1) {
Bar *temp;
if (SWIG_ConvertPtr($input, (void **) &temp, $descriptor(Bar *)) == -1) {
return NULL;
}

$1 = (Foo *) temp;
}
}

The primary use of $descriptor(type) is when writing typemaps for container objects and other complex data structures.
There are some restrictions on the argument———namely it must be a fully defined C datatype. It can not be any of the special
typemap variables.

In certain cases, SWIG may not generate type—descriptors like you expect. For example, if you are converting pointers in some
non-standard way or working with an unusual combination of interface files and modules, you may find that SWIG omits
information for a specific type descriptor. To fix this, you may need to use the %types directive. For example:

%types(int *, short *, long *, float *, double *);

When %types is used, SWIG generates type—descriptor information even if those datatypes never appear elsewhere in the
interface file.

Further details about the run—time type checking can be found in the documentation for individual language modules. Reading
source code may also help. The file Lib/swigrun.swg in the SWIG library contains all of the source code for type—checking.
This code is also included in every generated wrapped file so you probably just look at the output of SWIG to get a better sens
for how types are managed.

10.10 Typemaps and overloading

In many target languages, SWIG fully supports C++ overloaded methods and functions. For example, if you have a collection c
functions like this:

int foo(int x);
int foo(double x);

10.9.2 Usage 154

SWIG-1.3 Documentation

int foo(char *s, int y);
You can access the functions in a normal way from the scripting interpreter:

Python

foo(3) # foo(int)

foo(3.5) # foo(double)
foo("hello",5) # foo(char *, int)

Tcl
foo 3 # foo(int)
foo 3.5 # foo(double)

foo hello5 # foo(char *, int)

To implement overloading, SWIG generates a separate wrapper function for each overloaded method. For example, the above
functions would produce something roughly like this:

/I wrapper pseudocode
_wrap_foo_O(argc, args[]) { I/ foo(int)
int argl;
int result;

argl = Frominteger(args[0]);
result = foo(argl);
return Tolnteger(result);

}

_wrap_foo_1(argc, args[]) { // foo(double)
double arg1;
int result;

argl = FromDouble(args[0]);
result = foo(argl);
return Tolnteger(result);

}

_wrap_foo_2(argc, args[]) { [l foo(char *, int)
char *arg1,;
int arg2;
int result;

argl = FromString(args|0]);
arg2 = FromlInteger(args[1]);
result = foo(argl,arg2);
return Tolnteger(result);

Next, a dynamic dispatch function is generated:

_wrap_foo(argc, args[]) {
if (argc == 1) {
if (IsInteger(args[0])) {
return _wrap_foo_0(argc,args);

}
if (IsDouble(args[0])) {
return _wrap_foo_1(argc,args);

}

}
if (argc == 2) {
if (IsString(args[0]) && IsInteger(args[1])) {
return _wrap_foo_2(argc,args);
}
}

error("No matching function\n");

}
10.10 Typemaps and overloading 155

SWIG-1.3 Documentation

The purpose of the dynamic dispatch function is to select the appropriate C++ function based on argument types——-a task tha
must be performed at runtime in most of SWIG's target languages.

The generation of the dynamic dispatch function is a relatively tricky affair. Not only must input typemaps be taken into account
(these typemaps can radically change the types of arguments accepted), but overloaded methods must also be sorted and che
in a very specific order to resolve potential ambiguity. A high—level overview of this ranking process is found in the "SWIG and

C++" chapter. What isn't mentioned in that chapter is the mechanism by which it is implemented——-as a collection of typemap:

To support dynamic dispatch, SWIG first defines a general purpose type hierarchy as follows:

Symbolic Name Precedence Value
SWIG_TYPECHECK_POINTER 0
SWIG_TYPECHECK_VOIDPTR 10
SWIG_TYPECHECK_BOOL 15
SWIG_TYPECHECK_UINTS8 20
SWIG_TYPECHECK_INT8 25
SWIG_TYPECHECK_UINT16 30
SWIG_TYPECHECK_INT16 35
SWIG_TYPECHECK_UINT32 40
SWIG_TYPECHECK_INT32 45
SWIG_TYPECHECK_UINT64 50
SWIG_TYPECHECK_INT64 55
SWIG_TYPECHECK_UINT128 60
SWIG_TYPECHECK_INT128 65
SWIG_TYPECHECK_INTEGER 70
SWIG_TYPECHECK_FLOAT 80
SWIG_TYPECHECK_DOUBLE 90
SWIG_TYPECHECK_COMPLEX 100
SWIG_TYPECHECK_UNICHAR 110
SWIG_TYPECHECK_UNISTRING 120
SWIG_TYPECHECK_CHAR 130
SWIG_TYPECHECK_STRING 140

SWIG_TYPECHECK_BOOL_ARRAY 1015
SWIG_TYPECHECK_INT8_ARRAY 1025
SWIG_TYPECHECK_INT16_ARRAY 1035
SWIG_TYPECHECK_INT32_ARRAY 1045
SWIG_TYPECHECK_INT64_ARRAY 1055
SWIG_TYPECHECK_INT128_ARRAY 1065
SWIG_TYPECHECK_FLOAT_ARRAY 1080
SWIG_TYPECHECK_DOUBLE_ARRAY 1090
SWIG_TYPECHECK_CHAR_ARRAY 1130
SWIG_TYPECHECK_STRING_ARRAY 1140

(These precedence levels are defined in swig.swg, a library file that's included by all target language modules.)

In this table, the precedence-level determines the order in which types are going to be checked. Low values are always check
before higher values. For example, integers are checked before floats, single values are checked before arrays, and so forth.

Using the above table as a guide, each target language defines a collection of "typecheck” typemaps. The follow excerpt from f
Python module illustrates this:

/* Python type checking rules */
/* Note: %typecheck(X) is a macro for %typemap(typecheck,precedence=X) */

%typecheck(SWIG_TYPECHECK_INTEGER)
int, short, long,
unsigned int, unsigned short, unsigned long,
signed char, unsigned char,
long long, unsigned long long,
const int &, const short &, const long &,
const unsigned int &, const unsigned short &, const unsigned long &,
const long long &, const unsigned long long &,
enum SWIGTYPE,

10.10 Typemaps and overloading 156

SWIG-1.3 Documentation

bool, const bool &
{
$1 = (PyInt_Check($input) || PyLong_Check($input)) ? 1 : O;
}

%typecheck(SWIG_TYPECHECK_DOUBLE)
float, double,
const float &, const double &

$1 = (PyFloat_Check($input) || PyInt_Check($input) || PyLong_Check($input)) ? 1 : 0;
}

%typecheck(SWIG_TYPECHECK_CHAR) char {
$1 = (PyString_Check($input) && (PyString_Size($input) == 1)) ? 1: 0;
}

%typecheck(SWIG_TYPECHECK_STRING) char * {
$1 = PyString_Check($input) ? 1 : 0;
}

%typecheck(SWIG_TYPECHECK_POINTER) SWIGTYPE *, SWIGTYPE &, SWIGTYPE [| {
void *ptr;
if (SWIG_ConvertPtr($input, (void **) &ptr, $1_descriptor, 0) == -1) {
$1=0;
PyErr_Clear();
}else {
$1=1;
}
}

%typecheck(SWIG_TYPECHECK_POINTER) SWIGTYPE {
void *ptr;
if (SWIG_ConvertPtr($input, (void **) &ptr, $&1_descriptor, 0) == -1) {
$1=0;
PyErr_Clear();
}else {
$1=1,
}
}

%typecheck(SWIG_TYPECHECK_VOIDPTR) void * {
void *ptr;
if (SWIG_ConvertPtr($input, (void **) &ptr, 0, 0) == -1) {
$1=0;
PyErr_Clear();
}else {
$1=1,
}
}

%typecheck(SWIG_TYPECHECK_POINTER) PyObject *

$1 = ($input = 0);
}

It might take a bit of contemplation, but this code has merely organized all of the basic C++ types, provided some simple
type—checking code, and assigned each type a precedence value.

Finally, to generate the dynamic dispatch function, SWIG uses the following algorithm:
» Overloaded methods are first sorted by the number of required arguments.

» Methods with the same number of arguments are then sorted by precedence values of argument types.
» Typecheck typemaps are then emitted to produce a dispatch function that checks arguments in the correct order.

10.10 Typemaps and overloading 157

SWIG-1.3 Documentation

If you haven't written any typemaps of your own, it is unnecessary to worry about the typechecking rules. However, if you have
written new input typemaps, you might have to supply a typechecking rule as well. An easy way to do this is to simply copy one
of the existing typechecking rules. Here is an example,

/I Typemap for a C++ string
%typemap(in) std::string {
if (PyString_Check($input)) {
$1 = std::string(PyString_AsString($input));
}else {
SWIG_exception(SWIG_TypeError, "string expected");

}

}
/I Copy the typecheck code for "char *".

%typemap(typecheck) std::string = char *;

The bottom line: If you are writing new typemaps and you are using overloaded methods, you will probably have to write
typecheck code or copy existing code. Since this is a relatively new SWIG feature, there are few examples to work with.
However, you might look at some of the existing library files likes 'typemaps.i' for a guide.

Notes:

» Typecheck typemaps are not used for non—overloaded methods. Because of this, it is still always necessary to check
types in any "in" typemaps.

» The dynamic dispatch process is only meant to be a heuristic. There are many corner cases where SWIG simply can't
disambiguate types to the same degree as C++. The only way to resolve this ambiguity is to use the %rename directive
rename one of the overloaded methods (effectively eliminating overloading).

» Typechecking may be partial. For example, if working with arrays, the typecheck code might simply check the type of
the first array element and use that to dispatch to the correct function. Subsequent "in" typemaps would then perform
more extensive type—checking.

» Make sure you read the section on overloading in_the "SWIG and C++" chapter.

10.11 More about %apply and %clear

In order to implement certain kinds of program behavior, it is sometimes necessary to write sets of typemaps. For example, to
support output arguments, one often writes a set of typemaps like this:

%typemap(in,numinputs=0) int *OUTPUT (int temp) {
$1 = &temp;

}
%typemap(argout) int *OUTPUT {
/I return value somehow

}

To make it easier to apply the typemap to different argument types and names, the %apply directive performs a copy of all
typemaps from one type to another. For example, if you specify this,

%apply int *OUTPUT { int *retvalue, int32 *output };
then all of the int *XOUTPUT typemaps are copied to int *retvalue and int32 *output.

However, there is a subtle aspect of %apply that needs more description. Namely, %apply does not overwrite a typemap rule if
it is already defined for the target datatype. This behavior allows you to do two things:

« You can specialize parts of a complex typemap rule by first defining a few typemaps and then using %apply to
incorporate the remaining pieces.
« Sets of different typemaps can be applied to the same datatype using repeated %apply directives.

For example:

10.11 More about %apply and %clear 158

SWIG-1.3 Documentation

%typemap(in) int *INPUT (int temp) {
temp = ... get value from $input ...;
$1 = &temp;

}

%typemap(check) int *POSITIVE {
if (*$1 <=0){
SWIG_exception(SWIG_ValueError,"Expected a positive numberi\n™);
return NULL;
}
}

%apply int *INPUT {int *invalue };
%apply int *POSITIVE {int *invalue };

Since %apply does not overwrite or replace any existing rules, the only way to reset behavior is to use the %clear directive.
%oclear removes all typemap rules defined for a specific datatype. For example:

%oclear int *invalue;

10.12 Reducing wrapper code size

Since the code supplied to a typemap is inlined directly into wrapper functions, typemaps can result in a tremendous amount of
code bloat. For example, consider this typemap for an array:

%typemap(in) float [ANY] {

inti;

if (\PySequence_Check($input)) {
PyErr_SetString(PyExc_ValueError,"Expected a sequence");
return NULL;

}

if (PySequence_Length($input) = $1_dimO0) {
PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected $1_dim0 elements");
return NULL;

$1 = (float) malloc($1_dimO*sizeof(float));
for (i=0;i<$1_dimo; i++) {

PyObiject *o = PySequence_Getltem($input,i);

if (PyNumber_Check(0)) {
$1[i] = (float) PyFloat_AsDouble(o);

}else {
PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
free(result);
return NULL;

}

}
}

If you had a large interface with hundreds of functions all accepting array parameters, this typemap would be replicated
repeatedly——generating a huge amount of code. A better approach might be to consolidate some of the typemap into a functior
For example:

9%
/* Define a helper function */
static float *
convert_float_array(PyObject *input, int size) {
inti;
float *result;
if ('"PySequence_Check(input)) {
PyErr_SetString(PyExc_ValueError,"Expected a sequence");
return NULL;

}
if (PySequence_Length(input) != size) {

10.12 Reducing wrapper code size 159

SWIG-1.3 Documentation

PyErr_SetString(PyExc_ValueError,"Size mismatch. ");
return NULL;

result = (float) malloc(size*sizeof(float));
for (i = 0; i < size; i++) {
PyObiject *o = PySequence_Getltem(input,i);
if (PyNumber_Check(0)) {
result[i] = (float) PyFloat_AsDouble(0);
}else {
PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
free(result);
return NULL;

}
}

return result;

}
%}

%typemap(in) float [ANY] {
$1 = convert_float_array($input, $1_dimO0);
if (1$1) return NULL;

}
%}

10.13 Passing data between typemaps

It is also important to note that the primary use of local variables is to create stack—allocated objects for temporary use inside a
wrapper function (this is faster and less—prone to error than allocating data on the heap). In general, the variables are not inten
to pass information between different types of typemaps. However, this can be done if you realize that local names have the
argument number appended to them. For example, you could do this:

%typemap(in) int *(int temp) {
temp = (int) PyInt_AsLong($input);
$1 = &temp;

}

%typemap(argout) int * {
PyObject *o = PyInt_FromLong(temp$argnum);

}..

In this case, the $argnum variable is expanded into the argument number. Therefore, the code will reference the appropriate lo
such as templ and temp2. It should be noted that there are plenty of opportunities to break the universe here and that accessi
locals in this manner should probably be avoided. At the very least, you should make sure that the typemaps sharing informatic
have exactly the same types and names.

10.14 Where to go for more information?

The best place to find out more information about writing typemaps is to look in the SWIG library. Most language modules defir
all of their default behavior using typemaps. These are found in files such as python.swg, perl5.swg, tcl8.swg and so

forth. The typemaps.i file in the library also contains numerous examples. You should look at these files to get a feel for how

to define typemaps of your own. Some of the language modules support additional typemaps and further information is availab
in the individual chapters for each target language.

10.13 Passing data between typemaps 160

11 Customization Features

« Exception handling with %exception
+ Handling exceptions in C code
¢ Exception handling with longjmp()
¢ Handling C++ exceptions
¢ Exception handlers for variables
+ Defining different exception handlers
¢ Using The SWIG exception library
» Object ownership and %newobject
» Eeatures and the %feature directive
¢ Feature flags
¢ Clearing features
¢ Features and default arguments
¢ Feature example

In many cases, it is desirable to change the default wrapping of particular declarations in an interface. For example, you might
want to provide hooks for catching C++ exceptions, add assertions, or provide hints to the underlying code generator. This cha
describes some of these customization technigues. First, a discussion of exception handling is presented. Then, a more
general—-purpose customization mechanism known as "features" is described.

11.1 Exception handling with %exception

The %exception directive allows you to define a general purpose exception handler. For example, you can specify the
following:

%exception {

try {
$action

}

catch (RangeError) {
PyErr_SetString(PyExc_IndexError,"index out-of-bounds");
return NULL;

}
}

When defined, the code enclosed in braces is inserted directly into the low-level wrapper functions. The special symbol
$action gets replaced with the actual operation to be performed (a function call, method invocation, attribute access, etc.). An
exception handler remains in effect until it is explicitly deleted. This is done by using either %exception or %noexception

with no code. For example:

%exception; // Deletes any previously defined handler

Compatibility note: Previous versions of SWIG used a special directive %except for exception handling. That directive is
deprecated——%exception provides the same functionality, but is substantially more flexible.

11.1.1 Handling exceptions in C code

C has no formal exception handling mechanism so there are several approaches that might be used. A somewhat common
technique is to simply set a special error code. For example:

/* File : except.c */

static char error_message[256];
static int error_status = 0;

void throw_exception(char *msg) {
strncpy(error_message,msg,256);

11 Customization Features 161

SWIG-1.3 Documentation

error_status = 1,

}

void clear_exception() {
error_status = 0;

char *check_exception() {

if (error_status) return error_message;
else return NULL;

To use these functions, functions simply call throw_exception() to indicate an error occurred. For example :

double inv(double x) {
if (x = 0) return 1.0/x;

else {
throw_exception("Division by zero");
return O;

}

To catch the exception, you can write a simple exception handler such as the following (shown for Perl5) :

%exception {
char *err;
clear_exception();
$action
if ((err = check_exception())) {
croak(err);
}
}

In this case, when an error occurs, it is translated into a Perl error. Each target language has its own approach to creating a rut
error/exception in and for Perl it is the croak method shown above.

11.1.2 Exception handling with longjmp()

Exception handling can also be added to C code using the <setjmp.h> library. Here is a minimalistic implementation that relies
on the C preprocessor :

* File : except.c
Just the declaration of a few global variables we're going to use */

#include <setjmp.h>
jmp_buf exception_buffer;
int exception_status;

/* File : except.h */

#include <setjmp.h>

extern jmp_buf exception_buffer;
extern int exception_status;

#define try if ((exception_status = setjmp(exception_buffer)) == 0)
#define catch(val) else if (exception_status == val)

#define throw(val) longjmp(exception_buffer,val)

#define finally else

I* Exception codes */
#define RangeError 1

#define DivisionByZero 2
#define OutOfMemory 3

11.1.1 Handling exceptions in C code 162

SWIG-1.3 Documentation

Now, within a C program, you can do the following :

double inv(double x) {
if (x) return 1.0/x;
else throw(DivisionByZero);

Finally, to create a SWIG exception handler, write the following :

9%{
#include "except.h"
9%}

%exception {
try {
$action
} catch(RangeError) {
croak("Range Error");
} catch(DivisionByZero) {
croak("Division by zero");
} catch(OutOfMemory) {
croak("Out of memory");
} finally {
croak("Unknown exception");
}
}

Note: This implementation is only intended to illustrate the general idea. To make it work better, you'll need to modify it to hand
nested try declarations.

11.1.3 Handling C++ exceptions

Handling C++ exceptions is also straightforward. For example:

%exception {

try {
$action

} catch(RangeError) {
croak("Range Error");

} catch(DivisionByZero) {
croak("Division by zero");

} catch(OutOfMemory) {
croak("Out of memory");

} catch(...) {
croak("Unknown exception");

}

The exception types need to be declared as classes elsewhere, possibly in a header file :

class RangeError {};
class DivisionByZero {};
class OutOfMemory {};

11.1.4 Exception handlers for variables

By default all variables will ignore %exception, so it is effectively turned off for all variables wrappers. This applies to global
variables, member variables and static member variables. The approach is certainly a logical one when wrapping variables in (

11.1.2 Exception handling with longjmp() 163

SWIG-1.3 Documentation

However, in C++, it is quite possible for an exception to be thrown while the variable is being assigned. To ensure %exception
is used when wrapping variables, it needs to be 'turned on' using the %allowexception feature. Note that

%allowexception is just a macro for %feature("allowexcept"), that is, it is a feature called "allowexcept". Any

variable which has this feature attached to it, will then use the %exception feature, but of course, only if there is a

%exception attached to the variable in the first place. The %allowexception feature works like any other feature and so

can be used globally or for selective variables.

%allowexception; /l turn on globally
%allowexception Klass::MyVar; // turn on for a specific variable

%noallowexception Klass::MyVar; // turn off for a specific variable
%noallowexception; /I turn off globally

11.1.5 Defining different exception handlers

By default, the %exception directive creates an exception handler that is used for all wrapper functions that follow it. Unless
there is a well-defined (and simple) error handling mechanism in place, defining one universal exception handler may be
unwieldy and result in excessive code bloat since the handler is inlined into each wrapper function.

To fix this, you can be more selective about how you use the %exception directive. One approach is to only place it around
critical pieces of code. For example:

%exception {
... your exception handler ...

}

/* Define critical operations that can throw exceptions here */
%exception;

/* Define non—critical operations that don't throw exceptions */

More precise control over exception handling can be obtained by attaching an exception handler to specific declaration name. |
example:

%exception allocate {

try {
$action

}
catch (MemoryError) {
croak("Out of memory");

}
}

In this case, the exception handler is only attached to declarations named "allocate". This would include both global and memb
functions. The names supplied to %exception follow the same rules as for %rename described in the section on Ambiguity
resolution and renaming. For example, if you wanted to define an exception handler for a specific class, you might write this:

%exception Object::allocate {

try {
$action

}
catch (MemoryError) {
croak("Out of memory");

}
}

When a class prefix is supplied, the exception handler is applied to the corresponding declaration in the specified class as well
for identically named functions appearing in derived classes.

%exception can even be used to pinpoint a precise declaration when overloading is used. For example:

11.1.4 Exception handlers for variables 164

SWIG-1.3 Documentation

%exception Object::allocate(int) {
try {
$action
}
catch (MemoryError) {
croak("Out of memory");
}
}

Attaching exceptions to specific declarations is a good way to reduce code bloat. It can also be a useful way to attach exceptio
to specific parts of a header file. For example:

%module example

%{

#include "someheader.h"
9%}

/I Define a few exception handlers for specific declarations
%exception Object::allocate(int) {
try {
$action
}
catch (MemoryError) {
croak("Out of memory");
}
}

%exception Object::getitem {
try {
$action

}

catch (RangeError) {
croak("Index out of range");

}
}

/I Read a raw header file
%include "someheader.h"

Compatibility note: The %exception directive replaces the functionality provided by the deprecated "except" typemap. The
typemap would allow exceptions to be thrown in the target language based on the return type of a function and was intended ftc
a mechanism for pinpointing specific declarations. However, it never really worked that well and the new %exception directive i
much better.

11.1.6 Using The SWIG exception library

The exception.i library file provides support for creating language independent exceptions in your interfaces. To use it,
simply put an "%include exception.i" in your interface file. This creates a function SWIG_exception() that can be
used to raise common scripting language exceptions in a portable manner. For example :

/I Language independent exception handler
%include exception.i

%exception {

try {
$action

} catch(RangeError) {
SWIG_exception(SWIG_ValueError, "Range Error");

} catch(DivisionByZero) {
SWIG_exception(SWIG_DivisionByZero, "Division by zero");

} catch(OutOfMemory) {
SWIG_exception(SWIG_MemoryError, "Out of memory");

} catch(...) {
SWIG_exception(SWIG_RuntimeError,"Unknown exception”);

11.1.5 Defining different exception handlers 165

SWIG-1.3 Documentation

As arguments, SWIG_exception() takes an error type code (an integer) and an error message string. The currently supported
error types are :

SWIG_UnknownError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError
SWIG_AttributeError
SWIG_MemoryError
SWIG_NullReferenceError

Since the SWIG_exception() function is defined at the C-level it can be used elsewhere in SWIG. This includes typemaps
and helper functions.

11.2 Object ownership and %newobject

A common problem in some applications is managing proper ownership of objects. For example, consider a function like this:

Foo *blah() {
Foo *f = new Foo();
return f;

}

If you wrap the function blah(), SWIG has no idea that the return value is a newly allocated object. As a result, the resulting
extension module may produce a memory leak (SWIG is conservative and will never delete objects unless it knows for certain
that the returned object was newly created).

To fix this, you can provide an extra hint to the code generator using the %newobject directive. For example:

%newobiject blah;
Foo *blah();

%newobject works exactly like %rename and %exception. In other words, you can attach it to class members and
parameterized declarations as before. For example:

%newobject ::blah(); /I Only applies to global blah
%newobject Object::blah(int,double); // Only blah(int,double) in Object
%newobject *::copy; /I Copy method in all classes

When %newobject is supplied, many language modules will arrange to take ownership of the return value. This allows the
value to be automatically garbage—collected when it is no longer in use. However, this depends entirely on the target language
language module may also choose to ignore the %newobject directive).

Closely related to %newobject is a special typemap. The "newfree" typemap can be used to deallocate a newly allocated returr
value. It is only available on methods for which %newobject has been applied and is commonly used to clean—up string results
For example:

%typemap(newfree) char * "free($1);";

%newobject strdup;

11.1.6 Using The SWIG exception library 166

SWIG-1.3 Documentation

char *strdup(const char *s);

In this case, the result of the function is a string in the target language. Since this string is a copy of the original result, the data
returned by strdup() is no longer needed. The "newfree" typemap in the example simply releases this memory.

As a complement to the %newobject, from SWIG 1.3.28, you can use the %delobject directive. For example, if you have
two methods, one to create objects and one to destroy them, you can use:

%newobiject create_foo;
%delobject destroy_foo;

Foo *create_foo();
void destroy_foo(Foo *foo);

or in a member method as:

%delobject Foo::destroy;

class Foo {
public:
void destroy() { delete this;}

private:
~Foo();
h

%delobject instructs SWIG that the first argument passed to the method will be destroyed, and therefore, the target language
should not attempt to deallocate it twice. This is similar to use the DISOWN typemap in the first method argument, and in fact, |
also depends on the target language on implementing the 'disown' mechanism properly.

Compatibility note: Previous versions of SWIG had a special %new directive. However, unlike %newobiject, it only applied to
the next declaration. For example:

%new char *strdup(const char *s);
For now this is still supported but is deprecated.

How to shoot yourself in the foot: The %newobject directive is not a declaration modifier like the old %new directive. Don't
write code like this:

%newobject
char *strdup(const char *s);

The results might not be what you expect.

11.3 Features and the %feature directive

Both %exception and %newobject are examples of a more general purpose customization mechanism known as "features."
A feature is simply a user—definable property that is attached to specific declarations. Features are attached using the %featur
directive. For example:

%feature("except") Object::allocate {
try {
$action
}
catch (MemoryError) {
croak("Out of memory");
}
}

11.2 Object ownership and %newobject 167

SWIG-1.3 Documentation

%feature("new","1") *::copy;
In fact, the %exception and %newobject directives are really nothing more than macros involving %feature:

#define Y%exception %feature("except”)
#define %newobject %feature("new","1")

The name matching rules outlined in the Ambiguity resolution and renaming section applies to all %feature directives. In fact
the the %rename directive is just a special form of %feature. The matching rules mean that features are very flexible and can
be applied with pinpoint accuracy to specific declarations if needed. Additionally, if no declaration name is given, a global featu
is said to be defined. This feature is then attached to every declaration that follows. This is how global exception handlers are
defined. For example:

/* Define a global exception handler */
%feature("except") {

try {
$action

}
-

... bunch of declarations ...
The %feature directive can be used with different syntax. The following are all equivalent:

%feature("except"”) Object::method { $action };
%feature("except"”) Object::method %{ $action %};
Y%feature("except”) Object::method " $action *;
%feature("except”,"$action") Object::method;

The syntax in the first variation will generate the { } delimiters used whereas the other variations will not. The %feature
directive also accepts XML style attributes in the same way that typemaps will. Any number of attributes can be specified. The
following is the generic syntax for features:

%feature("name","value", attribute1="AttributeValuel") symbol;
%feature("name”, attribute1="AttributeVValuel") symbol {value};
%feature("name", attribute1="AttributeValuel") symbol %{value%};
%feature("name"”, attribute1="AttributeValuel") symbol "value";

More than one attribute can be specified using a comma separated list. The Java module is an example that uses attributes in
%feature("except"). The throws attribute specifies the name of a Java class to add to a proxy method's throws clause. In
the following example, MyExceptionClass is the name of the Java class for adding to the throws clause.

%feature("except”, throws="MyExceptionClass") Object::method {

try {
$action

}catch (...) {
... code to throw a MyExceptionClass Java exception ...

}
¥

Further details can be obtained from the Java exception handling section.
11.3.1 Feature flags

Feature flags are used to enable or disable a particular feature. Feature flags are a common but simple usage of %feature and
the feature value should be either 1 to enable or 0 to disable the feature.

%feature("name") /I enables feature
%feature("name”, "1") // enables feature
%feature("name”, "x") // enables feature

11.3 Features and the %feature directive 168

SWIG-1.3 Documentation

%feature("name”, "0") // disables feature
%feature("name”, ") // clears feature

Actually any value other than zero will enable the feature. Note that if the value is omitted completely, the default value become
1, thereby enabling the feature. A feature is cleared by specifying no value, see Clearing features. The %immutable directive
described in the Creating read—only variables section, is just a macro for %feature("immutable"), and can be used to
demonstrates feature flags:

/I features are disabled by default

int red; /I mutable
%feature("immutable"); // global enable
int orange; /l immutable

%feature("immutable","0"); // global disable
int yellow; /I mutable

%feature("immutable”,"1"); // another form of global enable
int green; /I immutable

%feature("immutable”,""); /I clears the global feature
int blue; /I mutable

Note that features are disabled by default and must be explicitly enabled either globally or by specifying a targeted declaration.
The above intersperses SWIG directives with C code. Of course you can target features explicitly, so the above could also be
rewritten as:

%feature("immutable”,"1") orange;
%feature("immutable”,"1") green;

int red; /I mutable

int orange; /I immutable
int yellow; /I mutable

int green; /I immutable
int blue; /l mutable

The above approach allows for the C declarations to be separated from the SWIG directives for when the C declarations are
parsed from a C header file. The logic above can of course be inverted and rewritten as:

%feature("immutable”,"1");
%feature("immutable”,"0") red;
%feature("immutable”,"0") yellow;
%feature("immutable”,"0") blue;

int red; /I mutable

int orange; /I immutable
int yellow; /I mutable

int green; /I immutable
int blue; /l mutable

11.3.2 Clearing features

A feature stays in effect until it is explicitly cleared. A feature is cleared by supplying a %feature directive with no value. For
example %feature("name",""). A cleared feature means that any feature exactly matching any previously defined feature is
no longer used in the name matching rules. So if a feature is cleared, it might mean that another name matching rule will apply

clarify, let's consider the except feature again (Y%oexception):

/I Define global exception handler
%feature("except") {
try {
$action
}catch (...) {
croak("Unknown C++ exception™);
}
}

11.3.1 Feature flags 169

SWIG-1.3 Documentation

/I Define exception handler for all clone methods to log the method calls
Y%feature("except") *::clone() {

try {
logger.info("$action”);
$action
}catch (...) {
croak("Unknown C++ exception");

}
}

... initial set of class declarations with clone methods ...

/I clear the previously defined feature

... final set of class declarations with clone methods ...

In the above scenario, the initial set of clone methods will log all method invocations from the target language. This specific
feature is cleared for the final set of clone methods. However, these clone methods will still have an exception handler (without
logging) as the next best feature match for them is the global exception handler.

Note that clearing a feature is not always the same as disabling it. Clearing the feature above with %feature("except”,"")
*::clone() is not the same as specifying %feature("except”,"0") *::clone(). The former will disable the feature

for clone methods - the feature is still a better match than the global feature. If on the other hand, no global exception handler |
been defined at all, then clearing the feature would be the same as disabling it as no other feature would have matched.

Note that the feature must match exactly for it to be cleared by any previously defined feature. For example the following attem
to clear the initial feature will not work:

%feature("except”) clone() { logger.info("$action"); $action }

but this will:

%feature("except”) clone() { logger.info("$action"); $action }

11.3.3 Features and default arguments

SWIG treats methods with default arguments as separate overloaded methods as detailed in the default arguments section. Ar
%feature targeting a method with default arguments will apply to all the extra overloaded methods that SWIG generates if the
default arguments are specified in the feature. If the default arguments are not specified in the feature, then the feature will mat
that exact wrapper method only and not the extra overloaded methods that SWIG generates. For example:

%feature("except") void hello(int i=0, double d=0.0) { ... }
void hello(int i=0, double d=0.0);

will apply the feature to all three wrapper methods, that is:

void hello(int i, double d);
void hello(int i);
void hello();

If the default arguments are not specified in the feature:

%feature("except") void hello(int i, double d) { ... }
void hello(int i=0, double d=0.0);

then the feature will only apply to this wrapper method:

11.3.2 Clearing features 170

SWIG-1.3 Documentation

void hello(int i, double d);

and not these wrapper methods:

void hello(int i);
void hello();

If compactdefaultargs are being used, then the difference between specifying or not specifying default arguments in a feature i

not applicable as just one wrapper is generated.

Compatibility note: The different behaviour of features specified with or without default arguments was introduced in

SWIG-1.3.23 when the approach to wrapping methods with default arguments was changed.

11.3.4 Feature example

As has been shown earlier, the intended use for the %feature directive is as a highly flexible customization mechanism that cat
be used to annotate declarations with additional information for use by specific target language modules. Another example is ir

the Python module. You might use %feature to rewrite proxy/shadow class code as follows:

%module example
%rename(bar_id) bar(int,double);

/I Rewrite bar() to allow some nice overloading

%feature("shadow") Foo::bar(int) %{
def bar(*args):
if len(args) == 3:
return apply(examplec.Foo_bar_id,args)
return apply(examplec.Foo_bar,args)
9%}

class Foo {
public:

int bar(int x);

int bar(int x, double y);
}

Further details of %feature usage is described in the documentation for specific language modules.

11.3.3 Features and default arguments

171

12 Contracts

* The %contract directive
* %contract and classes

» Constant aggregation and %aggregate_check
» Notes

A common problem that arises when wrapping C libraries is that of maintaining reliability and checking for errors. The fact of th
matter is that many C programs are notorious for not providing error checks. Not only that, when you expose the internals of ar
application as a library, it often becomes possible to crash it simply by providing bad inputs or using it in a way that wasn't
intended.

This chapter describes SWIG's support for software contracts. In the context of SWIG, a contract can be viewed as a runtime
constraint that is attached to a declaration. For example, you can easily attach argument checking rules, check the output value
a function and more. When one of the rules is violated by a script, a runtime exception is generated rather than having the prog
continue to execute.

12.1 The %contract directive

Contracts are added to a declaration using the %contract directive. Here is a simple example:

%contract sqrt(double x) {
require:
X >=0;
ensure:
sqrt >=0;
}

double sqgrt(double);

In this case, a contract is being added to the sqrt() function. The %contract directive must always appear before the
declaration in question. Within the contract there are two sections, both of which are optional. The require: section specifies
conditions that must hold before the function is called. Typically, this is used to check argument values. The ensure: section
specifies conditions that must hold after the function is called. This is often used to check return values or the state of the progr
In both cases, the conditions that must hold must be specified as boolean expressions.

In the above example, we're simply making sure that sqrt() returns a non—negative number (if it didn't, then it would be broken
some way).

Once a contract has been specified, it modifies the behavior of the resulting module. For example:

>>> example.sqrt(2)
1.4142135623730951
>>> example.sqrt(—2)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
RuntimeError: Contract violation: require: (arg1>=0)
>>>

12.2 %contract and classes

The %contract directive can also be applied to class methods and constructors. For example:

%contract Foo::bar(int x, int y) {
require:

x>0;
ensure:

12 Contracts 172

SWIG-1.3 Documentation

bar > 0;

}

%contract Foo::Foo(int a) {
require:
a>o;

}

class Foo {
public:

Foo(int);

int bar(int, int);
h

The way in which %contract is applied is exactly the same as the %feature directive. Thus, any contract that you specified
for a base class will also be attached to inherited methods. For example:

class Spam : public Foo {
public:
int bar(int,int); // Gets contract defined for Foo::bar(int,int)

h
In addition to this, separate contracts can be applied to both the base class and a derived class. For example:

%contract Foo::bar(int x, int) {
require:

x> 0;
}

%contract Spam::bar(int, int y) {
require:

y>0;
}

class Foo {
public:
int bar(int,int); // Gets Foo::bar contract.
¥
class Spam : public Foo {

public:
int bar(int,int); // Gets Foo::bar and Spam::bar contract
h

When more than one contract is applied, the conditions specified in a "require:" section are combined together using a
logical-AND operation. In other words conditions specified for the base class and conditions specified for the derived class all
must hold. In the above example, this means that both the arguments to Spam::bar must be positive.

12.3 Constant aggregation and %aggregate_check

Consider an interface file that contains the following code:

#define UP 1

#define DOWN 2
#define RIGHT 3
#define LEFT 4

void move(SomeObiject *, int direction, int distance);

One thing you might want to do is impose a constraint on the direction parameter to make sure it's one of a few accepted value
To do that, SWIG provides an easy to use macro %aggregate_check() that works like this:

%aggregate_check(int, check_direction, UP, DOWN, LEFT, RIGHT);

12.2 %contract and classes 173

SWIG-1.3 Documentation

This merely defines a utility function of the form
int check_direction(int x);
That checks the argument x to see if it is one of the values listed. This utility function can be used in contracts. For example:

%aggregate_check(int, check_direction, UP, DOWN, RIGHT, LEFT);
%contract move(SomeObiject *, int direction, in) {
require:
check_direction(direction);
}
#define UP 1
#define DOWN 2
#define RIGHT 3
#define LEFT 4

void move(SomeObiject *, int direction, int distance);
Alternatively, it can be used in typemaps and other directives. For example:

%aggregate_check(int, check_direction, UP, DOWN, RIGHT, LEFT);
%typemap(check) int direction {

if (Icheck_direction($1)) SWIG_exception(SWIG_ValueError, "Bad direction");
}

#define UP 1

#define DOWN 2
#define RIGHT 3
#define LEFT 4

void move(SomeObiject *, int direction, int distance);

Regrettably, there is no automatic way to perform similar checks with enums values. Maybe in a future release.

12.4 Notes

Contract support was implemented by Songyan (Tiger) Feng and first appeared in SWIG-1.3.20.

12.3 Constant aggregation and %aggregate_check 174

13 Variable Length Arguments

« Introduction
* The Problem

« Default varargs support

« Argument replacement using %varargs
« Varargs and typemaps

« Varargs wrapping with libffi

» Wrapping of va_list

* C++ Issues
« Discussion
(a.k.a, "The horror. The horror.")

This chapter describes the problem of wrapping functions that take a variable number of arguments. For instance, generating
wrappers for the C printf() family of functions.

This topic is sufficiently advanced to merit its own chapter. In fact, support for varargs is an often requested feature that was fir.
added in SWIG-1.3.12. Most other wrapper generation tools have wisely chosen to avoid this issue.

13.1 Introduction

Some C and C++ programs may include functions that accept a variable number of arguments. For example, most programme
are familiar with functions from the C library such as the following:

int printf(const char *fmt, ...)
int fprintf(FILE *, const char *fmt, ...);
int sprintf(char *s, const char *fmt, ...);

Although there is probably little practical purpose in wrapping these specific C library functions in a scripting language (what
would be the point?), a library may include its own set of special functions based on a similar API. For example:

int traceprintf(const char *fmt, ...);
In this case, you may want to have some kind of access from the target language.
Before describing the SWIG implementation, it is important to discuss the common uses of varargs that you are likely to
encounter in real programs. Obviously, there are the printf() style output functions as shown. Closely related to this would be
scanf() style input functions that accept a format string and a list of pointers into which return values are placed. However,
variable length arguments are also sometimes used to write functions that accept a NULL-terminated list of pointers. A good
example of this would be a function like this:

int execlp(const char *path, const char *arg1, ...);

/* Example */
execlp("ls","Is","=I",NULL);

In addition, varargs is sometimes used to fake default arguments in older C libraries. For instance, the low level open() system
call is often declared as a varargs function so that it will accept two or three arguments:

int open(const char *path, int oflag, ...);

/* Examples */
f = open("foo”, O_RDONLY);
g = open("bar", O_WRONLY | O_CREAT, 0644);

13 Variable Length Arguments 175

SWIG-1.3 Documentation

Finally, to implement a varargs function, recall that you have to use the C library functions defined in <stdarg.h>. For
example:

List make_list(const char *s, ...) {
va_list ap;
List x;

va_start(ap, s);
while (s) {
x.append(s);
s = va_arg(ap, const char *);

va_end(ap);
return x;

}
13.2 The Problem

Generating wrappers for a variable length argument function presents a number of special challenges. Although C provides
support for implementing functions that receive variable length arguments, there are no functions that can go in the other
direction. Specifically, you can't write a function that dynamically creates a list of arguments and which invokes a varargs
function on your behalf.

Although it is possible to write functions that accept the special type va_list, this is something entirely different. You can't
take a va_list structure and pass it in place of the variable length arguments to another varargs function. It just doesn't work.

The reason this doesn't work has to do with the way that function calls get compiled. For example, suppose that your program |
a function call like this:

printf("Hello %s. Your number is %d\n", name, num);

When the compiler looks at this, it knows that you are calling printf() with exactly three arguments. Furthermore, it knows
that the number of arguments as well are their types and sizes is never going to change during program execution. Therefore,
gets turned to machine code that sets up a three—argument stack frame followed by a call to printf().

In contrast, suppose you attempted to make some kind of wrapper around printf() using code like this:

int wrap_printf(const char *fmt, ...) {
va_list ap;
va_start(ap,fmt);

printf(fmt,ap);

va_end(ap);

g

Athough this code might compile, it won't do what you expect. This is because the call to printf() is compiled as a procedure
call involving only two arguments. However, clearly a two—argument configuration of the call stack is completely wrong if your
intent is to pass an arbitrary number of arguments to the real printf(). Needless to say, it won't work.

Unfortunately, the situation just described is exactly the problem faced by wrapper generation tools. In general, the number of
passed arguments will not be known until run—time. To make matters even worse, you won't know the types and sizes of
arguments until run—time as well. Needless to say, there is no obvious way to make the C compiler generate code for a functio
call involving an unknown number of arguments of unknown types.

In theory, it is possible to write a wrapper that does the right thing. However, this involves knowing the underlying ABI for the
target platform and language as well as writing special purpose code that manually constructed the call stack before making a
procedure call. Unfortunately, both of these tasks require the use of inline assembly code. Clearly, that's the kind of solution yo
would much rather avoid.

13.1 Introduction 176

SWIG-1.3 Documentation

With this nastiness in mind, SWIG provides a number of solutions to the varargs wrapping problem. Most of these solutions are
compromises that provide limited varargs support without having to resort to assembly language. However, SWIG can also
support real varargs wrapping (with stack—frame manipulation) if you are willing to get hands dirty. Keep reading.

13.3 Default varargs support

When variable length arguments appear in an interface, the default behavior is to drop the variable argument list entirely,
replacing them with a single NULL pointer. For example, if you had this function,

void traceprintf(const char *fmt, ...);
it would be wrapped as if it had been declared as follows:

void traceprintf(const char *fmt);
When the function is called inside the wrappers, it is called as follows:

traceprintf(argl, NULL);
Arguably, this approach seems to defeat the whole point of variable length arguments. However, this actually provides enough
support for many simple kinds of varargs functions to still be useful. For instance, you could make function calls like this (in
Python):

>>> traceprintf("Hello World")
>>> traceprintf("Hello %s. Your number is %d\n" % (name, num))

Notice how string formatting is being done in Python instead of C.

13.4 Argument replacement using %varargs

Instead of dropping the variable length arguments, an alternative approach is to replace (...) with a set of suitable arguments.
SWIG provides a special %varargs directive that can be used to do this. For example,

%varargs(int mode = 0) open;

int open(const char *path, int oflags, ...);
is equivalent to this:

int open(const char *path, int oflags, int mode = 0);
In this case, %varargs is simply providing more specific information about the extra arguments that might be passed to a
function. If the parameters to a varargs function are of uniform type, %varargs can also accept a numerical argument count as
follows:

%varargs(10,char *arg = NULL) execlp;

int execlp(const char *path, const char *argl, ...);

This would wrap execlp() as a function that accepted up to 10 optional arguments. Depending on the application, this may be
more than enough for practical purposes.

Argument replacement is most appropriate in cases where the types of the extra arguments is uniform and the maximum numt
of arguments is known. When replicated argument replacement is used, at least one extra argument is added to the end of the
arguments when making the function call. This argument serves as a sentinel to make sure the list is properly terminated. It ha
the same value as that supplied to the %varargs directive.

13.2 The Problem 177

SWIG-1.3 Documentation

Argument replacement is not as useful when working with functions that accept mixed argument types such as printf().
Providing general purpose wrappers to such functions presents special problems (covered shortly).

13.5 Varargs and typemaps
Variable length arguments may be used in typemap specifications. For example:

%typemap(in) (...) {
/I Get variable length arguments (somehow)

}

%typemap(in) (const char *fmt, ...) {
/I Multi-argument typemap

}

However, this immediately raises the question of what "type" is actually used to represent (...). For lack of a better alternative,
the type of (...) is set to void *. Since there is no way to dynamically pass arguments to a varargs function (as previously
described), the void * argument value is intended to serve as a place holder for storing some kind of information about the extr:
arguments (if any). In addition, the default behavior of SWIG is to pass the void * value as an argument to the function.
Therefore, you could use the pointer to hold a valid argument value if you wanted.

To illustrate, here is a safer version of wrapping printf() in Python:

%typemap(in) (const char *fmt, ...) {

$1 ="%s"; * Fix format string to %s */

$2 = (void *) PyString_AsString($input); /* Get string argument */
h

int printf(const char *fmt, ...);

In this example, the format string is implicitly set to "%s". This prevents a program from passing a bogus format string to the
extension. Then, the passed input object is decoded and placed in the void * argument defined for the (...) argument. When
the actual function call is made, the underlying wrapper code will look roughly like this:

wrap_printf() {
char *arg1,;
void *arg2;
int result;

argl = "%s";
arg2 = (void *) PyString_AsString(arg2obj);

result = printf(argl,arg2);
}

Notice how both arguments are passed to the function and it does what you would expect.

The next example illustrates a more advanced kind of varargs typemap. Disclaimer: this requires special support in the target
language module and is not guaranteed to work with all SWIG modules at this time. It also starts to illustrate some of the more
fundamental problems with supporting varargs in more generality.

If a typemap is defined for any form of (...), many SWIG modules will generate wrappers that accept a variable number of
arguments as input and will make these arguments available in some form. The precise details of this depends on the languag:
module being used (consult the appropriate chapter for more details). However, suppose that you wanted to create a Python
wrapper for the execlp() function shown earlier. To do this using a typemap instead of using %varargs, you might first write

a typemap like this:

%typemap(in) (...)(char *args[10]) {

13.4 Argument replacement using %varargs 178

SWIG-1.3 Documentation

inti;
int argc;
for (i=0; i< 10; i++) args[i] = 0;
argc = PyTuple_Size(varargs);
if (argc > 10) {

PyErr_SetString(PyExc_ValueError,"Too many arguments");

return NULL;
}

for (i=0;i<argc; i++) {
PyObject *o = PyTuple_Getltem(varargs,i);
if (IPyString_Check(0)) {
PyErr_SetString(PyExc_ValueError,"Expected a string");
return NULL;

argsli] = PyString_AsString(o);

}
$1 = (void *) args;
}

In this typemap, the special variable varargs is a tuple holding all of the extra arguments passed (this is specific to the Python
module). The typemap then pulls this apart and sticks the values into the array of strings args. Then, the array is assigned to $
(recall that this is the void * variable corresponding to (...)). However, this assignment is only half of the

picture————clearly this alone is not enough to make the function work. To patch everything up, you have to rewrite the
underlying action code using the %feature directive like this:

%feature("action") execlp {
char *args = (char **) arg3;
result = execlp(argl, arg2, args[0], args[1], args[2], args[3], args[4],
args[5],args[6],args[7],args[8],args[9], NULL);
}

int execlp(const char *path, const char *arg, ...);

This patches everything up and creates a function that more or less works. However, don't try explaining this to your coworkers
unless you know for certain that they've had several cups of coffee. If you really want to elevate your guru status and increase
your job security, continue to the next section.

13.6 Varargs wrapping with libffi

All of the previous examples have relied on features of SWIG that are portable and which don't rely upon any low-level
machine—-level details. In many ways, they have all dodged the real issue of variable length arguments by recasting a varargs
function into some weaker variation with a fixed number of arguments of known types. In many cases, this works perfectly fine.
However, if you want more generality than this, you need to bring out some bigger guns.

One way to do this is to use a special purpose library such as_libffi (http:/sources.redhat.com/libffi). libffi is a library that allows
you to dynamically construct call-stacks and invoke procedures in a relatively platform independent manner. Details about the
library can be found in the libffi distribution and are not repeated here.

To illustrate the use of libffi, suppose that you really wanted to create a wrapper for execlp() that accepted any number of
arguments. To do this, you might make a few adjustments to the previous example. For example:

/* Take an arbitrary number of extra arguments and place into an array
of strings */

%typemap(in) (...) {
char **argv;
int argc;
int i
argc = PyTuple_Size(varargs);

argv = (char **) malloc(sizeof(char *)*(argc+1));
for (i=0; i <argc; i++) {

13.5 Varargs and typemaps 179

http://sources.redhat.com/libffi/

SWIG-1.3 Documentation

PyObject *o = PyTuple_Getltem(varargs,i);

if (IPyString_Check(0)) {
PyErr_SetString(PyExc_ValueError,"Expected a string");
free(argv);
return NULL,;

argv[i] = PyString_AsString(0);

}

argv[i] = NULL;

$1 = (void *) argv;
}

/* Rewrite the function call, using libffi */

%feature("action") execlp {
int i, Ve,

ffi_cif cif;

ffi_type **types;

void **values;

char **args;

vc = PyTuple_Size(varargs);

types = (ffi_type **) malloc((vc+3)*sizeof(ffi_type *));
values = (void **) malloc((vc+3)*sizeof(void *));

args = (char **) arg3;

[* Set up path parameter */
types[0] = &ffi_type_pointer;
values[0] = &argl;

/* Set up first argument */
types[1] = &ffi_type_pointer;
values[1] = &arg2;

[* Set up rest of parameters */

for (i = 0; i <=vc; i++) {
types[2+i] = &ffi_type_pointer;
values[2+i] = &args]i];

}
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, vc+3,
&ffi_type_uint, types) == FFI_OK) {
ffi_call(&cif, (void (*)()) execlp, &result, values);
}else {

free(types);
free(values);
free(arg3);
return NULL;

}
free(types);
free(values);
free(arg3);

}

* Declare the function. Whew! */
int execlp(const char *path, const char *arg1, ...);

Looking at this example, you may start to wonder if SWIG is making life any easier. Given the amount of code involved, you
might also wonder why you didn't just write a hand—crafted wrapper! Either that or you're wondering "why in the hell am | trying
to wrap this varargs function in the first place?!?" Obviously, those are questions you'll have to answer for yourself.

As a more extreme example of libffi, here is some code that attempts to wrap printf(),
* A wrapper for printf() using libffi */

9%{

13.6 Varargs wrapping with libffi 180

SWIG-1.3 Documentation

[* Structure for holding passed arguments after conversion */
typedef struct {
int type;
union {
int ivalue;
double dvalue;
void *pvalue;
}val;
} vtype;
enum { VT_INT, VT_DOUBLE, VT_POINTER };
%0}

%typemap(in) (const char *fmt, ...) {
vtype *argv;

int argc;

int i

/* Format string */
$1 = PyString_AsString($input);

* Variable length arguments */
argc = PyTuple_Size(varargs);
argv = (vtype *) malloc(argc*sizeof(vtype));
for (i = 0; i < argc; i++) {
PyObject *o = PyTuple_Getltem(varargs,i);
if (PyInt_Check(0)) {
argv[i].type = VT_INT,;
argv[i].val.ivalue = PyInt_AsLong(0);
} else if (PyFloat_Check(0)) {
argv[i].type = VT_DOUBLE;
argv[i].val.dvalue = PyFloat_AsDouble(0);
} else if (PyString_Check(0)) {
argv[i].type = VT_POINTER,;
argv[i].val.pvalue = (void *) PyString_AsString(0);
}else {
PyErr_SetString(PyExc_ValueError,"Unsupported argument type");
free(argv);
return NULL;
}
}
$2 = (void *) argv;
}

/* Rewrite the function call using libffi */
%feature("action") printf {

int i, vc;

ffi_cif cif;

ffi_type **types;

void **values;

vtype *args;

vc = PyTuple_Size(varargs);

types = (ffi_type **) malloc((vc+1)*sizeof(ffi_type *));
values = (void **) malloc((vc+1)*sizeof(void *));

args = (vtype *) arg2;

[* Set up fmt parameter */
types[0] = &ffi_type_pointer;
values[0] = &arg1;

[* Set up rest of parameters */
for (i=0;i<vc; i++) {
switch(argsl[i].type) {
case VT_INT:
types[1+i] = &ffi_type_uint;
values[1+i] = &args]i].val.ivalue;
break;
case VT_DOUBLE:

13.6 Varargs wrapping with libffi

181

SWIG-1.3 Documentation

types[1+i] = &ffi_type_double;
values[1+i] = &args][i].val.dvalue;
break;
case VT_POINTER:
types[1+i] = &ffi_type_pointer;
values[1+i] = &args]i].val.pvalue;
break;
default:
abort(); /*Whoa! We're seriously hosed */
break;

}

}
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, vc+1,
&ffi_type_uint, types) == FFI_OK) {
ffi_call(&cif, (void (*)()) printf, &result, values);
}else {

free(types);
free(values);
free(args);
return NULL;

}
free(types);
free(values);
free(args);

}

* The function */
int printf(const char *fmt, ...);

Much to your amazement, it even seems to work if you try it:

>>> jmport example

>>> example.printf("Grade: %s %d/60 = %0.2f%%\n", "Dave", 47, 47.0*100/60)
Grade: Dave 47/60 = 78.33%

>>>

Of course, there are still some limitations to consider:

>>> example.printf("la de da de da %s", 42)
Segmentation fault (core dumped)

And, on this note, we leave further exploration of libffi to the reader as an exercise. Although Python has been used as an
example, most of the techniques in this section can be extrapolated to other language modules with a bit of work. The only det:
you need to know is how the extra arguments are accessed in each target language. For example, in the Python module, we u
the special varargs variable to get these arguments. Modules such as Tcl8 and Perl5 simply provide an argument number for
the first extra argument. This can be used to index into an array of passed arguments to get values. Please consult the chapter
each language module for more details.

13.7 Wrapping of va_list

Closely related to variable length argument wrapping, you may encounter functions that accept a parameter of type va_list.
For example:

int viprintf(FILE *f, const char *fmt, va_list ap);

As far as we know, there is no obvious way to wrap these functions with SWIG. This is because there is no documented way tc
assemble the proper va_list structure (there are no C library functions to do it and the contents of va_list are opaque). Not only
that, the contents of a va_list structure are closely tied to the underlying call-stack. It's not clear that exporting a va_list

would have any use or that it would work at all.

13.7 Wrapping of va_list 182

SWIG-1.3 Documentation
13.8 C++ Issues

Wrapping of C++ member functions that accept a variable number of arguments presents a number of challenges. By far, the
easiest way to handle this is to use the %varargs directive. This is portable and it fully supports classes much like the %rename
directive. For example:

%varargs (10, char * = NULL) Foo::bar;

class Foo {
public:

virtual void bar(char *arg, ...); /I gets varargs above
h

class Spam: public Foo {
public:
virtual void bar(char *arg, ...); // gets varargs above

h
%varargs also works with constructors, operators, and any other C++ programming construct that accepts variable arguments.

Doing anything more advanced than this is likely to involve a serious world of pain. In order to use a library like libffi, you will
need to know the underlying calling conventions and details of the C++ ABI. For instance, the details of how this is passed to
member functions as well as any hidden arguments that might be used to pass additional information. These details are
implementation specific and may differ between compilers and even different versions of the same compiler. Also, be aware th:
invoking a member function is further complicated if it is a virtual method. In this case, invocation might require a table lookup t
obtain the proper function address (although you might be able to obtain an address by casting a bound pointer to a pointer to
function as described in the C++ ARM section 18.3.4).

If you do decide to change the underlying action code, be aware that SWIG always places the this pointer in argl. Other
arguments are placed in arg2, arg3, and so forth. For example:

%feature("action") Foo::bar {
result = argl->bar(arg2, arg3, etc.);
}

Given the potential to shoot yourself in the foot, it is probably easier to reconsider your design or to provide an alternative
interface using a helper function than it is to create a fully general wrapper to a varargs C++ member function.

13.9 Discussion

This chapter has provided a number of techniques that can be used to address the problem of variable length argument wrapp
If you care about portability and ease of use, the %varargs directive is probably the easiest way to tackle the problem. Howeve
using typemaps, it is possible to do some very advanced kinds of wrapping.

One point of discussion concerns the structure of the libffi examples in the previous section. Looking at that code, it is not at all
clear that this is the easiest way to solve the problem. However, there are a number of subtle aspects of the solution to
consider——mostly concerning the way in which the problem has been decomposed. First, the example is structured in a way th
tries to maintain separation between wrapper—specific information and the declaration of the function itself. The idea here is the
you might structure your interface like this:

%typemap(const char *fmt, ...) {

}

%feature("action") traceprintf {

}

13.8 C++ Issues 183

SWIG-1.3 Documentation

/* Include some header file with traceprintf in it */
%include "someheader.h"

Second, careful scrutiny will reveal that the typemaps involving (...) have nothing whatsoever to do with the libffi library. In

fact, they are generic with respect to the way in which the function is actually called. This decoupling means that it will be muck
easier to consider other library alternatives for making the function call. For instance, if libffi wasn't supported on a certain
platform, you might be able to use something else instead. You could use conditional compilation to control this:

#ifdef USE_LIBFFI
%feature("action") printf {

}
#endif

#ifdef USE_OTHERFFI
%feature("action") printf {

}
#endif

Finally, even though you might be inclined to just write a hand-written wrapper for varargs functions, the techniques used in the
previous section have the advantage of being compatible with all other features of SWIG such as exception handling.

As a final word, some C programmers seem to have the assumption that the wrapping of variable length argument functions is
easily solved problem. However, this section has hopefully dispelled some of these myths. All things being equal, you are bette
off avoiding variable length arguments if you can. If you can't avoid them, please consider some of the simple solutions first. If
you can't live with a simple solution, proceed with caution. At the very least, make sure you carefully read the section "A7.3.2
Function Calls" in Kernighan and Ritchie and make sure you fully understand the parameter passing conventions used for vara
Also, be aware of the platform dependencies and reliability issues that this will introduce. Good luck.

13.9 Discussion 184

14 Warning Messages

« Introduction

« Warning message suppression

« Enabling additional warnings

« Issuing a warning message

« Commentary

« Warnings as errors

» Message output format

« Warning number reference
¢ Deprecated features (100-199)
¢ Preprocessor (200-299)
¢ C/C++ Parser (300-399)
¢ Types and typemaps (400-499)
¢ Code generation (500-599)
¢ Language module specific (800—899)
¢ User defined (900-999)

« History

14.1 Introduction

During compilation, SWIG may generate a variety of warning messages. For example:

example.i:16: Warning(501): Overloaded declaration ignored. bar(double)
example.i:15: Warning(501): Previous declaration is bar(int)

Typically, warning messages indicate non—fatal problems with the input where the generated wrapper code will probably compi
but it may not work like you expect.

14.2 Warning message suppression

All warning messages have a numeric code that is shown in the warning message itself. To suppress the printing of a warning
message, a number of techniques can be used. First, you can run SWIG with the -w command line option. For example:

% swig —python —w501 example.i
% swig —python -w501,505,401 example.i

Alternatively, warnings can be suppressed by inserting a special preprocessor pragma into the input file:

%module example
#pragma SWIG nowarn=501
#pragma SWIG nowarn=501,505,401

Finally, code—generation warnings can be disabled on a declaration by declaration basis using the %warnfilter directive. For
example:

%module example
%warnfilter(501) foo;

int foo(int);
int foo(double); /I Silently ignored.

The %warnfilter directive has the same semantics as other declaration modifiers like %rename, %ignore, and %feature.
For example, if you wanted to suppress a warning for a method in a class hierarchy, you could do this:

%warnfilter(501) Object::foo;
class Object {

14 Warning Messages 185

SWIG-1.3 Documentation

public:
int foo(int);
int foo(double); // Silently ignored

B

class Derived : public Object {
public:
int foo(int);
int foo(double); // Silently ignored

h
Warnings can be suppressed for an entire class by supplying a class name. For example:

%warnfilter(501) Object;

class Object {
public:

N

/I All 501 warnings ignored in class

There is no option to suppress all SWIG warning messages. The warning messages are there for a reason——-to tell you that
something may be broken in your interface. Ignore the warning messages at your own peril.

14.3 Enabling additional warnings

Some warning messages are disabled by default and are generated only to provide additional diagnostics. All warning messag
can be enabled using the —Wall option. For example:

% swig —Wall —python example.i
When -Wall is used, all other warning filters are disabled.

To selectively turn on extra warning messages, you can use the directives and options in the previous section——simply add a "
to all warning numbers. For example:

% swig ~w+309,+452 example.i
or

#pragma SWIG nowarn=+309,+452
or

%warnfilter(+309,+452) foo;

Note: selective enabling of warnings with %warnfilter overrides any global settings you might have made using —w or
#pragma.

14.4 I1ssuing a warning message
Warning messages can be issued from an interface file using a number of directives. The %warn directive is the most simple:
%warn "750:This is your last warning!"

All warning messages are optionally prefixed by the warning number to use. If you are generating your own warnings, make su
you don't use numbers defined in the table at the end of this section.

14.2 Warning message suppression 186

SWIG-1.3 Documentation

The %ignorewarn directive is the same as %ignore except that it issues a warning message whenever a matching declaration
is found. For example:

%ignorewarn("362:operator= ignored") operator=;

Warning messages can be associated with typemaps using the warning attribute of a typemap declaration. For example:

%typemap(in, warning="751:You are really going to regret this") blah * {
}

In this case, the warning message will be printed whenever the typemap is actually used.

14.5 Commentary

The ability to suppress warning messages is really only provided for advanced users and is not recommended in normal use. T
are no plans to provide symbolic names or options that identify specific types or groups of warning messages——-the numbers
must be used explicitly.

Certain types of SWIG problems are errors. These usually arise due to parsing errors (bad syntax) or semantic problems for wi
there is no obvious recovery. There is no mechanism for suppressing error messages.

14.6 Warnings as errors

Warnings can be handled as errors by using the —Werror command line option. This will cause SWIG to exit with a non
successful exit code if a warning is encountered.

14.7 Message output format

The output format for both warnings and errors can be selected for integration with your favourite IDE/editor. Editors and IDEs
can usually parse error messages and if in the appropriate format will easily take you directly to the source of the error. The
standard format is used by default except on Windows where the Microsoft format is used by default. These can be overridden
using command line options, for example:

$ swig —python —Fstandard example.i
example.i:4: Syntax error in input.
$ swig —python —Fmicrosoft example.i
example.i(4): Syntax error in input.

14.8 Warning number reference

14.8.1 Deprecated features (100-199)

» 101. Deprecated %extern directive.

» 102. Deprecated %val directive.

« 103. Deprecated %out directive.

* 104. Deprecated %disabledoc directive.

* 105. Deprecated %enabledoc directive.

« 106. Deprecated %doconly directive.

« 107. Deprecated %style directive.

* 108. Deprecated %localstyle directive.

* 109. Deprecated %title directive.

 110. Deprecated %section directive.

» 111. Deprecated %subsection directive.

» 112. Deprecated %subsubsection directive.
 113. Deprecated %addmethods directive.

14.4 Issuing a warning message 187

« 114.
e 115.
« 116.
« 117.
« 118.
« 1109.
« 120.
« 121.

SWIG-1.3 Documentation

Deprecated %readonly directive.
Deprecated %readwrite directive.
Deprecated %except directive.
Deprecated %new directive.
Deprecated %typemap(except).
Deprecated %typemap(ignore).
Deprecated command line option (—c).
Deprecated %name directive.

14.8.2 Preprocessor (200-299)

« 201.
» 202.

Unable to find ‘filename"'.
Could not evaluate 'expr'.

14.8.3 C/C++ Parser (300—-399)

« 301.
» 302.
» 303.
» 304.
» 305.
* 306.
» 307.
» 308.
» 3009.
« 310.
« 311.
« 312.
« 313.
» 314.
« 315.
» 316.
« 317.
» 318.
« 319.
» 320.
« 321.
» 322.
» 350.
« 351.
» 352.
» 353.
» 354.
» 355.
» 356.
» 357.
» 358.
» 359.
* 360.
* 361.
* 362.
* 363.
* 364.
* 365.
* 366.
* 367.

class keyword used, but not in C++ mode.

Identifier 'name’ redefined (ignored).

%extend defined for an undeclared class 'name".
Unsupported constant value (ignored).

Bad constant value (ignored).

'identifier' is private in this context.

Can't set default argument value (ignored)

Namespace alias 'name' not allowed here. Assuming 'name’
[private | protected] inheritance ignored.

Template 'name' was already wrapped as 'name’ (ignored)
Template partial specialization not supported.

Nested classes not currently supported (ignored).
Unrecognized extern type "name" (ignored).

'identifier' is a lang keyword.

Nothing known about ‘identifier'.

Repeated %module directive.

Specialization of non-template 'name’.

Instantiation of template hame is ambiguous. Using templ at file:line

No access specifier given for base class name (ignored).
Explicit template instantiation ignored.
identifier conflicts with a built—-in name.
Redundant redeclaration of 'name’.
operator new ignored.

operator delete ignored.

operator+ ignored.

operator- ignored.

operator* ignored.

operator/ ignored.

operator% ignored.

operator” ignored.

operator& ignored.

operator| ignored.

operator~ ignored.

operator! ignored.

operator= ignored.

operator< ignored.

operator> ignored.

operator+= ignored.
operator—=ignored.

operator*= ignored.

14.8.1 Deprecated features (100-199)

188

» 368.
* 369.
« 370.
« 371.
» 372.
» 373.
» 374.
» 375.
» 376.
« 377.
» 378.
« 379.
 380.
» 381.
» 382.
» 383.
» 384.
» 385.
» 386.
» 387.
» 388.
» 389.
» 390.
« 3901.
* 392.
» 393.
* 394.
» 305.

SWIG-1.3 Documentation

operator/= ignored.
operator%= ignored.
operator"= ignored.
operator&= ignored.
operator|= ignored.
operator<< ignored.
operator>>ignored.
operator<<= ignored.
operator>>= ignored.
operator==ignored.
operator!= ignored.
operator<= ignored.
operator>= ignored.
operator&& ignored.
operator|| ignored.
operator++ ignored.
operator—- ignored.
operator, ignored.
operator—<* ignored.
operator-< ignored.
operator() ignored.
operator[] ignored.
operator+ ignored (unary).
operator- ignored (unary).
operator* ignored (unary).
operator& ignored (unary).
operator new[] ignored.
operator delete[] ignored.

14.8.4 Types and typemaps (400-499)

* 401.
* 402.
* 403.
* 450.
* 451.
* 452.
* 453.
* 460.
* 461.
* 462.
* 463.
* 464.
* 465.
* 466.
* 467.
* 468.
* 469.
* 470.
* 471.

Nothing known about class 'name’. Ignored.

Base class 'name’ is incomplete.

Class 'name' might be abstract.

Deprecated typemap feature ($source/$target).

Setting const char * variable may leak memory.

Reserved

Can't apply (pattern). No typemaps are defined.

Unable to use type type as a function argument.

Unable to use return type type in function name.

Unable to set variable of type type.

Unable to read variable of type type.

Unsupported constant value.

Unable to handle type type.

Unsupported variable type type.

Overloaded declaration not supported (no type checking rule for 'type")
No 'throw' typemap defined for exception type type

No or improper directorin typemap defined for type

Thread/reentrant unsafe wrapping, consider returning by value instead.
Unable to use return type type in director method

14.8.5 Code generation (500-599)

« 501.
* 502.
» 503.

Overloaded declaration ignored. decl
Overloaded constructor ignored. decl
Can't wrap 'identifier' unless renamed to a valid identifier.

14.8.3 C/C++ Parser (300—-399)

189

* 504.
« 505.
* 506.
« 507.
» 508.
» 5009.
« 510.
« 511.
« 512.
« 513.
« 514.
« 515.
* 516.
« 517.
« 518.

SWIG-1.3 Documentation

Function name must have a return type.

Variable length arguments discarded.

Can't wrap varargs with keyword arguments enabled.

Adding native function name not supported (ignored).

Declaration of 'name’ shadows declaration accessible via operator—>() at file:line.
Overloaded declaration is shadowed by declaration at file:line.

Friend function 'name’ ignored.

Can't use keyword arguments with overloaded functions.

Overloaded declaration const ignored. Non—const method at file:line used.

Can't generate wrappers for unnamed struct/class.

Overloaded method declaration ignored. Method declaration at file:line used.

Portability warning: File filel will be overwritten by file2 on case insensitive filesystems such as Windows' FAT32

and NTFS unless the class/module name is renamed.

14.8.6 Language module specific (800—-899)

« 801.

« 810.
« 811.
« 812.
» 813.
» 814.
» 815.
» 816.
« 817.
» 818.
« 8109.
» 820.
« 821.
* 822.
* 823.
* 824.

» 830.
» 831.
» 832.
» 833.
* 834.
» 835.
» 836.
» 837.
» 838.
» 839.
» 840.
* 841.
* 842.
* 843.
* 844.
* 845.

Wrong name (corrected to 'name’). (Ruby).

No jni typemap defined for type (Java).

No jtype typemap defined for type (Java).

No jstype typemap defined for type (Java).

Warning for classname: Base baseclass ignored. Multiple inheritance is not supported in Java. (Java).

No javafinalize typemap defined for type (Java).

No javabody typemap defined for type (Java).

No javaout typemap defined for type (Java).

No javain typemap defined for type (Java).

No javadirectorin typemap defined for type (Java).
No javadirectorout typemap defined for type (Java).

Covariant return types not supported in Java. Proxy method will return basetype (Java).
No javaconstruct typemap defined for type (Java).
Missing JNI descriptor in directorin typemap defined for type (Java).

No ctype typemap defined for type (C#).

No cstype typemap defined for type (C#).

No cswtype typemap defined for type (C#).

Warning for classname: Base baseclass ignored. Multiple inheritance is not supported in C#. (C#).

No csfinalize typemap defined for type (C#).
No csbody typemap defined for type (C#).
No csout typemap defined for type (C#).

No csin typemap defined for type (C#).

Covariant return types not supported in C#. Proxy method will return basetype (C#).

No csconstruct typemap defined for type (C#).

C# exception may not be thrown — no $excode or excode attribute in typemap typemap. (C#).

Unmanaged code contains a call to a SWIG_CSharpSetPendingException method and C# code does not handle

pending exceptions via the canthrow attribute. (C#).

» 870.

Warning for classname: Base baseclass ignored. Multiple inheritance is not supported in Php4. (Php4).

14.8.5 Code generation (500-599) 190

SWIG-1.3 Documentation
14.8.7 User defined (900-999)

These numbers can be used by your own application.

14.9 History

The ability to control warning messages was first added to SWIG-1.3.12.

14.8.7 User defined (900-999) 191

15 Working with Modules

* The SWIG runtime code

» External access to the runtime

» A word of caution about static libraries
» References

» Reducing the wrapper file size

When first working with SWIG, users commonly start by creating a single module. That is, you might define a single SWIG
interface that wraps some set of C/C++ code. You then compile all of the generated wrapper code into a module and use it. Fo
large applications, however, this approach is problematic———the size of the generated wrapper code can be rather large. More«
it is probably easier to manage the target language interface when it is broken up into smaller pieces.

This chapter describes the problem of using SWIG in programs where you want to create a collection of modules.

15.1 The SWIG runtime code

Many of SWIG's target languages generate a set of functions commonly known as the "SWIG runtime." These functions are
primarily related to the runtime type system which checks pointer types and performs other tasks such as proper casting of poii
values in C++. As a general rule, the statically typed target languages, such as Java, use the language's built in static type che
and have no need for a SWIG runtime. All the dynamically typed / interpreted languages rely on the SWIG runtime.

The runtime functions are private to each SWIG-generated module. That is, the runtime functions are declared with "static"
linkage and are visible only to the wrapper functions defined in that module. The only problem with this approach is that when
more than one SWIG module is used in the same application, those modules often need to share type information. This is
especially true for C++ programs where SWIG must collect and share information about inheritance relationships that cross
module boundaries.

To solve the problem of sharing information across modules, a pointer to the type information is stored in a global variable in th
target language namespace. During module initialization, type information is loaded into the global data structure of type
information from all modules.

This can present a problem with threads. If two modules try and load at the same time, the type information can become corruy
SWIG currently does not provide any locking, and if you use threads, you must make sure that modules are loaded serially. Be
careful if you use threads and the automatic module loading that some scripting languages provide. One solution is to load all
modules before spawning any threads.

15.2 External access to the runtime

As described in_The run-time type checker, the functions SWIG_TypeQuery, SWIG_NewPointerObj, and others sometimes
need to be called. Calling these functions from a typemap is supported, since the typemap code is embedded into the _wrap.c
file, which has those declerations available. If you need to call the SWIG run-time functions from another C file, there is one
header you need to include. To generate the header that needs to be included, run the following command:

$ swig —python —external-runtime <filename>

The filename argument is optional and if it is not passed, then the default filename will be something like swigpyrun.h,
depending on the language. This header file should be treated like any of the other _wrap.c output files, and should be regener
when the _wrap files are. After including this header, your code will be able to call SWIG_TypeQuery,

SWIG_NewPointerObj, SWIG_ConvertPtr and others. The exact argument paramaters for these functions might differ
between language modules; please check the language module chapters for more information.

Inside this header the functions are declared static and are included inline into the file, and thus the file does not need to be linl
against any SWIG libraries or code (you might still need to link against the language libraries like libpython—2.3). Data is share
between this file and the _wrap.c files through a global variable in the scripting language. It is also possible to copy this header

15 Working with Modules 192

SWIG-1.3 Documentation

file along with the generated wrapper files into your own package, so that you can distribute a package that can be compiled
without SWIG installed (this works because the header file is self contained, and does not need to link with anything).

15.3 A word of caution about static libraries

When working with multiple SWIG modules, you should take care not to use static libraries. For example, if you have a static
library libfoo.a and you link a collection of SWIG modules with that library, each module will get its own private copy of the
library code inserted into it. This is very often NOT what you want and it can lead to unexpected or bizarre program behavior.
When working with dynamically loadable modules, you should try to work exclusively with shared libaries.

15.4 References

Due to the complexity of working with shared libraries and multiple modules, it might be a good idea to consult an outside
reference. John Levine's "Linkers and Loaders" is highly recommended.

15.5 Reducing the wrapper file size

Using multiple modules with the %import directive is the most common approach to modularising large projects. In this way a
number of different wrapper files can be generated, thereby avoiding the generation of a single large wrapper file. There are a
couple of alternative solutions for reducing the size of a wrapper file through the use of command line options and features.

—fcompact

This command line option will compact the size of the wrapper file without changing the code generated into the wrapper file. It
simply removes blank lines and joins lines of code together. This is useful for compilers that have a maximum file size that can
handled.

—fvirtual
This command line option will remove the generation of superfluous virtual method wrappers. Consider the following inheritanc
hierarchy:

struct Base {
virtual void method();

N

struct Derived : Base {
virtual void method();

N

Normally wrappers are generated for both methods, whereas this command line option will suppress the generation of a wrapp
for Derived::method. Normal polymorphic behaviour remains as Derived::method will still be called should you have a
Derived instance and call the wrapper for Base::method.

%feature("compactdefaultargs")
This feature can reduce the number of wrapper methods when wrapping methods with default arguments. The_section on defal
arguments discusses the feature and it's limitations.

15.2 External access to the runtime 193

16 SWIG and Allegro Common Lisp

* Basics

¢ Running Swig

¢ Command Line Options

¢ Inserting user code into generated files
» Wrapping Overview

¢ Function Wrapping

¢ Foreign Wrappers

+ EFl Wrappers
+ Non-overloaded Defuns

+ Overloaded Defuns
+ What about constant and variable access?
¢ Object Wrapping

» Wrapping Details

Namespaces
Constants

Variables

Enumerations

Arrays

Classes and Structs and Unions (oh my!)

O CLOS wrapping of
¢ CLOS Inheritance

O Member fields and functions

O Why not directly access C++ classes using foreign types?
¢ Templates

¢ Generating wrapper code for templates

¢ Implicit Template instantiation
¢ Typedef, Templates, and Synonym Types

¢ Choosing a primary type

Eunction overloading/Parameter defaulting
Operator wrapping and Operator overloading
Varargs
C++ Exceptions
¢ Pass by value, pass by reference

¢
¢
¢
¢
¢
¢

¢
¢
¢
¢

» Typemaps
¢ Code Generation in the C++ Wrapper
¢ IN Typemap
¢ OUT Typemap

¢ CTYPE Typemap
¢ Code generation in Lisp wrappers
¢ LIN Typemap
¢ LOUT Typemap
¢ EEITYPE Typemap
¢ LISPTYPE Typemap

¢ LISPCLASS Typemap
+ Modifying SWIG behavior using typemaps

« |dentifier Converter functions
+ Creating symbals in the lisp environment
¢ Existing identifier—converter functions
¢ identifier—convert—null
¢ identifier—convert-lispify
¢ Default identifier to symbol conversions
¢ Defining your own identifier—converter
¢ Instructing SWIG to use a particular identifier—converter

16 SWIG and Allegro Common Lisp 194

SWIG-1.3 Documentation

This chapter describes SWIG's support of Allegro Common Lisp. Allegro CL is a full-featured implementation of the Common
Lisp language standard that includes many vendor—specific enhancements and add—on modules for increased usability.

One such module included in Allegro CL is the Foreign Functions Interface (FFI). This module, tailored primarily toward
interfacing with C/C++ and, historically, Fortran, provides a means by which compiled foreign code can be loaded into a runnin
lisp environment and executed. The interface supports the calling of foreign functions and methods, allows for executing lisp
routines from foreign code (callbacks), and the passing of data between foreign and lisp code.

The goal of this module is to make it possible to quickly generate the necessary foreign function definitions so one can make u:
of C/C++ foreign libraries directly from lisp without the tedium of having to code them by hand. When necessary, it will also
generate further C/C++ code that will need to be linked with the intended library for proper interfacing from lisp. It has been
designed with an eye toward flexibility. Some foreign function calls may release the heap, while other should not. Some foreign
functions should automatically convert lisp strings into native strings, while others should not. These adjustments and many mc
are possible with the current module.

It is significant to note that, while this is a vendor—specific module, we would like to acknowledge the current and ongoing work
by developers in the open source lisp community that are working on similar interfaces to implementation-independent foreign
function interfaces (UFFI or CFFI, for example). Such work can only benefit the lisp community, and we would not be unhappy
to see some enterprising folk use this work to add to it.

16.1 Basics

16.1.1 Running Swig

If you're reading this, you must have some library you need to generate an interface for. In order for SWIG to do this work,
however, it needs a bit of information about how it should go about creating your interface, and what you are interfacing to.

SWIG expects a description of what in the foreign interface you wish to connect to. It must consisting of C/C++ declarations an
special SWIG directives. SWIG can be furnished with a header file, but an interface can also be generated without library head
by supplying a simple text file——called the interface file, which is typically named with a .i extension——containing any foreign
declarations of identifiers you wish to use. The most common approach is to use a an interface file with directives to parse the
needed headers. A straight parse of library headers will result in usable code, but SWIG directives provides much freedom in h
a user might tailor the generated code to their needs or style of coding.

Note that SWIG does not require any function definitions; the declarations of those functions is all that is necessary. Be careful
when tuning the interface as it is quite possible to generate code that will not load or compile.

An example interface file is shown below. It makes use of two SWIG directives, one of which requests that the declarations in &
header file be used to generate part of the interface, and also includes an additional declaration to be added.

example.i

%module example
%include "header.h"

int fact(int n);
The contents of header.h are very simple:

header.h

int fact(char *statement); // pass it a fact, and it will rate it.
The contents of example.cl will look like this:

example.cl

16.1 Basics 195

SWIG-1.3 Documentation

(defpackage :example
(:use :common-lisp :swig :ff :excl))

... helper routines for defining the interface ...
(swig—in—package ())

(swig—defun ("fact")
((PARMO_statement string (* :char)))
(:returning (:int)

:strings—convert t)
(let ((SWIG_arg0 PARMO_statement))
(swig—ff-call SWIG_arg0)))

(swig—defun (“fact")
((PARMO_n integer :int))
(:returning (:int)

:strings—convert t)
(let (SWIG_arg0 PARMO_n))
(swig—ff-call SWIG_arg0)))

(swig—dispatcher (“fact" :type :function :arities (1)))

The generated file contains calls to internal swig helper functions. In this case there are two calls to swig—defun. These calls wi
expand into code that will make the appropriate definitions using the Allegro FFI. Note also, that this code is erroneous. Functic
overloading is not supported in C, and this code will not compile even though SWIG did not complain.

In order to generate a C interface to Allegro CL using this code run swig using the —allegrocl option, as below:
% swig —allegrocl example.i

When building an interface to C++ code, include the —c++ option:
% swig —allegrocl —c++ example.i

As a result of running one of the above commands, a file named example.cl will be generated containing the lisp side of the
interface. As well, a file example_wrap.cxx is also generated, containing C/C++ wrapper code to facilitate access to C++
methods, enumeration values, and constant values. Wrapper functions are necessary in C++ due to the lack of a standard for
mangling the names of symbols across all C++ compilers. These wrapper functions are exported from the shared library as
appropriate, using the C name mangling convention. The lisp code that is generated will interface to your foreign library througt
these wrappers.

It is possible to disable the creation of the .cxx file when generating a C interface by using the —nocwrap command-line
argument. For interfaces that don't contain complex enum or constant expressions, contain nested struct/union declarations, or
doesn't need to use many of the SWIG customization featuers, this will result in a more streamlined, direct interface to the
intended module.

The generated wrapper file is below. It contains very simple wrappers by default, that simply pass the arguments to the actual
function.

example_wrap.i

... lots of SWIG internals ...

EXPORT int ACL___ fact_ SWIG_O (char *largl) {
int Iresult = (int)0 ;
char *argl = (char *) 0 ;

int result;
argl = larg1l,;
try {

result = (int)fact(argl);

16.1.1 Running Swig 196

SWIG-1.3 Documentation

Iresult = result;
return Iresult;
}catch (...) {
return (int)0;
}
}

EXPORT int ACL___ fact_ SWIG_1 (int largl) {
int Iresult = (int)0 ;
intargl ;
int result;

argl = largl;
try {
result = (int)fact(argl);

Iresult = result;
return Iresult;
}catch (...) {
return (int)0;
}
}

And again, the generated lisp code. Note that it differs from what is generated when parsing C code:

(swig-in—package ())

(swig—defmethod (“fact" "ACL___fact_ SWIG_0" :type :function :arity 1)
((PARMO_statement string (* :char)))
(:returning (Gint)
:strings—convert t)
(let ((SWIG_arg0 PARMO_statement))
(swig—ff-call SWIG_arg0)))

(swig—defmethod (“fact" "ACL___fact_ SWIG_1" :type :function :arity 1)
((PARMO_n integer :int))
(:returning (:int)
:strings—convert t)
(let (SWIG_arg0 PARMO_n))
(swig—ff-call SWIG_arg0)))

(swig—dispatcher (“fact" :type :function :arities (1)))

In this case, the interface generates two swig—defmethod forms and a swig—dispatcher form. This provides a single functional
interface for all overloaded routines. A more detailed description of this features is to be found in the section titled Function
overloading/Parameter defaulting.

In order to load a C++ interface, you will need to build a shared library from example_wrap.cxx. Be sure to link in the actual
library you created the interface for, as well as any other dependent shared libraries. For example, if you intend to be able to ce

back into lisp, you will also need to link in the Allegro shared library. The library you create from the C++ wrapper will be what
you then load into Allegro CL.

16.1.2 Command Line Options

There are three Allegro CL specific command-line option:

swig —allegrocl [options] filename

—identifier—converter [name] — Binds the variable swig:*swig-identifier—convert*
in the generated .cl file to name.

16.1.2 Command Line Options 197

SWIG-1.3 Documentation

This function is used to generate symbols
for the lisp side of the interface.

—cwrap — [default] Generate a .cxx file containing C wrapper function when
wrapping C code. The interface generated is similar to what is
done for C++ code.
—nocwrap — Explicitly turn off generation of .cxx wrappers for C code. Reasonable
for modules with simple interfaces. Can not handle all legal enum
and constant constructs, or take advantage of SWIG customization features.

See_Section 17.5 Identifier converter functions for more details.

16.1.3 Inserting user code into generated files

It is often necessary to include user—defined code into the automatically generated interface files. For example, when building

C++ interface, example_wrap.cxx will likely not compile unless you add a #include "header.h" directive. This can be
done using the SWIG %insert(section) %f{ ...code... %} directive:

%module example
%insert("runtime") %{
#include "header.h"
9%}

%include "header.h"

int fact(int n);
Additional sections have been added for inserting into the generated lisp interface file

« lisphead - inserts before type declarations
« lisp — inserts after type declarations according to where it appears in the .i file

Note that the block %({ ... %} is effectively a shortcut for %insert("runtime") %({ ... %}.

16.2 Wrapping Overview

New users to SWIG are encouraged to read SWIG Basics, and SWIG and C++, for those interested in generating an interface

C++.

16.2.1 Function Wrapping

Writing lisp code that directly invokes functions at the foreign function interface level can be cumbersome. Data must often be
translated between lisp and foreign types, data extracted from objects, foreign objects allocated and freed upon completion of t
foreign call. Dealing with pointers can be unwieldy when it comes to keeping them distinct from other valid integer values.

We make an attempt to ease some of these burdens by making the interface to foreign code much more lisp-like, rather than (
like. How this is done is described in later chapters. The layers themselves, appear as follows:

| | (foreign side)
| Foreign Code | What we're generating an interface to.
|

|

|

%
| | (foreign side)

| Wrapper code | extern "C" wrappers calling C++
| | functions and methods.

16.1.3 Inserting user code into generated files 198

SWIG-1.3 Documentation
I

R
v
| | (lisp side)
| FFILayer | Low level lisp interface. ff:def-foreign—call,
| | ff:def-foreign—variable

v v
I I I | (lisp side)
| Defuns | | Defmethods | wrapper for overloaded
| | | | functions or those with
(lisp side) | defaulted arguments
Wrapper for non—overloaded |
functions and methods \Y

| | (lisp side)

| Defuns | dispatch function

| | to overloads based

on arity

16.2.2 Foreign Wrappers

These wrappers are as generated by SWIG default. The types of function parameters can be transformed in place using the
CTYPE typemap. This is use for converting pass—by-value parameters to pass—-by-reference where necessary. All wrapper
parameters are then bound to local variables for possible transformation of values (see LIN typemap). Return values can be
transformed via the OUT typemap.

16.2.3 FFI Wrappers

These are the generated ff:def-foreign—call forms. No typemaps are applicable to this layer, but the %ffargs directive is
available for use in .i files, to specify which keyword arguments should be specified for a given function.

ffargs.i:
%module ffargs

%ffargs(strings_convert="nil",call_direct="t") foo;
%ffargs(strings_convert="nil",release_heap=":never",optimize_for_space="t") bar;

int foo(float f1, float f2);
int foo(float f1, char c2);

void bar(void *lisp_fn);

char *xxx();

Generates:
ffargs.cl:

(swig-in—package ())

(swig—defmethod (“foo" "ACL___foo__ SWIG_0" :type :function :arity 2)
((PARMO_f1 single—float :float)
(PARML1_f2 single—float :float))
(:returning (:int)
:call-direct t
:strings—convert nil)
(let (SWIG_arg0 PARMO_f1))
(let ((SWIG_argl PARM1_f2))
(swig—ff-call SWIG_arg0 SWIG_arg1l))))

16.2.1 Function Wrapping 199

SWIG-1.3 Documentation

(swig—-defmethod (“foo" "ACL___foo__ SWIG_1" :type :function :arity 2)
((PARMO_f1 single—float :float)
(PARMZ1_c2 character :char character))
(:returning (:int)
:call-direct t
:strings—convert nil)
(let (SWIG_arg0 PARMO_f1))
(let (SWIG_argl PARM1_c2))
(swig—ff-call SWIG_arg0 SWIG_arg1l))))

(swig—dispatcher ("foo" :type :function :arities (2)))
(swig—defun ("bar" "ACL___bar__SWIG_0" :type :function)

((PARMO_lisp_fn (* :void)))

(:returning (:void)

:release—heap :never

:optimize—for-space t

:strings—convert nil)

(let (SWIG_arg0 PARMO_lisp_fn))

(swig—ff-call SWIG_arg0)))

(swig—defun ("xxx" "ACL___xxx__SWIG_0" :type :function)
(:void)
(:returning ((* :char))
:strings—convert t)
(swig—ff-call))

%ffargs(strings_convert="t");

Is the only default value specified in allegrocl.swg to force the muffling of warnings about automatic string conversion
when defining ff:def-foreign—call's.

16.2.4 Non—-overloaded Defuns

These are simple defuns. There is no typechecking of arguments. Parameters are bound to local variables for possible
transformation of values, such as pulling values out of instance slots or allocating temporary stack allocated structures, via the
lin typemap. These arguments are then passed to the foreign—call (where typechecking may occur). The return value from this
function can be manipulated via the lout typemap.

16.2.5 Overloaded Defuns

In the case of overloaded functions, mulitple layers are generated. First, all the overloads for a given name are separated out il
groups based on arity, and are wrapped in defmethods. Each method calls a distinct wrapper function, but are themselves
distinguished by the types of their arguments (see lispclass typemap). These are further wrapped in a dispatching function
(defun) which will invoke the appropriate generic—function based on arity. This provides a single functional interface to all
overloads. The return value from this function can be manipulated via the lout typemap.

16.2.6 What about constant and variable access?
Along with the described functional layering, when creating a .cxx wrapper, this module will generate getter and——if not
immutable——setter, functions for variables and constants. If the —nocwrap option is used, defconstant and

ff.def-foreign—variable forms will be generated for accessing constants and global variables. These, along with the
defuns listed above are the intended API for calling into the foreign module.

16.2.7 Object Wrapping

All non—primitive types (Classes, structs, unions, and typedefs involving same) have a corresponding foreign—type defined on t
lisp side via ff.def-foreign—type.

16.2.3 FFI Wrappers 200

SWIG-1.3 Documentation

All non—primitive types are further represented by a CLOS class, created via defclass. An attempt is made to create the same «
hierarchy, with all classes inheriting directly or indirectly from ff:foreign—pointer. Further, wherever it is apparent, all pointers
returned from foreign code are wrapped in a CLOS instance of the appropriate class. For ff:def-foreign—calls that have been
defined to expect a :foreign—address type as argument, these CLOS instances can legally be passed and the pointer to the C+
object automatically extracted. This is a natural feature of Allegro's foreign function interface.

16.3 Wrapping Details
In this section is described how particular C/C++ constructs are translated into lisp.
16.3.1 Namespaces

C++ namespaces are translated into Lisp packages by SWIG. The Global namespace is mapped to a package named by the
%module directive or the -module command-line argument. Further namespaces are created using Allegro CLs nested
namespace convention. For example:

foo.i:

%module foo

%f
#include "foo.h"
%%}

%include "foo.h"
namespace car {

namespace tires {
int do_something(int n);
}
}

Generates the following code.
foo.cl

(defpackage :foo
(:use :common-lisp :swig :ff :excl))

(swig—defpackage ("car"))
(swig—defpackage ("car" "tires"))

(swig—-in—package ("car" "tires"))
(swig—defun ("do_something" "ACL_car_tires__do_something__ SWIG_0" :type :function)
((PARMO_n :int))
(:returning (cint)
:strings—convert t)
(let (SWIG_arg0 PARMO_n))
(swig—ff-call SWIG_arg0)))

The above interface file would cause packages foo, foo.car, and foo.car tires to be created. One would find the function wrappe
for do_something defined in the foo.car.tires package(*).

16.2.7 Object Wrapping 201

SWIG-1.3 Documentation

(*) Except for the package named by the module, all namespace names are passed to the identifier—converter—function as strir
with a :type of :namespace. It is the job of this function to generate the desired symbol, accounting for case preferences,
additional naming cues, etc.

16.3.2 Constants

Constants, as declared by the preprocessor #define macro or SWIG %constant directive, are included in SWIGs parse tree
when it can be determined that they are, or could be reduced to, a literal value. Such values are translated into defconstant fori
in the generated lisp wrapper when the —-nocwrap command-line options is used. Else, wrapper functions are generated as in
case of variable access (see section below).

Here are examples of simple preprocessor constants when using —nocwrap.

#define Al => (swig—defconstant "A" 1)
#define B 'c' => (swig—defconstant "B" #\c)
#define C B => (swig—defconstant "C" #\c)
#define D 1.0e2 => (swig—defconstant "D" 1.0d2)
#define E 2222 => (swig—defconstant "E" 2222)
#define F (unsigned int)2222 => no code generated
#define G 1.02e2f => (swig—defconstant "G" 1.02f2)
#define H foo => no code generated

Note that where SWIG is unable to determine if a constant is a literal, no node is added to the SWIG parse tree, and so no valt
can be generated.

For preprocessor constants containing expressions which can be reduced to literal values, nodes are created, but with no
simplification of the constant value. A very very simple infix to prefix converter has been implemented that tries to do the right
thing for simple cases, but does not for more complex expressoins. If the literal parser determines that something is wrong, a
warning will be generated and the literal expression will be included in the generated code, but commented out.

#define A+ E => (swig—defconstant "I" (+ 1 2222))
#define J 1|2 => (swig—defconstant "J" (logior 1 2))
#defineY1+2*3+4 => (swig—defconstant "Y" (* (+ 1 2) (+ 3 4)))

#define Y1 (1 + 2) * (3 +4) => (swig—defconstant "Y1" (* (+ 1 2) (+ 3 4)))
#defineY21*2+3*4 => (swig—defconstant "Y2" (* 1 (+ 2 3) 4)) ;; WRONG
#define Y3 (1 *2) + (3*4) => (swig—defconstant "Y3" (* 1 (+ 2 3) 4)) ;; WRONG
#defineZ1+2-3+4*5 =>(swig—defconstant "Z" (* (+ 1 (- 2 3) 4) 5)) ;; WRONG

Users are cautioned to get to know their constants before use.

16.3.3 Variables
For C wrapping, a def-foreign—variable call is generated for access to global variables.

When wrapping C++ code, both global and member variables, getter wrappers are generated for accessing their value, and if r
immutable, setter wrappers as well. In the example below, note the lack of a setter wrapper for global_var, defined as const.

vars.h

namespace nnn {
int const global_var = 2;
float glob_float = 2.0;

}

Generated code:

16.3.1 Namespaces 202

SWIG-1.3 Documentation

vars.cl

(swig—-in—package ("nnn"))
(swig—defun ("global_var" "ACL_nnn__global_var_get_ SWIG_0" :type :getter)
(:void)
(:returning (:int)
:strings—convert t)
(swig—ff-call))

(swig—defun ("glob_float" "ACL_nnn__glob_float_set_ SWIG_0" :type :setter)
((PARMO_glob_float :float))
(:returning (:void)
:strings—convert t)
(let (SWIG_arg0 PARMO_glob_float))
(swig—ff-call SWIG_arg0)))

(swig—defun ("glob_float" "ACL_nnn__glob_float_get_SWIG_0" :type :getter)
(:void)
(:returning (:float)
:strings—convert t)
(swig—ff-call))

Note also, that where applicable, setter wrappers are implemented as setf methods on the getter function, providing a lispy
interface to the foreign code.

user> (load "globalvar.dll")

; Foreign loading globalvar.dll.

t

user> (load "globalvar.cl")

; Loading c:\mikel\src\swig\test\globalvar.cl
t

user>

globalvar> (globalvar.nnn::global_var)

2

globalvar> (globalvar.nnn::glob_float)

2.0

globalvar> (setf (globalvar.nnn::glob_float) 3.0)
3.0

globalvar> (globalvar.nnn::glob_float)

3.0

16.3.4 Enumerations

In C, an enumeration value is an integer value, while in C++ an enumeration value is implicitly convertible to an integer value,
but can also be distinguished by it's enum type. For each enum declaration a def-foreign—type is generated, assigning the enu
default type of :int. Users may adjust the foreign type of enums via SWIG typemaps.

Enum values are a bit trickier as they can be initialized using any valid C/C++ expression. In C with the —nocwrap command-lir
option, we handle the typical cases (simple integer initialization) and generate a defconstant form for each enum value. This ha
the advantage of it not being necessary to probe into foreign space to retrieve enum values. When generating a .cxx wrapper fi
more general solution is employed. A wrapper variable is created in the module_wrap.cxx file, and a ff.def-foreign—variable cal
is generated to retrieve it's value into lisp.

For example, the following header file

enum.h:

enum COL { RED, GREEN, BLUE };
enum FOO { FOO1 = 10, FOO2, FOO3 };

16.3.3 Variables 203

SWIG-1.3 Documentation

In —nocwrap mode, generates
enum.cl:

(swig—def-foreign—type "COL" :int)

(swig—defconstant "RED" 0)

(swig—defconstant "GREEN" (+ #.(swig-insert-id "RED" () :type :constant) 1))
(swig—defconstant "BLUE" (+ #.(swig—insert-id "GREEN" () :type :constant) 1))

(swig—def-foreign—type "FOQ" :int)

(swig—defconstant "FOO1" 10)

(swig—defconstant "FOO2" (+ #.(swig—insert-id "FOO1" () :type :constant) 1))
(swig—defconstant "FOO3" (+ #.(swig—insert-id "FOO2" () :type :constant) 1))

And when generating a .cxx wrapper

enum_wrap.CxX:

EXPORT const int ACL_ENUM___RED__SWIG_0 = RED;
EXPORT const int ACL_ENUM___GREEN__SWIG_0 = GREEN;
EXPORT const int ACL_ENUM___BLUE__SWIG_0 = BLUE;
EXPORT const int ACL_ENUM___FOO1__SWIG_0 = FOOL;
EXPORT const int ACL_ENUM___FOO2__SWIG_0 = FOO2;
EXPORT const int ACL_ENUM___FOO3__SWIG_0 = FOO3;

and

enum.cl:

(swig—def-foreign—type "COL" :int)

(swig—defvar "RED" "ACL_ENUM___RED__ SWIG_Q" :type :constant)
(swig—defvar "GREEN" "ACL_ENUM___GREEN__SWIG_0" :type :constant)
(swig—defvar "BLUE" "ACL_ENUM___ BLUE__ SWIG_0" :type :constant)

(swig—def-foreign—type "FOO" :int)

(swig—defvar "FOO1" "ACL_ENUM___ FOO1__SWIG_0" :type :constant)
(swig—defvar "FOO2" "ACL_ENUM___FOO2__ SWIG_0" :type :constant)
(swig—defvar "FOO3" "ACL_ENUM___FOO3__SWIG_0" :type :constant)

16.3.5 Arrays

One limitation in the Allegro CL foreign—types module, is that, without macrology, expressions may not be used to specify the
dimensions of an array declaration. This is not a horrible drawback unless it is necessary to allocate foreign structures based o
the array declaration using ff:allocate—fobject. When it can be determined that an array bound is a valid numeric value, SWIG v
include this in the generated array declaration on the lisp side, otherwise the value will be included, but commented out.

Below is a comprehensive example, showing a number of legal C/C++ array declarations and how they are translated into
foreign—type specifications in the generated lisp code.

array.h

#define MAX_BUF_SIZE 1024
namespace FOO {

int global_varl[13];
float global_var2[MAX_BUF_SIZE];

16.3.4 Enumerations 204

SWIG-1.3 Documentation

}

enum COLOR { RED = 10, GREEN = 20, BLUE, PURPLE =50, CYAN };

namespace BAR {
char global_var3[MAX_BUF_SIZE + 1];
float global_var4[MAX_BUF_SIZE][13];
signed short global_var5[MAX_BUF_SIZE + MAX_BUF_SIZE];

int enum_var5[GREEN];
int enum_var6[CYAN];

COLOR enum_var7[CYAN][MAX_BUF_SIZE];

Generates:

array.cl
(in—package #.*swig—module—name*)

(swig—defpackage ("FOQO"))
(swig—defpackage ("BAR"))

(swig—-in—package ())

(swig—def-foreign—type "COLOR" :int)

(swig—defvar "RED" "ACL_ENUM___RED__ SWIG_0" :type :constant)
(swig—defvar "GREEN" "ACL_ENUM___ GREEN__ SWIG_0" :type :constant)
(swig—defvar "BLUE" "ACL_ENUM___ BLUE__ SWIG_0" :type :constant)
(swig—defvar "PURPLE" "ACL_ENUM___PURPLE__SWIG_0" :type :constant)
(swig—defvar "CYAN" "ACL_ENUM___ CYAN__SWIG_0" :type :constant)

(swig-in—package ())

(swig—defconstant "MAX_BUF_SIZE" 1024)
(swig-in—package ("FOQ"))

(swig—defun ("global_varl" "ACL_FOO__global_varl_get SWIG_0" :type :getter)
(:void)
(:returning ((* :int))
:strings—convert t)
(make-instance 'ff:foreign—pointer :foreign—address (swig—ff—call)))

(swig—defun ("global_var2" "ACL_FOOQO__global_var2_set_ SWIG_0" :type :setter)
((global_var2 (:array :float 1024)))
(:returning (:void)
:strings—convert t)
(let ((SWIG_argO global_var2))
(swig—ff-call SWIG_arg0)))

(swig—-in—package ())
(swig-in—package ("BAR"))
(swig—defun ("global_var3" "ACL_BAR__global_var3_set_ SWIG_0" :type :setter)
((global_var3 (:array :char #|1024+1|#)))
(:returning (:void)
:strings—convert t)
(let ((SWIG_argO0 global_var3))
(swig—ff-call SWIG_arg0)))

(swig—defun ("global_var4" "ACL_BAR__global_var4_set_ SWIG_0" :type :setter)
((global_var4 (:array (:array :float 13) 1024)))
(:returning (:void)

16.3.5 Arrays 205

SWIG-1.3 Documentation

:strings—convert t)
(let ((SWIG_argO0 global_var4))
(swig—ff-call SWIG_arg0)))

(swig—defun ("global_var4" "ACL_BAR__global_var4d_get_ SWIG_0" :type :getter)
(:void)
(:returning ((* (:array :float 13)))
:strings—convert t)
(make-instance 'ff:foreign—pointer :foreign—address (swig—ff-call)))

(swig—defun ("global_var5" "ACL_BAR__global_var5_set_ SWIG_0" :type :setter)
((global_var5 (:array :short #|1024+1024#)))
(:returning (:void)
:strings—convert t)
(let ((SWIG_argO0 global_var5))
(swig—ff-call SWIG_arg0)))

(swig—defun ("enum_var5" "ACL_BAR__enum_var5_set_ SWIG_0" :type :setter)
((enum_var5 (:array :int #| GREEN|#)))
(:returning (:void)
:strings—convert t)
(let ((SWIG_arg0 enum_var5))
(swig—ff-call SWIG_arg0)))

(swig—defun ("enum_var6" "ACL_BAR__enum_var6_set SWIG_0" :type :setter)
((enum_var6 (:array :int #|/CYANI|#)))
(:returning (:void)
:strings—convert t)
(let ((SWIG_arg0 enum_var6))
(swig—ff-call SWIG_arg0)))

(swig—defun ("enum_var7" "ACL_BAR__enum_var7_set__SWIG_0" :type :setter)
((enum_var7 (:array (:array #.(swig—insert—id "COLOR" ()) 1024) #|CYAN|#)))
(:returning (:void)

:strings—convert t)
(let (SWIG_arg0 enum_var7))
(swig—ff-call SWIG_arg0)))

(swig—defun ("enum_var7" "ACL_BAR__enum_var7_get__ SWIG_0" :type :getter)
(:void)
(:returning ((* (:array #.(swig—insert—id "COLOR" ()) 1024)))
:strings—convert t)
(make-instance 'ff:foreign—pointer :foreign—address (swig—ff-call)))

16.3.6 Classes and Structs and Unions (oh my!)

16.3.6.1 CLOS wrapping of

Classes, unions, and structs are all treated the same way by the interface generator. For any of these objects, a def-foreign—ty
and a defclass form are generated. For every function that returns an object (or pointer/reference) of C/C++ type X, the wrappil
defun (or defmethod) on the Lisp side will automatically wrap the pointer returned in an instance of the apropriate class. This
makes it much easier to write and debug code than if pointers were passed around as a jumble of integer values.

16.3.6.2 CLOS Inheritance

The CLOS class schema generated by the interface mirrors the inheritance of the classes in foreign code, with the
ff.foreign—pointer class at its root. ff:foreign—pointer is a thin wrapper for pointers that is made available by the foreign function

16.3.6 Classes and Structs and Unions (oh my!) 206

SWIG-1.3 Documentation

interface. It's key benefit is that it may be passed as an argument to any ff:def-foreign—call that is expecting a pointer as the
parameter.

16.3.6.3 Member fields and functions

All public fields will have accessor getter/setter functions generated for them, as appropriate. All public member functions will
have wrapper functions generated.

We currently ignore anything that isn't public (i.e. private or protected), because the C++ compiler won't allow the
wrapper functions to access such fields. Likewise, the interface does nothing for friend directives,

16.3.6.4 Why not directly access C++ classes using foreign types?

The def-foreign—type generated by the SWIG interface is currently incomplete. We can reliably generate the object layout of
simple structs and unions; they can be allocated via ff:allocate—fobject, and their member variables accessed directly using the
various ff:fslot—value—* functions. However, the layout of C++ classes is more complicated. Different compilers adjust class
layout based on inheritance patterns, and the presence of virtual member functions. The size of member function pointers vary
across compilers as well. As a result, it is recommended that users of any generated interface not attempt to access C++ instal
via the foreign type system, but instead use the more robust wrapper functions.

16.3.7 Templates
16.3.7.1 Generating wrapper code for templates

SWIG provides support for dealing with templates, but by default, it will not generate any member variable or function wrappers
for templated classes. In order to create these wrappers, you need to explicitly tell SWIG to instantiate them. This is done via tt

%template directive.

16.3.7.2 Implicit Template instantiation

While no wrapper code is generated for accessing member variables, or calling member functions, type code is generated to
include these templated classes in the foreign—type and CLOS class schema.

16.3.8 Typedef, Templates, and Synonym Types

In C/C++ it is possible, via typedef, to have many names refer to the same type. In general, this is not a problem, though it can
lead to confusion. Assume the below C++ header file:

synonyms.h

class A{
int x;
inty;

X

typedef A Foo;

A *xxx(int i); [*sets A—>x = A->y =i*/
Foo *yyy(int i); [* sets FOo—>x = Foo—>y =i */

int zzz(A *inst = 0); /* return inst—>x + inst—=>y */

The function zzz is an overloaded functions; the foreign function call to it will be wrapped in a generic—function whose
argument will be checked against a type of A. Assuming a simple implementation, a call to xxx(1) will return a pointer to an A
object, which will be wrapped in a CLOS instance of class A, and a call to yyy(1) will result in a CLOS instance of type Foo
being returned. Without establishing a clear type relationship between Foo and A, an attempt to call zzz(yyy(1)) will result in
an error.

16.3.6.2 CLOS Inheritance 207

SWIG-1.3 Documentation

We resolve this issue, by noting synonym relationships between types while generating the interface. A Primary type is selecte
(more on this below) from the candidate list of synonyms. For all other synonyms, intead of generating a distinct CLOS class
definition, we generate a form that expands to:

(setf (find—class <synonym>) <primary>)
The result is that all references to synonym types in foreign code, are wrapped in the same CLOS wrapper, and, in particular,
method specialization in wrapping generic functions works as expected.

Given the above header file, synonym.h, a Lisp session would appear as follows:

CL-USER> (load "synonym.dlIl")

; Foreign loading synonym.dll.

t

CL-USER> (load "synonym.cl")

; Loading c:\mikel\src\swig\test\synonym.cl
t

CL-USER>

synonym> (setf a (xxx 3))

#<A nil #x3261a0 @ #x207299da>
synonym> (setf foo (yyy 10))

#<A nil #x3291d0 @ #x2072e982>
synonym> (zzz a)

6

synonym> (zzz foo)
20
synonym>

16.3.8.1 Choosing a primary type
The choice of a primary type is selected by the following criteria from a set of synonym types.

« If a synonym type has a class definition, it is the primary type.
« If a synonym type is a class template and has been explicitly instantiated via %template, it is the primary type.
« For all other sets of synonymous types, the synonym which is parsed first becomes the primary type.

16.3.9 Function overloading/Parameter defaulting

For each possible argument combination, a distinct wrapper function is created in the .cxx file. On the Lisp side, a generic
functions is defined for each possible arity the overloaded/defaulted call may have. Each distinct wrapper is then called from
within a defmethod on the appropriate generic function. These are further wrapped inside a dispatch function that checks the
number of arguments it is called with and passes them via apply to the appropriate generic—function. This allows for a single er
point to overloaded functions on the lisp side.

Example:

overload.h:

class A{
public:
int x;
inty;

h

float xxx(int i, int x = 0); /*returni*x*/
float xxx(A *inst, int X); /*return x + A—>x + A—>y */

Creates the following three wrappers, for each of the possible argument combinations

16.3.8 Typedef, Templates, and Synonym Types 208

SWIG-1.3 Documentation

overload_wrap.cxx

EXPORT void ACL___delete_A__SWIG_O0 (A *largl) {
A*argl=(A*)O0;

argl = larg1l,;

try {
delete argl;

}catch (...) {

}

EXPORT float ACL___ xxx__SWIG_O (int largl, int larg2) {
float Iresult = (float)0 ;
intargl ;
intarg?2 ;
float result;

argl = larg1l,
arg2 = larg2;
try {
result = (float)xxx(arg1,arg2);

Iresult = result;
return Iresult;
}catch (...) {
return (float)0;
}
}

EXPORT float ACL___ xxx__SWIG_1 (int largl) {
float Iresult = (float)0 ;
intargl ;
float result;

argl = larg1l,

try {
result = (float)xxx(argl);

Iresult = result;
return Iresult;
}catch (...) {
return (float)0;
}
}

EXPORT float ACL___ xxx__SWIG_2 (A *largl, int larg2) {
float Iresult = (float)0 ;
A*argl=(A*O0;
intarg?2 ;
float result;

argl = larg1l,;
arg2 = larg2;
try {
result = (float)xxx(arg1,arg2);

Iresult = result;

return Iresult;
}catch (...) {

return (float)O;

}

16.3.9 Function overloading/Parameter defaulting

209

SWIG-1.3 Documentation

And the following foreign—function—call and method definitions on the lisp side:

overload.cl

(swig—defmethod ("xxx" "ACL___xxx__SWIG_0" :type :function :arity 2)
((PARMO_i integer :int)
(PARM1_x integer :int))
(:returning (:float)
:strings—convert t)
(let (SWIG_arg0 PARMO_i))
(let ((SWIG_argl PARM1_x))
(swig—ff-call SWIG_arg0 SWIG_arg1l))))

(swig—defmethod ("xxx" "ACL___xxx__SWIG_1" :type :function :arity 1)
((PARMO_i integer :int))
(:returning (:float)
:strings—convert t)
(let (SWIG_arg0 PARMO _i))
(swig—ff-call SWIG_arg0)))

(swig—defmethod ("xxx" "ACL___xxx__SWIG_2" :type :function :arity 2)
((PARMO_inst #.(swig—insert—id "A" () :type :class) (* #.(swig—insert=id "A" ())))
(PARM1_x integer :int))

(:returning (:float)

:strings—convert t)

(let ((SWIG_arg0 PARMO_inst))

(let (SWIG_argl PARM1_x))
(swig—ff-call SWIG_arg0 SWIG_arg1l))))

(swig—dispatcher ("xxx" :type :function :arities (1 2)))

And their usage in a sample lisp session:

overload> (setf a (new_A))
#<A nil #x329268 @ #x206cf612>
overload> (setf (A_x a) 10)
10

overload> (setf (A_y a) 20)
20

overload> (xxx 1)

0.0

overload> (xxx 3 10)

30.0

overload> (xxx a 1)

31.0

overload> (xxx a 2)

32.0

overload>

16.3.10 Operator wrapping and Operator overloading

Wrappers to defined C++ Operators are automatically renamed, using %rename, to the following defaults:

/* name conversion for overloaded operators. */
#ifdef __cplusplus

%rename(__add_) *::operator+;
%rename(__pos_) *::operator+();
%rename(__pos_) *::operator+() const;
%rename(__sub_) *::operator-;

16.3.10 Operator wrapping and Operator overloading 210

SWIG-1.3 Documentation

%rename(__neg_) *::operator—() const;
%rename(__neg_) *::operator—();
%rename(__mul_) *::operator*;
%rename(__deref_) *::operator*();
%rename(__deref_) *::operator*() const;
%rename(__div_) *::operator/;
%rename(__mod_) *::operator%;
%rename(__logxor_) *::operator”,
%rename(__logand_) *::operator&;
%rename(__logior__) *::operatorl|;
%rename(__lognot_) *::operator~();
%rename(__lognot_) *::operator~() const;
%rename(__not_) *::operator!();
%rename(__not_) *::operator!() const;
%rename(__assign__) *::operator=;

%rename(__add_assign__)
%rename(__sub_assign__)
%rename(__mul_assign__)
%rename(__div_assign__)
%rename(__mod_assign__)

*.;operator+=;
*::operator—=;
::operator=;
*::operator/=;
*::operator%-=;

%rename(__logxor_assign__) *:operator’=;
%rename(__logand_assign__) *::operator&=;
%rename(__logior_assign__) *::operator|=;

%rename(__Ishift_)

*::operator <>

%rename(__rshift_assign__) *:operator>>=;

%rename(__eq_) *::operator==;

%rename(__ne_) *::operator!=;

Y%rename(__It_) *::operator ;
%rename(__lte_) *::operator <=;
%rename(__gte_) *::operator>=;
%rename(__and_) *::operator&&;
%rename(__or_) *::operator]|;
%rename(__preincr__) *::operator++();
%rename(__postincr__) *::operator++(int);
%rename(__predecr_) *::operator——();
%rename(__postdecr__) *:operator——(int);
%rename(__comma__) *::operator,();
%rename(__comma__) *::operator,() const;

%rename(__member_ref_)

*::operator—>;

%rename(__member_func_ref__) *::operator—>*;

%rename(__funcall_)
%rename(__aref_)

*::operator();
*::operator(];

Name mangling occurs on all such renamed identifiers, so that wrapper name generated by B::operator=willbe B___eq_,
i.e. <class—or—-namespace>_ has been added. Users may modify these default names by adding %rename directives in
their own .i files.

Operator overloading can be achieved by adding functions based on the mangled names of the function. In the following exam
a class B is defined with a Operator== method defined. The swig %extend directive is used to add an overload method on
Operator==.

opoverload.h

16.3.10 Operator wrapping and Operator overloading 211

SWIG-1.3 Documentation

class B {

public:

int x;

inty;

bool operator==(B const& other) const;

g

and

opoverload.i

%module opoverload

%{

#include <fstream>
#include "opoverload.h"
0%}

9%
bool B___eq__ (B const *inst, int const x)

I insert the function definition into the wrapper code before
I the wrapper for it.
/I ... do stuff ...

}
%}

%include "opoverload.h"

%extend B {
public:
bool __eq__(int const x) const;

g

Either operator can be called via a single call to the dispatch function:

opoverload> (B___eq__ x1x2)
nil

opoverload> (B___eq__ x13)
nil

opoverload>

16.3.11 Varargs

Variable length argument lists are not supported, by default. If such a function is encountered, a warning will generated to stde
Varargs are supported via the SWIG %vararg directive. This directive allows you to specify a (finite) argument list which will

be inserted into the wrapper in place of the variable length argument indicator. As an example, consider the function printf().

It's declaration would appear as follows:

See the following section on Variable Length arguments provides examples on how %vararg can be used, along with other wa
such functions can be wrapped.

16.3.12 C++ Exceptions
Each C++ wrapper includes a handler to catch any exceptions that may be thrown while in foreign code. This helps prevent sin

C++ errors from killing the entire lisp process. There is currently no mechanism to have these exceptions forwarded to the lisp
condition system, nor has any explicit support of the exception related SWIG typemaps been implemented.

16.3.11 Varargs 212

SWIG-1.3 Documentation

16.3.13 Pass by value, pass by reference

Allegro CL does not support the passing of non—primitive foreign structures by value. As a result, SWIG must automatically
detect and convert function parameters and return values to pointers whenever necessary. This is done via the use of typemar
and should not require any fine tuning by the user, even for newly defined types.

16.4 Typemaps

SWIG Typemaps provide a powerful tool for automatically generating code to handle various menial tasks required of writing al
interface to foreign code. The purpose of this section is to describe each of the typemaps used by the Allegro CL module. Plea:
read the chapter gn Typemaps for more information.

16.4.1 Code Generation in the C++ Wrapper

Every C++ wrapper generated by SWIG takes the following form:

return—-val wrapper—name(parmO, parml, ..., parmN)

{

return—val Iresult; /* return value from wrapper */
<local-declaration>
... results; /* return value from function call */

<binding locals to parameters>

try {
result = function—name(localO, locall, ..., localN);

<convert and bind result to Iresult>

return Iresult;
catch (...) {
return (int)0;

}

16.4.1.1 IN Typemap

the in typemap is used to generate code to convert parameters passed to C++ wrapper functions into the arguments desired fo
call being wrapped. That is, it fills in the code for the <binding locals to parameters> section above. We use this

map to automatically convert parameters passed by reference to the wrapper function into by-value arguments for the wrappe
call, and also to convert boolean values, which are passed as integers from lisp (by default), into the appropriate type for the
language of code being wrapped.

These are the default specifications for the IN typemap. Here, $input refers to the parameter code is being generated for, and {
is the local variable to which it is being assigned. The default settings of this typemap are as follows:

%typemap(in) bool "$1 = (bool)$input;";
%typemap(in) char, unsigned char, signed char,

short, signed short, unsigned short,

int, signed int, unsigned int,

long, signed long, unsigned long,

float, double, long double, char *, void *, void,

enum SWIGTYPE, SWIGTYPE *,

SWIGTYPE[ANY], SWIGTYPE & "$1 = $input;";
%typemap(in) SWIGTYPE "$1 = *$input;”;

16.3.13 Pass by value, pass by reference 213

SWIG-1.3 Documentation
16.4.1.2 OUT Typemap

The out typemap is used to generate code to form the return value of the wrapper from the return value of the wrapped functior
This code is placed in the <convert and bind result to Iresult> section of the above code diagram. It's default mapping is as
follows:

%typemap(out) bool "$result = (int)$1;";
%typemap(out) char, unsigned char, signed char,

short, signed short, unsigned short,

int, signed int, unsigned int,

long, signed long, unsigned long,

float, double, long double, char *, void *, void,

enum SWIGTYPE, SWIGTYPE *,

SWIGTYPE[ANY], SWIGTYPE & "$result = $1;";
%typemap(out) SWIGTYPE "$result = new $1_type($1);";

16.4.1.3 CTYPE Typemap

This typemap is not used for code generation, but purely for the transformation of types in the parameter list of the wrapper
function. It's primary use is to handle by-value to by-reference conversion in the wrappers parameter list. Its default settings a

%typemap(ctype) bool "int";
%typemap(ctype) char, unsigned char, signed char,
short, signed short, unsigned short,
int, signed int, unsigned int,
long, signed long, unsigned long,
float, double, long double, char *, void *, void,
enum SWIGTYPE, SWIGTYPE *,
SWIGTYPE[ANY], SWIGTYPE & "$1_ltype";
%typemap(ctype) SWIGTYPE "$&1_type";

These three typemaps are specifically employed by the the Allegro CL interface generator. SWIG also implements a number of
other typemaps that can be used for generating code in the C/C++ wrappers. You can read about these common typemaps he

16.4.2 Code generation in Lisp wrappers

A number of custom typemaps have also been added, to facilitate the generation of code in the lisp side of the interface. These
described below. The basic code generation structure is applied as a series of nested expressions, one for each parameter, the
for manipulating the return value, and last, the foreign function call itself.

16.4.2.1 LIN Typemap

The LIN typemap allows for the manipulating the lisp objects passed as arguments to the wrapping defun before passing them
the foreign function call. For example, when passing lisp strings to foreign code, it is often necessary to copy the string into a
foreign structure of type (:char *) of appropriate size, and pass this copy to the foreign call. Using the LIN typemap, one could
arrange for the stack—allocation of a foreign char array, copy your string into it, and not have to worry about freeing the copy afi
the function returns.

The LIN typemap accepts the following $variable references.

+ $in — expands to the name of the parameter being applied to this typemap

« $out — expands to the name of the local variable assigned to this typemap

« $in_fftype — the foreign function type of the C type.

* $*in_fftype — the foreign function type of the C type with one pointer removed. If there is no pointer, then
$*in_fftype is the same as $in_fftype.

« $body - very important. Instructs SWIG where subsequent code generation steps should be inserted into the current
typemap. Leaving out a $body reference will result in lisp wrappers that do very little by way of calling into foreign

16.4.1.2 OUT Typemap 214

SWIG-1.3 Documentation

code. Not recommended.

%typemap(lin) SWIGTYPE "(let (($out $in))\n $body)";

16.4.2.2 LOUT Typemap

The LOUT typemap is the means by which we effect the wrapping of foreign pointers in CLOS instances. It is applied after all
LIN typemaps, and immediately before the actual foreign—call.

The LOUT typemap uses the following $variable

+ $iclass — Expands to the CLOS class that represents foreign—objects of the return type matching this typemap.

» $body — Same as for the LIN map. Place this variable where you want the foreign—function call to occur.

« $ldestructor — Expands to the symbol naming the destructor for this class ($Iclass) of object. Allows you to insert
finalization or automatic garbage collection into the wrapper code (see default mappings below).

%typemap(lout) bool, char, unsigned char, signed char,
short, signed short, unsigned short,
int, signed int, unsigned int,
long, signed long, unsigned long,
float, double, long double, char *, void *, void,
enum SWIGTYPE "$body";
%typemap(lout) SWIGTYPE[ANY], SWIGTYPE *,
SWIGTYPE & "(make—-instance '$lclass :foreign—address $body)";
%typemap(lout) SWIGTYPE "(let* ((address $body)\n
(ACL_result (make-instance '$lclass :foreign—address address)))\n
(unless (zerop address)\n
(excl:schedule—finalization ACL_result #'$ldestructor))\n
ACL_result)";

16.4.2.3 FFITYPE Typemap

The FFITYPE typemap works as a helper for a body of code that converts C/C++ type specifications into Allegro CL
foreign—type specifications. These foreign-type specifications appear in ff:def-foreing—type declarations, and in the argument |
and return values of ff.def-foreign—calls. You would modify this typemap if you want to change how the FFI passes through
arguments of a given type. For example, if you know that a particular compiler represents booleans as a single byte, you might
add an entry for:

%typemap(ffitype) bool ":unsigned-char";

Note that this typemap is pure type transformation, and is not used in any code generations step the way the LIN and LOUT
typemaps are. The default mappings for this typemap are:

%typemap(ffitype) bool ":int";

%typemap(ffitype) char ":char";

%typemap(ffitype) unsigned char ":unsigned—char";
%typemap(ffitype) signed char ":char";
%typemap(ffitype) short, signed short ":short";
%typemap(ffitype) unsigned short ":unsigned-short";
%typemap(ffitype) int, signed int ":int";
%typemap(ffitype) unsigned int ":unsigned-int";
%typemap(ffitype) long, signed long ":long";
%typemap(ffitype) unsigned long ":unsigned-long";
%typemap(ffitype) float ":float";

%typemap(ffitype) double ":double";
%typemap(ffitype) char * "(* :char)";
%typemap(ffitype) void * "(* :void)";
%typemap(ffitype) void ":void";

%typemap(ffitype) enum SWIGTYPE ":int";

16.4.2.1 LIN Typemap 215

SWIG-1.3 Documentation

%typemap(ffitype) SWIGTYPE & "(* :void)";

16.4.2.4 LISPTYPE Typemap

This is another type only transformation map, and is used to provide the lisp—type, which is the optional third argument in
argument specifier in a ff:def-foreign—call form. Specifying a lisp—type allows the foreign call to perform type checking on the
arguments passed in. The default entries in this typemap are:

%typemap(lisptype) bool "boolean";
%typemap(lisptype) char "character";
%typemap(lisptype) unsigned char "integer";
%typemap(lisptype) signed char "integer";

16.4.2.5 LISPCLASS Typemap

The LISPCLASS typemap is used to generate the method signatures for the generic—functions which wrap overloaded functior
and functions with defaulted arguments. The default entries are:

%typemap(lispclass) bool "t";
%typemap(lispclass) char "character";
%typemap(lispclass) unsigned char, signed char,
short, signed short, unsigned short,
int, signed int, unsigned int,
long, signed long, unsigned long,
enum SWIGTYPE "integer”;
%typemap(lispclass) float "single—float";
%typemap(lispclass) double "double-float";
%typemap(lispclass) char * "string";

16.4.3 Modifying SWIG behavior using typemaps

The following example shows how we made use of the above typemaps to add support for the wchar_t type.

%typecheck(SWIG_TYPECHECK_UNICHAR) wchar_t{$1=1;};

%typemap(in) wchar_t "$1 = $input;";
%typemap(lin) wchar_t "(let (($out (char—code $in)))\n $body)";
%typemap(lin) wchar_t* "(excl:with—native—string
($out $in
:external—-format #+little—endian :fat-le
#-little—endian :fat)\n
$hody)"

%typemap(out) wchar_t "$result = $1;";
%typemap(lout) wchar_t "(code—char $body)";
%typemap(lout) wchar_t* "(excl:native—to—string $body
:external—-format #+little—endian :fat-le
#-little—endian :fat)";

%typemap(ffitype) wechar_t ":unsigned-short”;
%typemap(lisptype) wchar_t ™",
%typemap(ctype) wchar_t "wchar_t";
%typemap(lispclass) wchar_t "character";

%typemap(lispclass) wchar_t* "string";

16.5 Identifier Converter functions

16.4.2.3 FFITYPE Typemap 216

SWIG-1.3 Documentation

16.5.1 Creating symbols in the lisp environment

Various symbols must be generated in the lisp environment to which class definitions, functions, constants, variables, etc. mus
bound. Rather than force a particular convention for naming these symbols, an identifier (to symbol) conversion function is use
A user—defined identifier—converter can then implement any symbol haming, case—-modifying, scheme desired.

In generated SWIG code, whenever some interface object must be referenced by its lisp symbol, a macro is inserted that calls
identifier—converter function to generate the appropriate symbol reference. It is therefore expected that the identifier—converter
function reliably return the same (eq) symbol given the same set of arguments.

16.5.2 Existing identifier—converter functions
Two basic identifier routines have been defined.
16.5.2.1 identifier—convert—null

No modification of the identifier string is performed. Based on other arguments, the identifier may be concatenated with other
strings, from which a symbol will be created.

16.5.2.2 identifier—convert-lispify

All underscores in the identifier string are converted to hyphens. Otherwise, identifier—convert-lispify performs the same symbc
transformations.

16.5.2.3 Default identifier to symbol conversions

Check the definitions of the above two default identifier—converters in Lib/allegrocl/allegrocl.swg for default
naming conventions.

16.5.3 Defining your own identifier—converter

A user—defined identifier—converter function should conform to the following specification:

(defun identifier—convert-fn (id &key type class arity) ...body...)
result ==> symbol or (setf symbol)

The ID argument is a string representing an identifier in the foreign environment.

The :type keyword argument provides more information on the type of identifier. It's value is a symbol. This allows the
identifier—converter to apply different heuristics when mapping different types of identifiers to symbols. SWIG will generate call:
to your identifier—converter using the following types.

« :class — names a CLOS class.

« :constant — names a defconstant

« :constructor — names a function for creating a foreign object

« :destructor — names a function for freeing a foreign object

« :function — names a CLOS wrapping defmethod or defun.

« :ff-operator — names a foreign call defined via ff:def-foreign—call
* :getter — getter function

* :namespace — nhames a C++ namespace

« :setter — names a setter function. May return a (setf symbol) reference
« :operator — names a C++ operator, such as Operator=, Operator*.
« :slot — names a slot in a struct/class/union declaration.

« :type — names a foreign—type defined via ff:def-foreign—type.

« :variable — names a variable defined via ff.def-foreign—variable.

16.5.1 Creating symbols in the lisp environment 217

SWIG-1.3 Documentation

The :class keyword argument is a string naming a foreign class. When non-nil, it indicates that the current identifier has scope
the specified class.

The :arity keyword argument only appears in swig:swig—defmethod forms generated for overloaded functions. It's value is an
integer indicating the number of arguments passed to the routine indicated by this identifier.

16.5.4 Instructing SWIG to use a particular identifier—converter
By default, SWIG will use identifier—converter—null. To specify another convert function, use the —identifier—converter

command-line argument. The value should be a string naming the function you wish the interface to use instead, when genera
symbols. ex:

% swig —allegrocl —c++ —module mymodule —identifier—converter my-identifier—converter

16.5.3 Defining your own identifier—converter 218

17 SWIG and C#

« Introduction
« Differences to the Java module
« C# Exceptions
¢ C# exception example using "check" typemap
¢ C# exception example using %exception
¢ C# exception example using exception specifications
¢ Custom C# ApplicationException example
« C# Typemap examples
+ Memory management when returning references to member variables
+ Memory management for objects passed to the C++ layer

17.1 Introduction

The purpose of the C# module is to offer an automated way of accessing existing C/C++ code from .NET languages. The wrap
code implementation uses C# and the Platform Invoke (PInvoke) interface to access natively compiled C/C++ code. The Plnvo
interface has been chosen over Microsoft's Managed C++ interface as it is portable to both Microsoft Windows and
non—-Microsoft platforms. PInvoke is part of the ECMA/ISO C# specification. It is also better suited for robust production
environments due to the Managed C++ flaw called the Mixed DLL Loading Problem. Swig C# works equally well on
non—Microsoft operating systems such as Linux, Solaris and Apple Mac_using Mono and Portable.NET.

To get the most out of this chapter an understanding of interop is required. The Microsoft Developer Network (MSDN) has a go
reference guide in a section titled "Interop Marshaling". Monodoc, available from the Mono project, has a very useful section

titted Interop with native libraries.

17.2 Differences to the Java module

The C# module is very similar to the Java module, so until some more complete documentation has been written, please use tt
Java documentation as a guide to using SWIG with C#. The rest of this section should be read in conjunction with the Java
documentation as it lists the main differences.

Director support (virtual method callbacks into C#) has not yet been implemented and is the main missing feature compared to
Java. Less of the STL is supported and there are also a few minor utility typemaps in the various.i library which are missing.

The most noteable differences to Java are the following:

« When invoking SWIG use the —csharp command line option instead of —java.

» The —package command line option does not exist.

« The —namespace <name> commandline option will generate all code into the namespace specified by <name>.

» The —dllimport <name> commandline option specifies the name of the DLL for the DIlimport attribute for
every PInvoke method. If this commandline option is not given, the Dllimport DLL name is the same as the module
name. This option is useful for when one wants to invoke SWIG multiple times on different modules, yet compile all the
resulting code into a single DLL.

« C/C++ variables are wrapped with C# properties and not JavaBean style getters and setters.

« Global constants are generated into the module class. There is no constants interface.

 There is no implementation for type unsafe enums — not deemed necessary.

 The default enum wrapping approach is proper C# enums, not typesafe enums.
Note that %csconst(0) will be ignored when wrapping C/C++ enums with proper C# enums. This is because C# enum
items must be initialised from a compile time constant. If an enum item has an initialiser and the initialiser doesn't
compile as C# code, then the %csconstvalue directive must be used as %csconst(0) will have no effect. If it was used,
would generate an illegal runtime initialisation via a PInvoke call.

« C# doesn't support the notion of throws clauses. Therefore there is no 'throws' typemap attribute support for adding
exception classes to a throws clause. Likewise there is no need for an equivalent to %javaexception. In fact,
throwing C# exceptions works quite differently, see C# Exceptions> below.

17 SWIG and C# 219

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vcconMixedDLLLoadingProblem.asp
http://www.mono-project.com/
http://www.dotgnu.org/pnet.html
http://msdn.microsoft.com
http://www.mono-project.com/Interop_with_Native_Libraries

SWIG-1.3 Documentation

» The majority of the typemaps are in csharp.swg, not java.swg.
» Typemap equivalent names:

jni —> ctype

jtype —> imtype

jstype —> cstype

javain —> ¢sin

javaout —> csout

javainterfaces —> csinterfaces and csinterfaces_derived
javabase —> csbase
javaclassmodifiers —> csclassmodifiers
javacode —-> cscode

javaimports —> csimports

javabody —> csbody

javafinalize —> csfinalize

javadestruct —> csdestruct
javadestruct_derived —> csdestruct_derived

 Additional typemaps:

csvarin C# code property set typemap
csvarout C# code property get typemap
csattributes C# attributes for attaching to proxy classes/enums

 Feature equivalent names:

%javaconst —> %csconst
%javaconstvalue —> %csconstvalue
%javamethodmaodifiers —> %csmethodmodifiers

« Pragma equivalent names:

%pragma(java) -> %pragma(csharp)
jniclassbase —> imclassbase
jniclassclassmodifiers ~ —> imclassclassmodifiers
jniclasscode —-> imclasscode
jniclassimports —> imclassimports
jniclassinterfaces —> imclassinterfaces

« Special variable equivalent names:

$javaclassname —-> $csclassname
$javainput -> $csinput
$jnicall —> $imcall

« The intermediary classname has PINVOKE appended after the module name instead of JNI, for example
modulenamePINVOKE.

Support for asymmetric type marshalling. The 'ctype’, 'imtype' and 'cstype' typemaps support an optional out attribute
which is used for output types. If this typemap attribute is specified, then the type specified in the attribute is used for
output types and the type specified in the typemap itself is used for the input type. If this typemap attribute is not
specified, then the type used for both input and output is the type specified in the typemap. An example shows that che
* could be marshalled in different ways,

%typemap(imtype, out="IntPtr") char * "string"
char * function(char *);

The output type is thus IntPtr and the input type is string. The resulting intermediary C# code is:

public static extern IntPtr function(string jargl);
Support for type attributes. The 'imtype' and 'cstype' typemaps can have an optional inattributes and
outattributes typemap attribute. There are C# attributes and typemap attributes, don't get confused!! The C#
attributes specified in these typemap attributes are generated wherever the type is used in the C# wrappers. These cal
used to specify any C# attribute associated with a C/C++ type, but are more typically used for the C# MarshalAs
attribute. For example:

%typemap(imtype,
inattributes="[MarshalAs(UnmanagedType.LPStr)]",

17.2 Differences to the Java module 220

SWIG-1.3 Documentation

outattributes="[return: MarshalAs(UnmanagedType.LPStr)]") const char * "String"

const char * GetMsg() {}
void SetMsg(const char *msg) {}

The intermediary class will then have the marshalling as specified by everything in the 'imtype' typemap:

class examplePINVOKE {

[Dlllmport("example”, EntryPoint="CSharp_GetMsg")]
[return: MarshalAs(UnmanagedType.LPStr)]
public static extern String GetMsg();

[Dllimport("example”, EntryPoint="CSharp_SetMsg")]
public static extern void SetMsg([MarshalAs(UnmanagedType.LPStr)]String jargl);

}

Note that the Dllimport attribute is always generated, irrespective of any additional attributes specified.

These attributes are associated with the C/C++ parameter type or return type, which is subtely different to the attribute
features and typemaps covered next. Note that all these different C# attributes can be combined so that a method has
more than one attribute.

 Support for attaching C# attributes to wrapped methods and variables. This is done using the %csattributes feature,
see_%feature directives. Note that C# attributes are attached to proxy classes and enums using the csattributes
typemap. For example, imagine we have a custom attribute class, ThreadSafeAttribute, for labelling thread
safety. The following SWIG code shows how to attach this C# attribute to some methods and the class declaration itse

%typemap(csattributes) AClass "[ThreadSafe]"
%csattributes AClass::AClass(double d) "[ThreadSafe(false)]"
%csattributes AClass::AMethod() "[ThreadSafe(true)]"

%inline %({

class AClass {
public:
AClass(double a) {}
void AMethod() {}

g
9%}

will generate a C# proxy class:

[ThreadSafe]
public class AClass : IDisposable {

[ThreadSafe(false)]
public AClass(double a) ...

[ThreadSafe(true)]
public void AMethod() ...

}

If C# attributes need adding to the set or get part of C# properties, when wrapping C/C++ variables, they can be addec
using the 'csvarin' and 'csvarout' typemaps respectively.

» The %csmethodmodifiers feature can also be applied to variables as well as methods. In addition to the default
public modifier that SWIG generates when %csmethodmodifiers is not specified, the feature will also replace the
virtual/new/override modifiers that SWIG thinks is appropriate. This feature is useful for some obscure cases
where SWIG might get the virtual/new/override modifiers incorrect, for example with multiple inheritance.
The name of the intermediary class can be changed from its default, that is, the module name with PINVOKE appende
after it. The module directive attribute imclassname is used to achieve this:

%module (imclassname="name") modulename

17.2 Differences to the Java module 221

SWIG-1.3 Documentation

If name is the same as modulename then the module class name gets changed from modulename to
modulenameModule.

$dllimport

This is a C# only special variable that can be used in typemaps, pragmas, features etc. The special variable will get translated
the value specified by the —dllimport commandline option if specified, otherwise it is equivalent to the $module special
variable.

$imclassname
This special variable expands to the intermediary class name. For C# this is usually the same as '$modulePINVOKE'
(‘$moduleJNI' for Java), unless the imclassname attribute is specified in the %module directive.

The directory Examples/csharp has a number of simple examples. Visual Studio .NET 2003 solution and project files are
available for compiling with the Microsoft .NET C# compiler on Windows. If your SWIG installation went well on a Unix
environment and your C# compiler was detected, you should be able to type make in each example directory, then ilrun
runme.exe (Portable.NET C# compiler) or mono runme.exe (Mono C# compiler) to run the examples. Windows users can
also get the examples working using a Cygwin or MinGW environment for automatic configuration of the example makefiles.
Any one of the three C# compilers (Portable.NET, Mono or Microsoft) can be detected from within a Cygwin or Mingw
environment if installed in your path.

17.3 C# Exceptions

It is possible to throw a C# Exception from C/C++ code. SWIG already provides the framework for throwing C# exceptions if it |
able to detect that a C++ exception could be thrown. Automatically detecting that a C++ exception could be thrown is only
possible when a C++ exception specification is used, see Exception specifications. The Exception handling with %exception
section details the %exception feature. Customised code for handling exceptions with or without a C++ exception specification
is possible and the details follow. However anyone wishing to do this should be familiar with the contents of the sections referre
to above.

Unfortunately a C# exception cannot simply be thrown from unmanaged code for a variety of reasons. Most noteably being tha
throwing a C# exception results in exceptions being thrown across the C PInvoke interface and C does not understand excepti
The design revolves around a C# exception being constructed and stored as a pending exception, to be thrown only when the
unmanaged code has completed. Implementing this is a tad involved and there are thus some unusual typemap constructs. So
practical examples follow and they should be read in conjunction with the rest of this section.

First some details about the design that must be followed. Each typemap or feature that generates unmanaged code supports .
attribute called canthrow. This is simply a flag which when set indicates that the code in the typemap/feature has code which
might want to throw a C# exception. The code in the typemap/feature can then raise a C# exception by calling one of the C
functions, SWIG_CSharpSetPendingException() or SWIG_CSharpSetPendingExceptionArgument(). When

called, the function makes a callback into the managed world via a delegate. The callback creates and stores an exception rea
for throwing when the unmanaged code has finished. The typemap/feature unmanaged code is then expected to force an
immediate return from the unmanaged wrapper function, so that the pending managed exception can then be thrown. The supj
code has been carefully designed to be efficient as well as thread—safe. However to achieve the goal of efficiency requires son
optional code generation in the managed code typemaps. Code to check for pending exceptions is generated if and only if the
unmanaged code has code to set a pending exception, that is if the canthrow attribute is set. The optional managed code is
generated using the excode typemap attribute and $excode special variable in the relevant managed code typemaps. Simply, i
any relevant unmanaged code has the canthrow attribute set, then any occurrences of $excode is replaced with the code in the
excode attribute. If the canthrow attribute is not set, then any occurrences of $excode are replaced with nothing.

The prototypes for the SWIG_CSharpSetPendingException() and
SWIG_CSharpSetPendingExceptionArgument() functions are

static void SWIG_CSharpSetPendingException(SWIG_CSharpExceptionCodes code,
const char *msg);

static void SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpExceptionArgumentCodes code,
const char *msg,

17.3 C# Exceptions 222

http://www.cygwin.com
http://www.mingw.org

SWIG-1.3 Documentation

const char *param_name);
The first parameter defines which .NET exceptions can be thrown:

typedef enum {
SWIG_CsSharpApplicationException,
SWIG_CSharpArithmeticException,
SWIG_CSharpDivideByZeroException,
SWIG_CsSharpIindexOutOfRangeException,
SWIG_CSharplnvalidOperationException,
SWIG_CSharplOException,
SWIG_CSharpNullReferenceException,
SWIG_CSharpOutOfMemoryException,
SWIG_CSharpOverflowException,
SWIG_CSharpSystemException

} SWIG_CSharpExceptionCodes;

typedef enum {
SWIG_CSharpArgumentException,
SWIG_CSharpArgumentNullException,
SWIG_CsharpArgumentOutOfRangeException,
} SWIG_CSharpExceptionArgumentCodes;

where, for example, SWIG_CSharpApplicationException corresponds to the .NET exception,
ApplicationException. The msg and param_name parameters contain the C# exception message and parameter name
associated with the exception.

The %exception feature in C# has the canthrow attribute set. The %csnothrowexception feature is like %exception,
but it does not have the canthrow attribute set so should only be used when a C# exception is not created.

17.3.1 C# exception example using "check" typemap

Lets say we have the following simple C++ method:

void positivesonly(int number);

and we want to check that the input number is always positive and if not throw a C# ArgumentOutOfRangeException.
The "check" typemap is designed for checking input parameters. Below you will see the canthrow attribute is set because the
code contains a call to SWIG_CSharpSetPendingExceptionArgument(). The full example follows:

%module example

%typemap(check, canthrow=1) int number %{
if ($1 <0){
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentOutOfRangeException,
"only positive numbers accepted"”, "number");
return $null;
}
/I SWIGEXCODE is a macro used by many other csout typemaps
%define SWIGEXCODE
"\n if ($modulePINVOKE.SWIGPendingException.Pending)"
"\n throw $modulePINVOKE.SWIGPendingException.Retrieve();"
%enddef
%typemap(csout, excode=SWIGEXCODE) void {
$imcall;$excode

}
%}

%inline %({

void positivesonly(int number) {

}

17.3.1 C# exception example using "check" typemap 223

SWIG-1.3 Documentation

%0}
When the following C# code is executed:

public class runme {
static void Main() {
example.positivesonly(-1);

}
}

The exception is thrown:

Unhandled Exception: System.ArgumentOutOfRangeException: only positive numbers accepted
Parameter name: number

in <0x00034> example:positivesonly (int)

in <0x0000c> runme:Main ()

Now let's analyse the generated code to gain a fuller understanding of the typemaps. The generated unmanaged C++ code is:

SWIGEXPORT void SWIGSTDCALL CSharp_positivesonly(int jargl) {
intargl ;

argl = (int)jargl;

if (argl <0){
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentOutOfRangeException,
"only positive numbers accepted”, "number");
return ;

}

positivesonly(argl);
}
This largely comes from the "check” typemap. The managed code in the module class is:

public class example {
public static void positivesonly(int number) {
examplePINVOKE.positivesonly(number);
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();
}

}

This comes largely from the "csout" typemap.

The "csout" typemap is the same as the default void "csout" typemap so is not strictly necessary for the example. However, it i
shown to demonstrate what managed output code typemaps should contain, that is, a $excode special variable and an excode
attribute. Also note that $excode is expanded into the code held in the excode attribute. The $imcall as always expands into
examplePINVOKE.positivesonly(number). The exception support code in the intermediary class,

examplePINVOKE, is not shown, but is contained within the inner classes, SWIGPendingException and
SWIGExceptionHelper and is always generated. These classes can be seen in any of the generated wrappers. However, all
that is required of a user is as demonstrated in the "csin" typemap above. That is, is to check

SWIGPendingException.Pending and to throw the exception returned by SWIGPendingException.Retrieve().

If the "check" typemap did not exist, then the following module class would instead be generated:

public class example {
public static void positivesonly(int number) {
examplePINVOKE.positivesonly(number);
}

17.3.1 C# exception example using "check" typemap 224

SWIG-1.3 Documentation

}

Here we see the pending exception checking code is omitted. In fact, the code above would be generated if the canthrow
attribute was not in the "check" typemap, such as:

%typemap(check) int number %{
if ($1<0){
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentOutOfRangeException,
"only positive numbers accepted"”, "number");
return $null;

}
%)

Note that if SWIG detects you have used SWIG_CSharpSetPendingException() or
SWIG_CSharpSetPendingExceptionArgument() without setting the canthrow attribute you will get a warning
message similar to

example.i:21: Warning(845): Unmanaged code contains a call to a SWIG_CSharpSetPendingException
method and C# code does not handle pending exceptions via the canthrow attribute.

Actually it will issue this warning for any function beginning with SWIG_CSharpSetPendingException.

17.3.2 C# exception example using %exception

Let's consider a similar, but more common example that throws a C++ exception from within a wrapped function. We can use
%exception as mentioned in Exception handling with %exception.

%exception negativesonly(int value) %{

try {
$action

} catch (std::out_of_range e) {
SWIG_CSharpSetPendingException(SWIG_CSharpApplicationException, e.what());

}
9%}

%inline %{
#include <stdexcept>
void negativesonly(int value) {
if (value >= 0)
throw std::out_of_range("number should be negative");

}
%}

The generated unmanaged code this time catches the C++ exception and converts it into a C# ApplicationException.

SWIGEXPORT void SWIGSTDCALL CSharp_negativesonly(int jargl) {
intargl ;

argl = (int)jargl;

try {
negativesonly(argl);

} catch (std::out_of_range e) {
SWIG_CSharpSetPendingException(SWIG_CSharpApplicationException, e.what());
return ;

}
}

The managed code generated does check for the pending exception as mentioned earlier as the C# version of %exception has
the canthrow attribute set by default:

17.3.2 C# exception example using %exception 225

SWIG-1.3 Documentation

public static void negativesonly(int value) {
examplePINVOKE.negativesonly(value);
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();

}
17.3.3 C# exception example using exception specifications

When C++ exception specifications are used, SWIG is able to detect that the method might throw an exception. By default SW
will automatically generate code to catch the exception and convert it into a managed ApplicationException, as defined by

the default "throws" typemaps. The following example has a user supplied "throws" typemap which is used whenever an
exception specification contains a std::out_of range, such as the evensonly method below.

%typemap(throws, canthrow=1) std::out_of_range {
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentException, $1.what(), NULL);
return $null;

}

%inline %{
#include <stdexcept>
void evensonly(int input) throw (std::out_of_range) {
if (input%?2 = 0)
throw std::out_of_range("number is not even");

}
%}

Note that the type for the throws typemap is the type in the exception specification. SWIG generates a try catch block with the
throws typemap code in the catch handler.

SWIGEXPORT void SWIGSTDCALL CSharp_evensonly(int jargl) {
intargl ;

argl = (int)jargl;
try {
evensonly(argl);

catch(std::out_of range & e) {

SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentException, (&_e)—->what(), NULL);
return ;

}
}

}

Multiple catch handlers are generated should there be more than one exception specifications declared.

17.3.4 Custom C# ApplicationException example

This example involves a user defined exception. The conventional .NET exception handling approach is to create a custom
ApplicationException and throw it in your application. The goal in this example is to convert the STL
std::out_of range exception into one of these custom .NET exceptions.

The default exception handling is quite easy to use as the SWIG_CSharpSetPendingException() and
SWIG_CSharpSetPendingExceptionArgument() methods are provided by SWIG. However, for a custom C#

exception, the boiler plate code that supports these functions needs replicating. In essence this consists of some C/C++ code ¢
C# code. The C/C++ code can be generated into the wrapper file using the %insert(runtime) directive and the C# code can

be generated into the intermediary class using the imclasscode pragma as follows:

%insert(runtime) %f{
/I Code to handle throwing of C# CustomApplicationException from C/C++ code.
/I The equivalent delegate to the callback, CSharpExceptionCallback_t, is CustomExceptionDelegate

17.3.3 C# exception example using exception specifications 226

SWIG-1.3 Documentation

/I and the equivalent customExceptionCallback instance is customDelegate
typedef void (SWIGSTDCALL* CSharpExceptionCallback_t)(const char *);
CSharpExceptionCallback_t customExceptionCallback = NULL;

extern "C" SWIGEXPORT
void SWIGSTDCALL CustomExceptionRegisterCallback(CSharpExceptionCallback_t customCallback) {
customExceptionCallback = customCallback;

}

/I Note that SWIG detects any method calls named starting with

/I SWIG_CSharpSetPendingException for warning 845

static void SWIG_CSharpSetPendingExceptionCustom(const char *msg) {
customExceptionCallback(msg);

}
%)}

%pragma(csharp) imclasscode=%{
class CustomExceptionHelper {
/I C# delegate for the C/C++ customExceptionCallback
public delegate void CustomExceptionDelegate(string message);
static CustomExceptionDelegate customDelegate =
new CustomExceptionDelegate(SetPendingCustomException);

[Dllimport("$dilimport", EntryPoint="CustomExceptionRegisterCallback")]
public static extern
void CustomExceptionRegisterCallback(CustomExceptionDelegate customCallback);

static void SetPendingCustomException(string message) {
SWIGPendingException.Set(new CustomApplicationException(message));

}

static CustomExceptionHelper() {
CustomExceptionRegisterCallback(customDelegate);

}
}

static CustomExceptionHelper exceptionHelper = new CustomExceptionHelper();
%0}

The method stored in the C# delegate instance, customDelegate is what gets called by the C/C++ callback. However, the
equivalent to the C# delegate, that is the C/C++ callback, needs to be assigned before any unmanaged code is executed. This
achieved by putting the initialisation code in the intermediary class. Recall that the intermediary class contains all the PInvoke
methods, so the static variables in the intermediary class will be initialised before any of the PInvoke methods in this class are
called. The exceptionHelper static variable ensures the C/C++ callback is initialised with the value in customDelegate

by calling the CustomExceptionRegisterCallback method in the CustomExceptionHelper static constructor.

Once this has been done, unmanaged code can make callbacks into the managed world as customExceptionCallback will

be initialised with a valid callback/delegate. Any calls to SWIG_CSharpSetPendingExceptionCustom() will make the

callback to create the pending exception in the same way that SWIG_CSharpSetPendingException() and
SWIG_CSharpSetPendingExceptionArgument() does. In fact the method has been similarly named so that SWIG can

issue the warning about missing canthrow attributes as discussed earlier. It is an invaluable warning as it is easy to forget the
canthrow attribute when writing typemaps/features.

The SWIGPendingException helper class is not shown, but is generated as an inner class into the intermediary class. It stores
the pending exception in Thread Local Storage so that the exception handling mechanism is thread safe.

The boiler plate code above must be used in addition to a handcrafted CustomApplicationException:

/I Custom C# Exception
class CustomApplicationException : System.ApplicationException {
public CustomApplicationException(string message)
: base(message) {
}
}

17.3.4 Custom C# ApplicationException example 227

SWIG-1.3 Documentation

and the SWIG interface code:

%typemap(throws, canthrow=1) std::out_of _range {
SWIG_CSharpSetPendingExceptionCustom($1.what());
return $null;

}

%inline %({
void oddsonly(int input) throw (std::out_of range) {
if (input%?2 1= 1)
throw std::out_of_range("number is not odd");

}
%}

The "throws" typemap now simply calls our new SWIG_CSharpSetPendingExceptionCustom() function so that the
exception can be caught, as such:

try {
example.oddsonly(2);

} catch (CustomApplicationException e) {

}...

17.4 C# Typemap examples

This section includes a few examples of typemaps. For more examples, you might look at the files "csharp.swg" and
"typemaps.i" in the SWIG library.

17.4.1 Memory management when returning references to member variables

This example shows how to prevent early garbage collection of objects when the underlying C++ class returns a pointer or
reference to a member variable. The example is a direct equivalent_to this Java equivalent.

Consider the following C++ code:

struct Wheel {

int size;

Wheel(int sz) : size(sz) {}
h

class Bike {
Wheel wheel;
public:
Bike(int val) : wheel(val) {}
Wheel& getWheel() { return wheel; }
h

and the following usage from C# after running the code through SWIG:

Wheel wheel = new Bike(10).getWheel();
Console.WriteLine("wheel size: " + wheel.size);
/I Simulate a garbage collection
System.GC.Collect();
System.GC.WaitForPendingFinalizers();
Console.WriteLine("wheel size: " + wheel.size);

Don't be surprised that if the resulting output gives strange results such as...

wheel size: 10
wheel size: 135019664

17.4 C# Typemap examples 228

SWIG-1.3 Documentation

What has happened here is the garbage collector has collected the Bike instance as it doesn't think it is needed any more. The
proxy instance, wheel, contains a reference to memory that was deleted when the Bike instance was collected. In order to
prevent the garbage collector from collecting the Bike instance a reference to the Bike must be added to the wheel instance.
You can do this by adding the reference when the getWheel() method is called using the following typemaps.

%typemap(cscode) Wheel %{
/I Ensure that the GC doesn't collect any Bike instance set from C#
private Bike bikeReference;
internal void addReference(Bike bike) {
bikeReference = bike;

}
%}

/I Add a C# reference to prevent early garbage collection and resulting use
/I of dangling C++ pointer. Intended for methods that return pointers or
/I references to a member variable.
%typemap(csout, excode=SWIGEXCODE) Wheel& getWheel {
IntPtr cPtr = $imcall;$excode
$csclassname ret = null;
if (cPtr != IntPtr.Zero) {
ret = new $csclassname(cPtr, $owner);
ret.addReference(this);
}

return ret;

}

The code in the first typemap gets added to the Wheel proxy class. The code in the second typemap constitutes the bulk of the
code in the generated getWheel() function:

public class Wheel : IDisposable {

/I Ensure that the GC doesn't collect any Bike instance set from C#
private Bike bikeReference;
internal void addReference(Bike bike) {
bikeReference = bike;
}
}

public class Bike : IDisposable {

public Wheel getWheel() {
IntPtr cPtr = examplePINVOKE.Bike_getWheel(swigCPtr);
Wheel ret = null;
if (cPtr != IntPtr.Zero) {
ret = new Wheel(cPtr, false);
ret.addReference(this);

}

return ret;

}
}

Note the addReference call.

17.4.2 Memory management for objects passed to the C++ layer

The example is a direct equivalent to this Java equivalent. Managing memory can be tricky when using C++ and C# proxy
classes. The previous example shows one such case and this example looks at memory management for a class passed to a ¢
method which expects the object to remain in scope after the function has returned. Consider the following two C++ classes:

struct Element {
int value;
Element(int val) : value(val) {}

g

class Container {

17.4.1 Memory management when returning references to member variables 229

SWIG-1.3 Documentation

Element* element;
public:
Container() : element(0) {}
void setElement(Element* e) { element = e; }
Element* getElement() { return element; }

h
and usage from C++

Container container;

Element element(20);

container.setElement(&element);

cout << "element.value: " << container.getElement()—>value << endl;

and more or less equivalent usage from C#

Container container = new Container();
Element element = new Element(20);
container.setElement(element);

The C++ code will always print out 20, but the value printed out may not be this in the C# equivalent code. In order to understa
why, consider a garbage collection occuring...

Container container = new Container();

Element element = new Element(20);
container.setElement(element);

Console.WriteLine("element.value: " + container.getElement().value);
/I Simulate a garbage collection

System.GC.Collect();

System.GC.WaitForPendingFinalizers();
Console.WriteLine("element.value: " + container.getElement().value);

The temporary element created with new Element(20) could get garbage collected which ultimately means the container
variable is holding a dangling pointer, thereby printing out any old random value instead of the expected value of 20. One solut
is to add in the appropriate references in the C# layer...

public class Container : IDisposable {

/I Ensure that the GC doesn't collect any Element set from C#

/I as the underlying C++ class stores a shallow copy

private Element elementReference;

private HandleRef getCPtrAndAddReference(Element element) {
elementReference = element;
return Element.getCPtr(element);

}

public void setElement(Element e) {
examplePINVOKE.Container_setElement(swigCPtr, getCPtrAndAddReference(e));
}
}

The following typemaps will generate the desired code. The ‘csin' typemap matches the input parameter type for the
setElement method. The 'cscode’ typemap simply adds in the specified code into the C# proxy class.

%typemap(csin) Element *e "getCPtrAndAddReference($csinput)”

%typemap(cscode) Container %{
/I Ensure that the GC doesn't collect any Element set from C#
/I as the underlying C++ class stores a shallow copy
private Element elementReference;
private HandleRef getCPtrAndAddReference(Element element) {
elementReference = element;

17.4.2 Memory management for objects passed to the C++ layer 230

SWIG-1.3 Documentation
return Element.getCPtr(element);

}
9%}

17.4.2 Memory management for objects passed to the C++ layer 231

18 SWIG and Chicken

* Preliminaries

¢ Running SWIG in C mode
¢ Running SWIG in C++ mode
* Code Generation
+ Naming Conventions
¢+ Modules
¢ Constants and Variables
+ Functions
¢ Exceptions
» TinyCLOS
« Linkage
+ Static binary or shared library linked at compile time
¢ Building chicken extension libraries
¢ Linking multiple SWIG modules with TinyCLOS
» Typemaps
* Pointers
¢ Garbage collection
* Unsupported features and known problems

This chapter describes SWIG's support of CHICKEN. CHICKEN is a Scheme-to—C compiler supporting most of the language
features as defined in the Revised"5 Report on Scheme. Its main attributes are that it

1. generates portable C code
2.includes a customizable interpreter
3.links to C libraries with a simple Foreign Function Interface
4. supports full tail-recursion and first—class continuations
When confronted with a large C library, CHICKEN users can use SWIG to generate CHICKEN wrappers for the C library.

However, the real advantages of using SWIG with CHICKEN are its support for C++ —— object-oriented code is difficult to wrag
by hand in CHICKEN —- and its typed pointer representation, essential for C and C++ libraries involving structures or classes.

18.1 Preliminaries

CHICKEN support was introduced to SWIG in version 1.3.18. SWIG relies on some recent additions to CHICKEN, which are
only present in releases of CHICKEN with version number greater than or equal to 1.89. To use a chicken version between 1.4
and 1.89, see the Garbage collection section below.

You may want to look at any of the examples in Examples/chicken/ or Examples/GIFPlot/Chicken for the basic steps to run
SWIG CHICKEN.

18.1.1 Running SWIG in C mode
To run SWIG CHICKEN in C mode, use the —chicken option.
% swig —chicken example.i
To allow the wrapper to take advantage of future CHICKEN code generation improvements, part of the wrapper is direct
CHICKEN function calls (example_wrap.c) and part is CHICKEN Scheme (example.scm). The basic Scheme code must

be compiled to C using your system's CHICKEN compiler or both files can be compiled directly using the much simpler csc.

% chicken example.scm —output—file oexample.c

18 SWIG and Chicken 232

SWIG-1.3 Documentation

So for the C mode of SWIG CHICKEN, example_wrap.c and oexample.c are the files that must be compiled to object
files and linked into your project.

18.1.2 Running SWIG in C++ mode

To run SWIG CHICKEN in C++ mode, use the —chicken —c++ option.

% swig —chicken —c++ example.i

This will generate example_wrap.cxx and example.scm. The basic Scheme code must be compiled to C using your
system's CHICKEN compiler or both files can be compiled directly using the much simpler csc.

% chicken example.scm —output—file oexample.c

So for the C++ mode of SWIG CHICKEN, example_wrap.cxx and oexample.c are the files that must be compiled to
object files and linked into your project.

18.2 Code Generation

18.2.1 Naming Conventions

Given a C variable, function or constant declaration named Foo_Bar, the declaration will be available in CHICKEN as an
identifier ending with Foo—Bar. That is, an underscore is converted to a dash.

You may control what the CHICKEN identifier will be by using the %rename SWIG directive in the SWIG interface file.
18.2.2 Modules
The name of the module must be declared one of two ways:

* Placing %omodule example in the SWIG interface file.
 Using —-module example on the SWIG command line.

The generated example.scm file then exports (declare (unit modulename)). If you do not want SWIG to export the
(declare (unit modulename)), pass the —nounit option to SWIG.

CHICKEN will be able to access the module using the (declare (uses modulename)) CHICKEN Scheme form.

18.2.3 Constants and Variables
Constants may be created using any of the four constructs in the interface file:
1. #define MYCONSTANTL ...
2.%constant int MYCONSTANT2 = ...
3.const int MYCONSTANT3 = ...
4.enum { MYCONSTANT4 = ... };

In all cases, the constants may be accessed from within CHICKEN using the form (MYCONSTANT1); that is, the constants ma
be accessed using the read—only parameter form.

Variables are accessed using the full parameter form. For example, to set the C variable "int my_variable;", use the Scheme fo
(my-variable 2345). To get the C variable, use (my-variable).

18.1.1 Running SWIG in C mode 233

SWIG-1.3 Documentation

18.2.4 Functions

C functions declared in the SWIG interface file will have corresponding CHICKEN Scheme procedures. For example, the C
function "int sqrt(double x);" will be available using the Scheme form (sqrt 2345.0). A void return value will give
C_SCHEME_UNDEFINED as a result.

A function may return more than one value by using the OUTPUT specifier (see Lib/chicken/typemaps.i). They will be returned
multiple values using (values) if there is more than one result (that is, a non-void return value and at least one argout
parameter, or a void return value and at least two argout parameters). The return values can then be accessed with
(call-with—values).

18.2.5 Exceptions

The SWIG chicken module has support for exceptions thrown from C or C++ code to be caught in scheme. See Exception
handling with %exception for more information about declaring exceptions in the interface file.

Chicken supports both the SWIG_exception(int code, const char *msg) interface as well as a

SWIG_ThrowException(C_word val) function for throwing exceptions from inside the %exception blocks.

SWIG_exception will throw a list consisting of the code (as an integer) and the message. Both of these will throw an exception
using (abort), which can be handled by (handle—exceptions). See Chicken manual on Exceptions and SERI=12. Since

the exception values are thrown directly, if (condition—case) is used to catch an exception the exception will come through

in the val () case.

The following simple module

%module exception_test

%inline %({
void test_throw(int i) throws (int) {
if (i == 1) throw 15;

}
%}

could be run with

(handle—exceptions exvar
(if (= exvar 15)
(print "Correct!")
(print "Threw something else " exvar))
(test—throw 1))

18.3 TinyCLOS

The author of TinyCLOS, Gregor Kiczales, describes TinyCLOS as: "Tiny CLOS is a Scheme implementation of a “kernelized'
CLOS, with a metaobject protocol. The implementation is even simpler than the simple CLOS found in “The Art of the
Metaobject Protocol," weighing in at around 850 lines of code, including (some) comments and documentation.”

Almost all good Scheme books describe how to use metaobjects and generic procedures to implement an object-oriented Sch
system. Please consult a Scheme book if you are unfamiliar with the concept.

CHICKEN has a modified version of TinyCLOS, which SWIG CHICKEN uses if the —proxy argument is given. If —proxy is
passed, then the generated example.scm file will contain TinyCLOS class definitions. A class named Foo is declared as <Foo>
and each member variable is allocated a slot. Member functions are exported as generic functions.

Primitive symbols and functions (the interface that would be presented if —proxy was not passed) are hidden and no longer

accessable. If the —unhideprimitive command line argument is passed to SWIG, then the primitive symbols will be available, bu
each will be prefixed by the string "primitive:"

18.2.4 Functions 234

http://www.call-with-current-continuation.org/manual/Exceptions.html#Exceptions
http://srfi.schemers.org/srfi-12/srfi-12.html

SWIG-1.3 Documentation

The exported symbol hames can be controlled with the —closprefix and —useclassprefix arguments. If —useclassprefix is passe
SWIG, every member function will be generated with the class nhame as a prefix. If the —closprefix mymod: argument is passed
SWIG, then the exported functions will be prefixed by the string "mymod:". If —useclassprefix is passed, —closprefix is ignored.

18.4 Linkage

Please refer to CHICKEN - A practical and portable Scheme system — User's manual for detailed help on how to link object file
to create a CHICKEN Scheme program. Briefly, to link object files, be sure to add “chicken-config —extra-libs

-libs™ or “chicken—config —shared —extra-libs —libs’to your linker options. Use the —shared option if you

want to create a dynamically loadable module. You might also want to use the much simpler csc or csc.bat.

Each scheme file that is generated by SWIG contains (declare (uses modname)). This means that to load the module
from scheme code, the code must include (declare (uses modname)).

18.4.1 Static binary or shared library linked at compile time

We can easily use csc to build a static binary.

$ swig —chicken example.i
$ csc -v example.scm example_impl.c example_wrap.c test_script.scm —o example
$.Jexample

Similar to the above, any number of module.scm files could be compiled into a shared library, and then that shared library
linked when compiling the main application.

$ swig —chicken example.i
$ csc —sv example.scm example_wrap.c example_impl.c —o example.so

The exmaple.so file can then linked with test_script.scm when it is compiled, in which case test_script.scm
must have (declare (uses example)). Multiple SWIG modules could have been linked into example.so and each one
accessed with a (declare (uses ...)).

$ csc —v test_script.scm —lexample

An alternative is that the test_script.scm can have the code (load-library 'example "example.so"), in which case
the test script does not need to be linked with example.so. The test_script.scm file can then be run with csi.

18.4.2 Building chicken extension libraries

Building a shared library like in the above section only works if the library is linked at compile time with a script containing
(declare (uses ...)) or is loaded explicitly with (load-library ‘example "example.so"). It is not the

format that CHICKEN expects for extension libraries and eggs. The problem is the (declare (unit modname)) inside the
modname.scm file. There are two possible solutions to this.

First, SWIG accepts a —nounit argument, in which case the (declare (unit modname)) is not generated. Then, the
modname.scm and modname_wrap.c files must be compiled into their own shared library.

$ csc —sv modname.scm modname_wrap.c modname_impl.c —o modname.so

This library can then be loaded by scheme code with the (require 'modname) function. See Loading—extension-libraries in
the eval unit inside the CHICKEN manual for more information.

Another alternative is to run SWIG normally and create a scheme file that contains (declare (uses modname)) and then
compile that file into the shared library as well. For example, inside the mod_load.scm file,

(declare (uses mod1l))
(declare (uses mod2))

18.3 TinyCLOS 235

http://www.call-with-current-continuation.org/manual/Loading-extension-libraries.html

SWIG-1.3 Documentation

Which would then be compiled with

$ swig —chicken mod1.i
$ swig —chicken mod2.i
$ csc —sv mod_load.scm modl.scm mod2.scm mod1_wrap.c mod2_wrap.c modl_impl.c mod2_impl.c -0 mod.so

Then the extension library can be loaded with (require 'mod). As we can see here, mod_load.scm contains the code that

gets exectued when the module is loaded. All this code does is load both mod1 and mod2. As we can see, this technique is mc
useful when you want to combine a few SWIG modules into one chicken extension library, especially if modules are related by
%import

In either method, the files that are compiled into the shared library could also be packaged into an egg. The mod1_wrap.c and
mod2_wrap.c files that are created by SWIG are stand alone and do not need SWIG to be installed to be compiled. Thus the
egg could be distributed and used by anyone, even if SWIG is not installed.

See the Examples/chicken/egg directory in the SWIG source for an example that builds two eggs, one using the first
method and one using the second method.

18.4.3 Linking multiple SWIG modules with TinyCLOS

Linking together multiple modules that share type information using the %import directive while also using —proxy is more
complicated. For example, if mod2.i imports mod1.i, then the mod2.scm file contains references to symbols declared in
modl.scm, and thus a (declare (uses mod1)) or (require 'mod1) must be exported to the top of mod2.scm. By

default, when SWIG encounters an %import "modname.i" directive, it exports (declare (uses modname)) into the

scm file. This works fine unless mod1 was compiled with the —nounit argument or was compiled into an extension library with
other modules under a different name.

One option is to override the automatic generation of (declare (uses mod1)) by passing the —noclosuses option to
SWIG when compiling mod2.i. SWIG then provides the %insert(closprefix) %{ %} directive. Any scheme code

inside that directive is inserted into the generated .scm file, and if mod1 was compiled with —nounit, the directive should
contain (require 'mod1). This option allows for mixed loading as well, where some modules are imported with (declare
(uses modname)) (which means they were compiled without —nounit) and some are imported with (require

'modname).

The other option is to use the second idea in the above section. Compile all the modules normally, without any
%insert(closprefix), —nounit, or —noclosuses. Then the modules will import each other correctly with (declare
(uses ...)). To create an extension library or an egg, just create a module_load.scm file that (declare (uses

...)) all the modules.

18.5 Typemaps

The Chicken module handles all types via typemaps. This information is read from Lib/chicken/typemaps.i and
Lib/chicken/chicken.swg.

18.6 Pointers

For pointer types, SWIG uses CHICKEN tagged pointers. A tagged pointer is an ordinary CHICKEN pointer with an extra slot ft
a void *. With SWIG CHICKEN, this void * is a pointer to a type—info structure. So each pointer used as input or output from the
SWIG-generated CHICKEN wrappers will have type information attached to it. This will let the wrappers correctly determine
which method should be called according to the object type hierarchy exposed in the SWIG interface files.

To construct a Scheme object from a C pointer, the wrapper code calls the function SWIG_NewPointerObj(void *ptr,
swig_type_info *type, int owner), The function that calls SWIG_NewPointerObj must have a variable declared
C_word *known_space = C_alloc(C_SIZEOF_SWIG_POINTER); It is ok to call SWIG_NewPointerObj more

than once, just make sure known_space has enough space for all the created pointers.

18.4.2 Building chicken extension libraries 236

SWIG-1.3 Documentation

To get the pointer represented by a CHICKEN tagged pointer, the wrapper code calls the function
SWIG_ConvertPtr(C_word s, void **result, swig_type_info *type, int flags), passing a pointer to
a struct representing the expected pointer type. flags is either zero or SWIG_POINTER_DISOWN (see below).

18.6.1 Garbage collection

If the owner flag passed to SWIG_NewPointerObj is 1, NewPointerObj will add a finalizer to the type which will call the
destructor or delete method of that type. The destructor and delete functions are no longer exported for use in scheme code,
instead SWIG and chicken manage pointers. In situations where SWIG knows that a function is returning a type that should be
garbage collected, SWIG will automatically set the owner flag to 1. For other functions, the %newobject directive must be
specified for functions whose return values should be garbage collected. See Object ownership and %newobject for more
information.

In situations where a C or C++ function will assume ownership of a pointer, and thus chicken should no longer garbage collect
SWIG provides the DISOWN input typemap. After applying this typemap (see the Typemaps chapter for more information on h
to apply typemaps), any pointer that gets passed in will no longer be garbage collected. An object is disowned by passing the
SWIG_POINTER_DISOWN flag to SWIG_ConvertPtr. Warning: Since the lifetime of the object is now controlled by the
underlying code, the object might get deleted while the scheme code still holds a pointer to it. Further use of this pointer can le:
to a crash.

Adding a finalizer function from C code was added to chicken in the 1.89 release, so garbage collection does not work for chicl
versions below 1.89. If you would like the SWIG generated code to work with chicken 1.40 to 1.89, pass the —nocollection
argument to SWIG. This will not export code inside the _wrap.c file to register finalizers, and will then export destructor functior
which must be called manually.

18.7 Unsupported features and known problems

» No director support.
» No support for c++ standard types like std::vector.
» The TinyCLOS wrappers for overloaded functions will not work correctly when using %feature(compactdefaultargs).

TinyCLOS has a limitation such that generic methods do not properly work on methods with different number of specializers:
TinyCLOS assumes that every method added to a generic function will have the same number of specializers. SWIG generate:
functions with different lengths of specializers when C/C++ functions are overloaded. For example, the code

class Foo {};
int foo(int a, Foo *b);
int foo(int a);

will produce scheme code

(define-method (foo (arg0 <top>) (argl <Foo>)) (call primitive function))
(define-method (foo (arg0 <top>)) (call primitive function))

Using unpatched TinyCLOS, the second (define—-method) will replace the first one, so calling (foo 3 f) will produce an
error.

There are two solutions to this: the file Lib/chicken/tinyclos—multi-generic.patch in the SWIG source contains a

patch against tinyclos.scm inside the chicken source to add support into TinyCLOS for multi—argument generics. This requires
chicken to be rebuilt and custom install of chicken. An alternative is the Lib/chicken/multi-generic.scm file in the

SWIG source. This file can be loaded after TinyCLOS is loaded, and it will override some functions inside TinyCLOS to correct
support multi-argument generics. This solution will work on any install of chicken. Please see the comments at the top of both

files for more information.

18.6 Pointers 237

19 SWIG and Guile

» Meaning of "Module"
* Using the SCM or GH Guile API
« Linkage
¢ Simple Linkage
¢ Passive Linkage
+ Native Guile Module Linkage
¢ Old Auto-Loading Guile Module Linkage
¢ Hobbit4D Linkage
+ Underscore Folding
» Typemaps

» Representation of pointers as smobs
+ GH Smobs

¢ SCM Smobs
¢ Garbage Collection

» Exception Handling
* Procedure documentation

» Procedures with setters

* GOOPS Proxy Classes
¢ Naming Issues
¢ Linking

This section details guile—specific support in SWIG.

19.1 Meaning of "Module"

There are three different concepts of "'module"” involved, defined separately for SWIG, Guile, and Libtool. To avoid horrible
confusion, we explicitly prefix the context, e.g., "guile—-module".

19.2 Using the SCM or GH Guile API

The guile module can currently export wrapper files that use the guile GH interface or the SCM interface. This is controlled by &
argument passed to swig. The "—gh" argument causes swig to output GH code, and the "-scm" argument causes swig to outpt
SCM code. Right now the "-scm" argument is the default. The "-scm" wrapper generation assumes a guile version >= 1.6 and
several advantages over the "—gh" wrapper generation including garbage collection and GOOPS support. The "—-gh" wrapper
generation can be used for older versions of guile. The guile GH wrapper code generation is depreciated and the SCM interfac
the default. The SCM and GH interface differ greatly in how they store pointers and have completely different run—time code. S
below for more info.

The GH interface to guile is deprecated. Read more about why in the Guile manual. The idea of the GH interface was to provid
high level API that other languages and projects could adopt. This was a good idea, but didn't pan out well for general
development. But for the specific, minimal uses that the SWIG typemaps put the GH interface to use is ideal for using a high le
API. So even though the GH interface is depreciated, SWIG will continue to use the GH interface and provide mappings from tl
GH interface to whatever APl we need. We can maintain this mapping where guile failed because SWIG uses a small subset o
the GH functions which map easily. All the guile typemaps like typemaps.i and std_vector.i will continue to use the GH function
to do things like create lists of values, convert strings to integers, etc. Then every language module will define a mapping betws
the GH interface and whatever custom API the language uses. This is currently implemented by the guile module to use the SC
guile API rather than the GH guile API. For example, here are some of the current mapping file for the SCM API

#define gh_append2(a, b) scm_append(scm_listify(a, b, SCM_UNDEFINED))
#define gh_apply(a, b) scm_apply(a, b, SCM_EOL)

#define gh_bool2scm SCM_BOOL

#define gh_boolean_p SCM_BOOLP

#define gh_car SCM_CAR

19 SWIG and Guile 238

http://www.gnu.org/software/guile/docs/guile-ref/GH-deprecation.html

SWIG-1.3 Documentation

#define gh_cdr SCM_CDR
#define gh_cons scm_cons
#define gh_double2scm scm_make_real

This file is parsed by SWIG at wrapper generation time, so every reference to a gh_ function is replaced by a scm_ function in-
wrapper file. Thus the gh_ function calls will never be seen in the wrapper; the wrapper will look exactly like it was generated fc
the specific API. Currently only the guile language module has created a mapping policy from gh_ to scm_, but there is no reas
other languages (like mzscheme or chicken) couldn't also use this. If that happens, there is A LOT less code duplication in the
standard typemaps.

19.3 Linkage

Guile support is complicated by a lack of user community cohesiveness, which manifests in multiple shared-library usage
conventions. A set of policies implementing a usage convention is called a linkage.

19.3.1 Simple Linkage

The default linkage is the simplest; nothing special is done. In this case the function SWIG _init() is exported. Simple linkage
can be used in several ways:

« Embedded Guile, no modules. You want to embed a Guile interpreter into your program; all bindings made by SWIG
shall show up in the root module. Then call SWIG_init() in the inner_main() function. See the "simple" and
"matrix" examples under Examples/guile.

« Dynamic module mix—in. You want to create a Guile module using define—-module, containing both Scheme code
and bindings made by SWIG; you want to load the SWIG modules as shared libraries into Guile.

(define-module (my module))

(define my-so (dynamic-link "./example.so"))
(dynamic—call "SWIG_init" my-so) ; make SWIG bindings
;; Scheme definitions can go here

Newer Guile versions provide a shorthand for dynamic—link and dynamic—call:
(load—extension "./Jexample.so" "SWIG_init")

You need to explicitly export those bindings made by SWIG that you want to import into other modules:
(export foo bar)

In this example, the procedures foo and bar would be exported. Alternatively, you can export all bindings with the
following module—system hack:

(module-map (lambda (sym var)
(module—export! (current—-module) (list sym)))
(current-module))

SWIG can also generate this Scheme stub (from define—-module up to export) semi—automagically if you pass it
the command-line argument —scmstub. The code will be exported in a file called module.scm in the directory
specified by —outdir or the current directory if —outdir is not specified. Since SWIG doesn't know how to load your
extension module (with dynamic-link or load—-extension), you need to supply this information by including a
directive like this in the interface file:

%scheme %f{ (load—extension "./example.so" "SWIG_init") %}

(The %scheme directive allows to insert arbitrary Scheme code into the generated file module.scm; it is placed
between the define-module form and the export form.)

19.2 Using the SCM or GH Guile API 239

SWIG-1.3 Documentation

If you want to include several SWIG modules, you would need to rename SWIG_init via a preprocessor define to avoid symbol
clashes. For this case, however, passive linkage is available.

19.3.2 Passive Linkage

Passive linkage is just like simple linkage, but it generates an initialization function whose name is derived from the module anc
package name (see below).

You should use passive linkage rather than simple linkage when you are using multiple modules.

19.3.3 Native Guile Module Linkage

SWIG can also generate wrapper code that does all the Guile module declarations on its own if you pass it the —Linkage
module command-line option. This requires Guile 1.5.0 or later.

The module name is set with the —package and —module command-line options. Suppose you want to define a module with
name (my lib foo); then you would have to pass the options —package my/lib -module foo. Note that the last part of
the name can also be set via the SWIG directive %module.

You can use this linkage in several ways:

« Embedded Guile with SWIG modules. You want to embed a Guile interpreter into your program; the SWIG bindings
shall be put into different modules. Simply call the function scm_init_my_modules_foo_module in the
inner_main() function.

» Dynamic Guile modules. You want to load the SWIG modules as shared libraries into Guile; all bindings are

automatically put in newly created Guile modules.
(define my-so (dynamic-link "./foo.s0"))
;; create new module and put bindings there:
(dynamic—call "scm_init_my_modules_foo_module" my-so)

Newer Guile versions have a shorthand procedure for this:

(load-extension "./foo.s0" "scm_init_my_modules_foo_module")

19.3.4 Old Auto-Loading Guile Module Linkage

Guile used to support an autoloading facility for object—code modules. This support has been marked deprecated in version 1.4
and is going to disappear sooner or later. SWIG still supports building auto—loading modules if you pass it the —Linkage
ltdimod command-line option.

Auto-loading worked like this: Suppose a module with name (my lib foo) is required and not loaded yet. Guile will then
search all directories in its search path for a Scheme file my/modules/foo.scm or a shared library
my/modules/libfoo.so (or my/modules/libfoo.la; see the GNU libtool documentation). If a shared library is found that
contains the symbol scm_init_my_ modules _foo_module, the library is loaded, and the function at that symbol is called
with no arguments in order to initialize the module.

When invoked with the —Linkage Itdimod command-line option, SWIG generates an exported module initialization
function with an appropriate name.

19.3.5 Hobbit4D Linkage

The only other linkage supported at this time creates shared object libraries suitable for use by hobbit's (hobbit4d link)
guile module. This is called the "hobbit" linkage, and requires also using the "—package" command line option to set the part of
the module name before the last symbol. For example, both command lines:

swig —guile —package my/lib foo.i
swig —guile —package my/lib -module foo foo.i

19.3.1 Simple Linkage 240

SWIG-1.3 Documentation

would create module (my lib foo) (assuming in the first case foo.i declares the module to be "foo"). The installed files are
my/lib/libfoo.s0.X.Y.Z and friends. This scheme is still very experimental; the (hobbit4d link) conventions are not well
understood.

19.4 Underscore Folding

Underscores are converted to dashes in identifiers. Guile support may grow an option to inhibit this folding in the future, but no
one has complained so far.

You can use the SWIG directives %name and %rename to specify the Guile name of the wrapped functions and variables (see
CHANGES).

19.5 Typemaps

The Guile module handles all types via typemaps. This information is read from Lib/guile/typemaps.i. Some
non-standard typemap substitutions are supported:

* $descriptor expands to a type descriptor for use with the SWIG_NewPointerObj() and SWIG_ConvertPtr
functions.

« For pointer types, $*descriptor expands to a descriptor for the direct base type (i.e., one pointer is stripped),
whereas $basedescriptor expands to a descriptor for the base type (i.e., all pointers are stripped).

A function returning void (more precisely, a function whose out typemap returns SCM_UNSPECIFIED) is treated as returning
no values. In argout typemaps, one can use the macro GUILE_APPEND_RESULT in order to append a value to the list of
function return values.

Multiple values can be passed up to Scheme in one of three ways:

« Multiple values as lists. By default, if more than one value is to be returned, a list of the values is created and returned,;
switch back to this behavior, use

%values_as_list;
« Multiple values as vectors. By issuing

%values_as_vector;

vectors instead of lists will be used.
» Multiple values for multiple-value continuations. This is the most elegant way. By issuing

%multiple_values;
multiple values are passed to the multiple-value continuation, as created by call-with—-values or the convenience
macro receive. The latter is available if you issue (use—modules (srfi srfi—-8)). Assuming that your
divide function wants to return two values, a quotient and a remainder, you can write:

(receive (quotient remainder)
(divide 35 17)
body...)

In body, the first result of divide will be bound to the variable quotient, and the second result to remainder.

See also the "multivalue” example.

19.3.5 Hobbit4D Linkage 241

SWIG-1.3 Documentation
19.6 Representation of pointers as smobs

For pointer types, SWIG uses Guile smobs. SWIG smobs print like this: #<swig struct xyzzy * 0x1234affe> Two of
them are equal? if and only if they have the same type and value.

To construct a Scheme object from a C pointer, the wrapper code calls the function SWIG_NewPointerObj(), passing a

pointer to a struct representing the pointer type. The type index to store in the upper half of the CAR is read from this struct. To
get the pointer represented by a smob, the wrapper code calls the function SWIG_ConvertPtr(), passing a pointer to a struct
representing the expected pointer type. See_also The run—time type checker. If the Scheme object passed was not a SWIG sm
representing a compatible pointer, a wrong—-type—arg exception is raised.

19.6.1 GH Smobs

In earlier versions of SWIG, C pointers were represented as Scheme strings containing a hexadecimal rendering of the pointer
value and a mangled type name. As Guile allows registering user types, so—called "smobs" (small objects), a much cleaner
representation has been implemented now. The details will be discussed in the following.

A smob is a cons cell where the lower half of the CAR contains the smob type tag, while the upper half of the CAR and the whc
CDR are available. Every module creates its own smob type in the clientdata field of the module. So the lower 16 bits of the ca
the smob store the tag and the upper 16 bits store the index this type is in the array. We can then, given a smob, find its
swig_type_info struct by using the tag (lower 16 bits of car) to find which module this type is in (since each tag is unique for the
module). Then we use the upper 16 bits to index into the array of types attached to this module. Looking up the module from th
tag is worst case O(# of modules) but average case O(1). This is because the modules are stored in a circularly linked list, and
when we start searching the modules for the tag, we start looking with the module that the function doing the lookup is in.
SWIG_Guile_ConvertPtr() takes as its first argument the swig_module_info * of the calling function, which is where we start
comparing tags. Most types will be looked up in the same module that created them, so the first module we check will most like
be correct. Once we have a swig_type_info structure, we loop through the linked list of casts, using pointer comparisons.

19.6.2 SCM Smobs

The SCM interface (using the "—scm" argument to swig) uses swigrun.swg. The whole type system, when it is first initialized,
creates two smobs named "swig" and "collected_swig". The swig smob is used for non—garbage collected smobs, while the
collected_swig smob is used as described below. Each smob has the same format, which is a double cell created by
SCM_NEWSMOB2() The first word of data is the pointer to the object and the second word of data is the swig_type_info *
structure describing this type. This is a lot easier than the GH interface above because we can store a pointer to the type info
structure right in the type. With the GH interface, there was not enough room in the smob to store two whole words of data so v
needed to store part of the "swig_type_info address" in the smob tag. If a generated GOOPS module has been loaded, smobs
be wrapped by the corresponding GOOPS class.

19.6.3 Garbage Collection

Garbage collection is a feature of the new SCM interface, and it is automatically included if you pass the "-scm" flag to swig.
Thus the swig garbage collection support requires guile >1.6. Garbage collection works like this. Every swig_type_info structur
stores in its clientdata field a pointer to the destructor for this type. The destructor is the generated wrapper around the delete
function. So swig still exports a wrapper for the destructor, it just does not call scm_c_define_gsubr() for the wrapped delete
function. So the only way to delete an object is from the garbage collector, since the delete function is not available to scripts.
How swig determines if a type should be garbage collected is exactly like described in _Object ownership and %newobject in th
SWIG manual. All typemaps use an $owner var, and the guile module replaces $owner with 0 or 1 depending on feature:new.

19.7 Exception Handling

SWIG code calls scm_error on exception, using the following mapping:

MAP(SWIG_MemoryError, "swig—memory—error");
MAP(SWIG_IOEtrror, "swig—io—error");

19.6 Representation of pointers as smobs 242

SWIG-1.3 Documentation

MAP(SWIG_RuntimeError, "swig-runtime-error");
MAP(SWIG_IndexError, “"swig—-index—error");
MAP(SWIG_TypekError, "swig—type—error");
MAP(SWIG_DivisionByZero, "swig—division—by-zero");
MAP(SWIG_OverflowError, "swig—overflow—error");
MAP(SWIG_SyntaxError, "swig—-syntax—error");
MAP(SWIG_ValueError, "swig—-value—error");
MAP(SWIG_SystemError, "swig—system—error");

The default when not specified here is to use "swig—error". See Lib/exception.i for details.

19.8 Procedure documentation

If invoked with the command-line option —procdoc file, SWIG creates documentation strings for the generated wrapper
functions, describing the procedure signature and return value, and writes them to file. You need Guile 1.4 or later to make use
the documentation files.

SWIG can generate documentation strings in three formats, which are selected via the command-line option —procdocformat
format:

« guile—1.4 (default): Generates a format suitable for Guile 1.4.

« plain: Generates a format suitable for Guile 1.4.1 and later.

« texinfo: Generates texinfo source, which must be run through texinfo in order to get a format suitable for Guile 1.4.1
and later.

You need to register the generated documentation file with Guile like this:

(use—modules (ice-9 documentation))
(set! documentation—files
(cons "file" documentation—files))

Documentation strings can be configured using the Guile—specific typemap argument doc. See Lib/guile/typemaps.i for
details.

19.9 Procedures with setters

For global variables, SWIG creates a single wrapper procedure (variable :optional value), which is used for both getting
and setting the value. For struct members, SWIG creates two wrapper procedures (struct-member—get pointer) and
(struct-member—set pointer value).

If invoked with the command-line option —emit-setters (recommended), SWIG will additionally create procedures with
setters. For global variables, the procedure-with—setter variable is created, so you can use (variable) to get the value and
(set! (variable) value) to set it. For struct members, the procedure—with—setter struct-member is created, so you can use
(struct-member pointer) to get the value and (set! (struct-member pointer) value) to set it.

If invoked with the command-line option —only-setters, SWIG will only create procedures with setters, i.e., for struct

members, the procedures (struct-member—get pointer) and (struct-member-set pointer value) are not
generated.

19.10 GOOPS Proxy Classes

SWIG can also generate classes and generic functions for use with Guile's Object—Oriented Programming System (GOOPS).
GOOPS is a sophisticated object system in the spirit of the Common Lisp Object System (CLOS).

GOOPS support is only available with the new SCM interface (enabled with the —scm command-line option of SWIG). To
enable GOOPS support, pass the —proxy argument to swig. This will export the GOOPS wrapper definitions into the
module.scm file in the directory specified by —outdir or the current directory. GOOPS support requires either passive or

19.7 Exception Handling 243

SWIG-1.3 Documentation
module linkage.

The generated file will contain definitions of GOOPS classes mimicking the C++ class hierarchy.

Enabling GOOPS support implies —emit-setters.

If —emit—slot—accessors is also passed as an argument, then the generated file will contain accessor methods for all the
slots in the classes and for global variables. The input class

class Foo {
public:

Foo(int i) : a(i) {}

int a;

int getMultBy(int i) { return a * i; }

Foo getFooMultBy(int i) { return Foo(a * i); }
h

Foo getFooPlus(int i) { return Foo(a + i); }
will produce (if —emit—slot—accessors is not passed as a parameter)

(define—class <Foo> (<swig>)

(a #:allocation #:swig-virtual
#:slot-ref primitive:Foo—a—get
#:slot-set! primitive:Foo—a-set)

#:metaclass <swig—metaclass>

#:new—function primitive:new—-Foo

(define-method (getMultBy (swig_smob <Foo>) i)
(primitive:Foo—getMultBy (slot-ref swig_smob ‘'smob) i))
(define-method (getFooMultBy (swig_smob <Foo0>) i)
(make <Foo> #:init-smob (primitive:Foo—getFooMultBy (slot-ref swig_smob 'smob) i)))

(define-method (getFooPlus i)
(make <Foo> #:init-smob (primitive:getFooPlus i)))

(export <Foo> getMultBy getFooMultBy getFooPlus)
and will produce (if —emit—slot—accessors is passed as a parameter)

(define—class <Foo> (<swig>)

(a #:allocation #:swig-virtual
#:slot-ref primitive:Foo—a—get
#:slot-set! primitive:Foo—a-set

#:accessor a)
#:metaclass <swig—metaclass>
#:new—function primitive:new-Foo

(define-method (getMultBy (swig_smob <Fo00>) i)
(primitive:Foo—-getMultBy (slot-ref swig_smob 'smab) i))
(define-method (getFooMultBy (swig_smob <Foo0>) i)
(make <Foo> #:init—=smob (primitive:Foo—getFooMultBy (slot-ref swig_smob 'smob) i)))

(define-method (getFooPlus i)
(make <Foo> #:init-smob (primitive:getFooPlus i)))

(export <Foo> a getMultBy getFooMultBy getFooPlus)

which can then be used by this code

;; not using getters and setters

(define foo (make <Foo> #:args '(45)))
(slot-ref foo 'a)

(slot-set! foo 'a 3)

(getMultBy foo 4)

19.10 GOOPS Proxy Classes 244

SWIG-1.3 Documentation

(define foo2 (getFooMultBy foo 7))
(slot-ref foo 'a)
(slot-ref (getFooPlus foo 4) 'a)

;; using getters and setters

(define foo (make <Foo> #:args '(45)))
(a foo)

(set! (a foo) 5)

(getMultBy foo 4)

(a (getFooMultBy foo 7))

Notice that constructor arguments are passed as a list after the #:args keyword. Hopefully in the future the following will be
valid (make <Foo> #:a 5 #:b 4)

Also note that the order the declarations occur in the .i file make a difference. For example,

%module test
%({ #include "foo.h" %}
%inline %({

int someFunc(Foo &a) {
%0}

%include "foo.h"

This is a valid SWIG file it will work as you think it will for primitive support, but the generated GOOPS file will be broken.
Since the someFunc definition is parsed by SWIG before all the declarations in foo.h, the generated GOOPS file will contain th
definition of someFunc() before the definition of <Foo>. The generated GOOPS file would look like

(define-method (someFunc (swig_smob <Foo>))
(primitive:someFunc (slot-ref swig_smob 'smob)))

.....
.....

Notice that <Foo> is used before it is defined. The fix is to just put the %import “foo.h" before the %inline block.

19.10.1 Naming Issues

As you can see in the example above, there are potential naming conflicts. The default exported accessor for the Foo::a variab
is named a. The name of the wrapper global function is getFooPlus. If the —useclassprefix option is passed to swig, the

name of all accessors and member functions will be prepended with the class name. So the accessor will be called Foo—a and
member functions will be called Foo—getMultBy. Also, if the —goopsprefix goops: argument is passed to swig, every

identifier will be prefixed by goops:

Two guile-modules are created by SWIG. The first module contains the primitive definitions of all the wrapped functions and
variables, and is located either in the _wrap.cxx file (with —Linkage module) or in the scmstub file (if —Linkage

passive —scmstub). The name of this guile-module is the swig—module name (given on the command line with the -module
argument or with the %module directive) concatenated with the string "—primitive". For example, if Y%omodule Test is set in the
swig interface file, the name of the guile—-module in the scmstub or —Linkage module will be Test-primitive. Also, the
scmstub file will be named Test—primitive.scm. The string "primitive" can be changed by the —primsuffix swig

19.10.1 Naming Issues 245

SWIG-1.3 Documentation

argument. So the same interface, with the —primsuffix base will produce a module called Test-base. The second

generated guile—-module contains all the GOOPS class definitions and is located in a file named module.scm in the directory
specified with —outdir or the current directory. The name of this guile—-module is the name of the swig—module (given on the
command line or with the %module directive). In the previous example, the GOOPS definitions will be in a file named Test.scm

Because of the naming conflicts, you can't in general use both the —primitive and the GOOPS guile—-modules at the same
time. To do this, you need to rename the exported symbols from one or both guile-modules. For example,

(use—-modules ((Test—primitive) #:renamer (symbol-prefix—proc 'primitive:)))
(use—modules ((Test) #:renamer (symbol—prefix—proc 'goops:)))

TODO: Renaming class name prefixes?

19.10.2 Linking

The guile—-modules generated above all need to be linked together. GOOPS support requires either passive or module linkage.
exported GOOPS guile-module will be the name of the swig—module and should be located in a file called Module.scm. This
should be installed on the autoload path for guile, so that (use—-modules (Package Module)) will load everything

needed. Thus, the top of the GOOPS guile-module will contain code to load everything needed by the interface (the shared
library, the scmstub module, etc.). The %goops directive inserts arbitrary code into the generated GOOPS guile-module, and
should be used to load the dependent libraries.

This breaks up into three cases

« Passive Linkage without —scmstub: Note that this linkage style has the potential for naming conflicts, since the
primitive exported function and variable names are not wrapped in a guile—module and might conflict with names from
the GOOPS guile—-module (see above). Pass the —goopsprefix argument to solve this problem. If the
—exportprimitive option is passed to SWIG the (export ...) code that would be exported into the scmstub
file is exported at the bottom of the generated GOOPS guile-module. The %goops directive should contain code to loa

the .so library.
%goops %{ (load—extension "./foo.s0" "scm_init_my_modules_foo_module") %}

Produces the following code at the top of the generated GOOPS guile-module (with the —package my/modules
—module foo command line arguments)

(define-module (my modules foo))

;; Y6goops directive goes here
(load-extension "./foo.s0" "scm_init_my_modules_foo_module")

(use-modules (oop goops) (Swig common))
Passive Linkage with —scmstub: Here, the name of the scmstub file should be Module—primitive.scm (with
primitive replaced with whatever is given with the —primsuffix argument. The code to load the .so library should be
located in the %scheme directive, which will then be added to the scmstub file. Swig will automatically generate the line
(use—-modules (Package Module—primitive)) into the GOOPS guile-module. So if Module-primitive.scm
is on the autoload path for guile, the %goops directive can be empty. Otherwise, the %goops directive should contain
whatever code is needed to load the Module—primitive.scm file into guile.

%scheme %f{ (load—extension "./foo.s0" "scm_init_my_modules_foo_module") %}
/I only include the following definition if (my modules foo) cannot
/I be loaded automatically
%goops %{
(primitive—load "/path/to/foo—primitive.scm")
(primitive—load "/path/to/Swig/common.scm")
%0}

Produces the following code at the top of the generated GOOPS guile-module

(define-module (my modules foo))

19.10.2 Linking 246

SWIG-1.3 Documentation

;» %goops directive goes here (if any)
(primitive—load "/path/to/foo—primitive.scm")
(primitive—load "/path/to/Swig/common.scm")

(use-modules (oop goops) (Swig common))
(use—modules ((my modules foo—primitive) :renamer (symbol—prefix—-proc
'primitive:)))

* Module Linkage: This is very similar to passive linkage with a scmstub file. Swig will also automatically generate the
line (use-modules (Package Module—primitive)) into the GOOPS guile—-module. Again the %goops
directive should contain whatever code is needed to get that module loaded into guile.

%goops %{ (load—extension "./foo.s0" "scm_init_my_modules_foo_module") %}

Produces the following code at the top of the generated GOOPS guile-module

(define-module (my modules foo))

;; Y%goops directive goes here (if any)
(load-extension "./foo.s0" "scm_init_my_modules_foo_module")

(use—modules (oop goops) (Swig common))
(use—modules ((my modules foo—primitive) :renamer (symbol—prefix—-proc
‘primitive:)))

(Swig common): The generated GOOPS guile—-module also imports definitions from the (Swig common) guile-module. This
module is included with SWIG and should be installed by SWIG into the autoload path for guile (based on the configure script
and whatever arguments are passed). If it is not, then the %goops directive also needs to contain code to load the common.sci
file into guile. Also note that if you are trying to install the generated wrappers on a computer without SWIG installed, you will
need to include the common.swyg file along with the install.

Multiple Modules: Type dependencies between modules is supported. For example, if mod1 includes definitions of some classt
and mod2 includes some classes derived from classes in mod1, the generated GOOPS file for mod2 will declare the correct
superclasses. The only problem is that since mod2 uses symbols from mod1, the mod2 GOOPS file must include a
(use—-modules (mod2)). Currently, SWIG does not automatically export this line; it must be included in the %goops

directive of mod2. Maybe in the future SWIG can detect dependencies and export this line. (how do other language modules
handle this problem?)

19.10.2 Linking 247

20 SWIG and Java

* Overview
 Preliminaries
¢ Running SWIG
¢ Additional Commandline Options
¢ Getting the right header files
¢ Compiling a dynamic module
¢ Using your module
+ Dynamic linking problems
¢ Compilation problems and compiling with C++
¢ Building on Windows
¢ Running SWIG from Visual Studio
O Using NMAKE
« A tour of basic C/C++ wrapping

Modules, packages and generated Java classes
Eunctions

Global variables

Constants

Enumerations
¢ Anonymous enums
¢ Typesafe enums
¢ Proper Java enums
¢ Type unsafe enums

¢ Simple enums
Pointers

Structures

C++ classes

C++ inheritance

Pointers, references, arrays and pass by value
¢ Null pointers

+ C++ overloaded functions

¢ C++ default arguments

¢ C++ namespaces

¢

¢

* & & o o

* & o o

C++ templates
C++ Smart Pointers
« Further details on the generated Java classes
¢ The intermediary JNI class
¢ The intermediary JNI class pragmas
¢ The Java module class
¢ The Java module class pragmas
¢ Java proxy classes
¢ Memory management
¢ Inheritance
¢ Proxy classes and garbage collection
+ Type wrapper classes
¢ Enum classes
¢ Typesafe enum classes
¢ Proper Java enum classes
¢ Type unsafe enum classes
« Cross language polymorphism using directors (experimental)

¢ Enabling directors
+ Director classes

+ Overhead and code bloat
¢ Simple directors example

20 SWIG and Java 248

SWIG-1.3 Documentation

 Common customization features

¢ C/C++ helper functions
+ Class extension with %extend
¢ Exception handling with %exception and %javaexception
¢ Method access with %javamethodmodifiers
« Tips and technigues
¢ Input and output parameters using primitive pointers and references
¢ Simple pointers
+ Wrapping C arrays with Java arrays
¢ Unbounded C Arrays
« Java typemaps
Default primitive type mappings
Default typemaps for non—primitive types
Sixty four bit JVMs
What is a typemap?

.
.
.
.
+ Typemaps for mapping C/C++ types to Java types
.
.
.
.

t

|

Java typemap attributes
Java special variables
Typemaps for both C and C++ compilation
Java code typemaps
+ Director specific typemaps
» Typemap Examples
¢ Simpler Java enums for enums without initializers
Handling C++ exception specifications as Java exceptions
NaN Exception — exception handling for a particular type
Converting Java String arrays to char **
Expanding a Java object to multiple arguments
Using typemaps to return arguments

Adding an equals method to the Java classes

Void pointers and a common Java base class

Struct pointer to pointer

Memory management when returning references to member variables
+ Memory management for objects passed to the C++ layer

« Living with Java Directors
* Odds and ends

+ JavaDoc comments

¢ Functional interface without proxy classes
¢ Using your own JNI functions
+ Performance concerns and hints

» Examples

t

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢

This chapter describes SWIG's support of Java. It covers most SWIG features, but certain low-level details are covered in less
depth than in earlier chapters.

20.1 Overview

The 100% Pure Java effort is a commendable concept, however in the real world programmers often either need to re-use the
existing code or in some situations want to take advantage of Java but are forced into using some native (C/C++) code. The Ja
extension to SWIG makes it very easy to plumb in existing C/C++ code for access from Java, as SWIG writes the Java Native
Interface (JNI) code for you. It is different to using the ‘javah' tool as SWIG will wrap existing C/C++ code, whereas javah takes
'native’ Java function declarations and creates C/C++ function prototypes. SWIG wraps C/C++ code using Java proxy classes
is very useful if you want to have access to large amounts of C/C++ code from Java. If only one or two JNI functions are neede
then using SWIG may be overkill. SWIG enables a Java program to easily call into C/C++ code from Java. Historically, SWIG
was not able to generate any code to call into Java code from C++. However, SWIG now supports full cross language
polymorphism and code is generated to call up from C++ to Java when wrapping C++ virtual methods.

20.1 Overview 249

SWIG-1.3 Documentation

Java is one of the few non-scripting language modules in SWIG. As SWIG utilizes the type safety that the Java language offer
takes a somewhat different approach to that used for scripting languages. In particular runtime type checking and the runtime
library are not used by Java. This should be borne in mind when reading the rest of the SWIG documentation. This chapter on
Java is relatively self contained and will provide you with nearly everything you need for using SWIG and Java. However, the
"SWIG Basics" chapter will be a useful read in conjunction with this one.

This chapter starts with a few practicalities on running SWIG and compiling the generated code. If you are looking for the
minimum amount to read, have a look at the sections up to and including the tour of basic C/C++ wrapping section which expla
how to call the various C/C++ code constructs from Java. Following this section are details of the C/C++ code and Java classe:
that SWIG generates. Due to the complexities of C and C++ there are different ways in which C/C++ code could be wrapped al
called from Java. SWIG is a powerful tool and the rest of the chapter details how the default code wrapping can be tailored.
Various customisation tips and techniques using SWIG directives are covered. The latter sections cover the advanced techniqt
of using typemaps for complete control of the wrapping process.

20.2 Preliminaries

SWIG 1.1 works with JDKs from JDK 1.1 to JDK1.4 (Java 2 SDK1.4) and should also work with any later versions. Given the
choice, you should probably use the latest version of Sun's JDK. The SWIG Java module is known to work using Sun's JVM or
Solaris, Linux and the various flavours of Microsoft Windows including Cygwin. The Kaffe JVM is known to give a few
problems and at the time of writing was not a fully fledged JVM with full JNI support. The generated code is also known to work
on vxWorks using WindRiver's PJava 3.1. The best way to determine whether your combination of operating system and JDK
will work is to test the examples and test—suite that comes with SWIG. Run make —k check from the SWIG root directory

after installing SWIG on Unix systems.

The Java module requires your system to support shared libraries and dynamic loading. This is the commonly used method to
JNI code so your system will more than likely support this.

20.2.1 Running SWIG

Suppose that you defined a SWIG module such as the following:
%module example
9%{
#include "header.h"
%}
int fact(int n);
To build a Java module, run SWIG using the —java option :
%swig —java example.i
If building C++, add the —c++ option:
$ swig —c++ —java example.i
This creates two different files; a C/C++ source file example_wrap.c or example_wrap.cxx and numerous Java files. The
generated C/C++ source file contains the JNI wrapper code that needs to be compiled and linked with the rest of your C/C++
application.
The name of the wrapper file is derived from the name of the input file. For example, if the input file is example.i, the name of

the wrapper file is example_wrap.c. To change this, you can use the —o option. It is also possible to change the output
directory that the Java files are generated into using —outdir.

20.2.2 Additional Commandline Options

The following table list the additional commandline options available for the Java module. They can also be seen by using:

20.2 Preliminaries 250

SWIG-1.3 Documentation

swig —java —help

Java specific options

—package <name> set name of the Java package to <name>

—noproxy generate the low-level functional interface instead of proxy classes

Their use will become clearer by the time you have finished reading this section on SWIG and Java.

20.2.3 Getting the right header files

In order to compile the C/C++ wrappers, the compiler needs the jni.h and jni_md.h header files which are part of the JDK.
They are usually in directories like this:

lusr/javal/include
lusr/java/include/<operating_system>

The exact location may vary on your machine, but the above locations are typical.

20.2.4 Compiling a dynamic module

The JNI code exists in a dynamic module or shared library (DLL on Windows) and gets loaded by the JVM. To build a shared
library file, you need to compile your module in a manner similar to the following (shown for Solaris):

$ swig —java example.i
$ gcc —c example_wrap.c —l/usr/javal/include —l/usr/javal/include/solaris
$ Id -G example_wrap.o —o libexample.so

The exact commands for doing this vary from platform to platform. However, SWIG tries to guess the right options when it is
installed. Therefore, you may want to start with one of the examples in the Examples/java directory. If that doesn't work, you
will need to read the man—pages for your compiler and linker to get the right set of options. You might also check the SWIG Wi
for additional information. JNI compilation is a useful reference for compiling on different platforms.

Important

If you are going to use optimisations turned on with gcc (for example —02), ensure you also compile with —fno—strict-aliasing.
The GCC optimisations have become more aggressive from gcc—4.0 onwards and will result in code that fails with strict aliasin
optimisations turned on. See the C/C++ to Java typemaps section for more details.

The name of the shared library output file is important. If the name of your SWIG module is "example”, the name of the
corresponding shared library file should be "libexample.so" (or equivalent depending on your machine, see Dynamic linking
problems for more information). The name of the module is specified using the %module directive or -module command line
option.

20.2.5 Using your module

To load your shared native library module in Java, simply use Java's System.loadLibrary method in a Java class:

/I main.java

public class main {
static {
System.loadLibrary("example");

}

public static void main(String argv[]) {
System.out.printin(example.fact(4));

}
}

Compile all the Java files and run:

20.2.2 Additional Commandline Options 251

http://www.dabeaz.com/cgi-bin/wiki.pl
http://weblogs.java.net/blog/kellyohair/archive/2006/01/compilation_of.html

SWIG-1.3 Documentation

$ javac *.java
$ java main
24

$

If it doesn't work have a look at the following section which discusses problems loading the shared library.
20.2.6 Dynamic linking problems

As shown in the previous section the code to load a native library (shared library) is System.loadLibrary("name"). This
can fail with an UnsatisfiedLinkError exception and can be due to a number of reasons.

You may get an exception similar to this:

$ java main
Exception in thread "main” java.lang.UnsatisfiedLinkError: no example in java.library.path
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1312)
at java.lang.Runtime.loadLibraryO(Runtime.java:749)
at java.lang.System.loadLibrary(System.java:820)
at main.<clinit>(main.java:5)

The most common cause for this is an incorrect naming of the native library for the name passed to the loadLibrary function.
The string passed to the loadLibrary function must not include the file extension name in the string, that is .dll or .so. The
string must be name and not libname for all platforms. On Windows the native library must then be called name.dll and on mos
Unix systems it must be called libname.so.

Another common reason for the native library not loading is because it is not in your path. On Windows make sure the path
environment variable contains the path to the native library. On Unix make sure that your LD_LIBRARY_PATH contains the pa
to the native library. Adding paths to LD_LIBRARY_PATH can slow down other programs on your system so you may want to
consider alternative approaches. For example you could recompile your native library with extra path information using —rpath
if you're using GNU, see the GNU linker documentation (Id man page). You could use a command such as Idconfig (Linux)

or crle (Solaris) to add additional search paths to the default system configuration (this requires root access and you will need t
read the man pages).

The native library will also not load if there are any unresolved symbols in the compiled C/C++ code. The following exception is
indicative of this:

$ java main
Exception in thread "main" java.lang.UnsatisfiedLinkError: libexample.so: undefined
symbol: fact
at java.lang.ClassLoader$NativeLibrary.load(Native Method)
at java.lang.ClassLoader.loadLibraryO(ClassLoader.java, Compiled Code)
at java.lang.ClassLoader.loadLibrary(ClassLoader.java, Compiled Code)
at java.lang.Runtime.loadLibraryO(Runtime.java, Compiled Code)
at java.lang.System.loadLibrary(System.java, Compiled Code)
at main.<clinit>(main.java:5)
$

This error usually indicates that you forgot to include some object files or libraries in the linking of the native library file. Make
sure you compile both the SWIG wrapper file and the code you are wrapping into the native library file. Also make sure you pa:s
all of the required libraries to the linker. The java —verbose:jni commandline switch is also a great way to get more

information on unresolved symbols. One last piece of advice is to beware of the common faux pas of having more than one na
library version in your path.

In summary, ensure that you are using the correct C/C++ compiler and linker combination and options for successful native
library loading. If you are using the examples that ship with SWIG, then the Examples/Makefile must have these set up correctl
for your system. The SWIG installation package makes a best attempt at getting these correct but does not get it right 100% of
time. The_SWIG Wiki also has some settings for commonly used compiler and operating system combinations. The following
section also contains some C++ specific linking problems and solutions.

20.2.5 Using your module 252

http://www.dabeaz.com/cgi-bin/wiki.pl

SWIG-1.3 Documentation

20.2.7 Compilation problems and compiling with C++

On most machines, shared library files should be linked using the C++ compiler. For example:

% swig —c++ —java example.i

% g++ —c —fpic example.cxx

% g++ —c —fpic example_wrap.cxx —l/usr/javal/j2sdkl.4.1/include —Il/usr/java/
j2sdk1.4.1/include/linux

% g++ —shared example.o example_wrap.o —o libexample.so

In addition to this, you may need to include additional library files to make it work. For example, if you are using the Sun C++
compiler on Solaris, you often need to add an extra library —ICrun like this:

% swig —c++ —java example.i

% CC —c example.cxx

% CC -c example_wrap.cxx —l/usr/javal/include —l/usr/javal/include/solaris

% CC -G example.o example_wrap.o —L/opt/SUNWSspro/lib —o libexample.so —ICrun

If you aren't entirely sure about the linking for C++, you might look at an existing C++ program. On many Unix machines, the
Idd command will list library dependencies. This should give you some clues about what you might have to include when you
link your shared library. For example:

$ Idd swig
libstdc++-libc6.1-1.s0.2 => [usr/lib/libstdc++-libc6.1-1.s0.2 (0x40019000)
libm.s0.6 => /lib/libm.s0.6 (0x4005b000)
libc.so0.6 => /lib/libc.so0.6 (0x40077000)
/lib/ld-linux.s0.2 => /lib/Id-linux.so.2 (0x40000000)
$

Finally make sure the version of JDK header files matches the version of Java that you are running as incompatibilities could le
to compilation problems or unpredictable behaviour.

20.2.8 Building on Windows

Building on Windows is roughly similar to the process used with Unix. You will want to produce a DLL that can be loaded by the
Java Virtual Machine. This section covers the process of using SWIG with Microsoft Visual C++ 6 although the procedure may
be similar with other compilers. In order for everything to work, you will need to have a JDK installed on your machine in order

to read the JNI header files.

20.2.8.1 Running SWIG from Visual Studio

If you are developing your application within Microsoft Visual studio, SWIG can be invoked as a custom build option. The
Examples\java directory has a few Windows Examples containing Visual Studio project (.dsp) files. The process to re—create tf
project files for a C project are roughly:

» Open up a new workspace and use the AppWizard to select a DLL project.

« Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be create
by SWIG (ie. example_wrap.c). Don't worry if the wrapper file doesn't exist yet——Visual Studio will keep a
reference to it.

 Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.

» Enter "SWIG" in the description field.

« Enter "swig —java —o $(ProjDir)\$(InputName)_wrap.c $(InputPath)" in the "Build command(s)
field"

« Enter "$(ProjDir)\$(InputName)_wrap.c" in the "Output files(s) field".

* Next, select the settings for the entire project and go to C/C++ tab and select the Preprocessor category . Add the inclt
directories to the JNI header files under "Additional include directories", eg "C:\jdk1.3\include,C:\jdk1.3\include\win32".

* Next, select the settings for the entire project and go to Link tab and select the General category. Set the name of the
output file to match the name of your Java module (ie. example.dll).

20.2.7 Compilation problems and compiling with C++ 253

SWIG-1.3 Documentation

* Next, select the example.c and example_wrap.c files and go to the C/C++ tab and select the Precompiled Headers tab
the project settings. Disabling precompiled headers for these files will overcome any precompiled header errors while
building.

« Finally, add the java compilation as a post build rule in the Post-build step tab in project settings, eg, "c:\jdk1.3\bin\jave
* i "

Jjava
* Build your project.

Note: If using C++, choose a C++ suffix for the wrapper file, for example example_wrap.cxx. Use _wrap.cxx instead of
_wrap.c in the instructions above and add —c++ when invoking swig.

Now, assuming all went well, SWIG will be automatically invoked when you build your project. When doing a build, any change
made to the interface file will result in SWIG being automatically invoked to produce a new version of the wrapper file.

The Java classes that SWIG output should also be compiled into .class files. To run the native code in the DLL (example.dll),
make sure that it is in your path then run your Java program which uses it, as described in the previous section. If the library fal
to load have a look at Dynamic linking problems.

20.2.8.2 Using NMAKE

Alternatively, a Makefile for use by NMAKE can be written. Make sure the environment variables for MSVC++ are available anc
the MSVC++ tools are in your path. Now, just write a short Makefile like this :

Makefile for using SWIG and Java for C code

SRCS = example.c

IFILE = example
INTERFACE = $(IFILE).i
WRAPFILE = $(IFILE)_wrap.c

Location of the Visual C++ tools (32 bit assumed)

TOOLS = c:\\msdev

TARGET = example.dll

CcC = $(TOOLS)\bin\cl.exe
LINK = $(TOOLS)\bin\link.exe
INCLUDE32 = -I$(TOOLS)\include
MACHINE = |X86

C Library needed to build a DLL
DLLIBC = msvcrt.lib oldnames.lib

Windows libraries that are apparently needed
WINLIB = kernel32.lib advapi32.lib user32.lib gdi32.lib comdlg32.lib winspool.lib

Libraries common to all DLLs
LIBS = $(DLLIBC) $(WINLIB)

Linker options
LOPT = -debug:full —-debugtype:cv /NODEFAULTLIB /RELEASE /NOLOGO \
/MACHINE:$(MACHINE) —entry:_DIIMainCRTStartup@12 —dll

C compiler flags

CFLAGS =/Z7 /0d /c Inologo
JAVA_INCLUDE = -ID:\jdk1.3\include -ID:\jdk1.3\include\win32
java::

swig —java -0 $(WRAPFILE) $(INTERFACE)

$(CC) $(CFLAGS) $(JAVA_INCLUDE) $(SRCS) $(WRAPFILE)

set LIB=$(TOOLS)\lib

$(LINK) $(LOPT) —out:example.dll $(LIBS) example.obj example_wrap.obj
javac *.java

20.2.8.1 Running SWIG from Visual Studio 254

SWIG-1.3 Documentation

To build the DLL and compile the java code, run NMAKE (you may need to run vcvars32 first). This is a pretty simplistic
Makefile, but hopefully its enough to get you started. Of course you may want to make changes for it to work for C++ by adding
in the —c++ command line switch for swig and replacing .c with .cxx.

20.3 A tour of basic C/C++ wrapping

By default, SWIG attempts to build a natural Java interface to your C/C++ code. Functions are wrapped as functions, classes a
wrapped as classes, variables are wrapped with JavaBean type getters and setters and so forth. This section briefly covers the
essential aspects of this wrapping.

20.3.1 Modules, packages and generated Java classes

The SWIG %module directive specifies the name of the Java module. When you specify “%module example', the module
name determines the name of some of the generated files in the module. The generated code consists of a module class file
example.java, an intermediary JNI class file, exampleJNI.java as well as numerous other Java proxy class files. Each

proxy class is hamed after the structs, unions and classes you are wrapping. You may also get a constants interface file if you .
wrapping any unnamed enumerations or constants, for example exampleConstants.java. When choosing a module name,
make sure you don't use the same name as one of the generated proxy class files nor a Java keyword. Sometimes a C/C++ ty
cannot be wrapped by a proxy class, for example a pointer to a primitive type. In these situations a type wrapper class is
generated. Wrapping an enum generates an enum class, either a proper Java enum or a Java class that simulates the enums |
Details of all these generated classes will unfold as you read this section.

The JNI (C/C++) code is generated into a file which also contains the module name, for example example_wrap.cxx or
example_wrap.c. These C or C++ files complete the contents of the module.

The generated Java classes can be placed into a Java package by using the —package commandline option. This is often
combined with the —outdir to specify a package directory for generating the Java files.

swig —java —package com.bloggs.swig —outdir com/bloggs/swig example.i

SWIG won't create the directory, so make sure it exists beforehand.

20.3.2 Functions

There is no such thing as a global Java function so global C functions are wrapped as static methods in the module class. For
example,

%module example
int fact(int n);
creates a static function that works exactly like you think it might:

public class example {
public static int fact(int n) {
/I makes call using JNI to the C function

}
}

The Java class example is the module class. The function can be used as follows from Java:

System.out.printin(example.fact(4));

20.3.3 Global variables

C/C++ global variables are fully supported by SWIG. Java does not allow the overriding of the dot operator so all variables are
accessed through getters and setters. Again because there is no such thing as a Java global variable, access to C/C++ global

20.2.8.2 Using NMAKE 255

SWIG-1.3 Documentation

variables is done through static getter and setter functions in the module class.

/I SWIG interface file with global variables
%module example

%inline %{

extern int My_variable;
extern double density;
%0}

Now in Java :

// Print out value of a C global variable
System.out.printin("My_variable =" + example.getMy_variable());
/I Set the value of a C global variable
example.setDensity(0.8442);

The value returned by the getter will always be up to date even if the value is changed in C. Note that the getters and setters
produced follow the JavaBean property design pattern. That is the first letter of the variable name is capitalized and preceded v
set or get. If you have the misfortune of wrapping two variables that differ only in the capitalization of their first letters, use
%rename to change one of the variable names. For example:

%rename Clash RenamedClash;
float Clash;
int clash;

If a variable is declared as const, it is wrapped as a read-only variable. That is only a getter is produced.

To make ordinary variables read—only, you can use the %immutable directive. For example:

%{

extern char *path;
9%}

%immutable;
extern char *path;
%mutable;

The %immutable directive stays in effect until it is explicitly disabled or cleared using %mutable. See the Creatng read-only
variables section for further details.

If you just want to make a specific variable immutable, supply a declaration name. For example:

%{
extern char *path;
9%}
%immutable path;

extern char *path; // Read-only (due to %immutable)

20.3.4 Constants

C/C++ constants are wrapped as Java static final variables. To create a constant, use #define or the %constant directive. For
example:

#define Pl 3.14159

#define VERSION "1.0"

%constant int FOO = 42;

%constant const char *path = "/usr/local";

20.3.3 Global variables 256

SWIG-1.3 Documentation

By default the generated static final variables are initialized by making a JNI call to get their value. The constants are generatet
into the constants interface and look like this:

public interface exampleConstants {
public final static double Pl = exampleJNI.PI_get();
public final static String VERSION = exampleJNI.VERSION_get();
public final static int FOO = exampleJNI.FOO_get();
public final static String path = exampleJNI.path_get();

}

Note that SWIG has inferred the C type and used an appropriate Java type that will fit the range of all possible values for the C
type. By default SWIG generates runtime constants. They are not compiler constants that can, for example, be used in a switcl
statement. This can be changed by using the %javaconst(flag) directive. It works like all the other %feature directives. The
default is %javaconst(0). It is possible to initialize all wrapped constants from pure Java code by placing a

%javaconst(1) before SWIG parses the constants. Putting it at the top of your interface file would ensure this. Here is an
example:

%javaconst(1);
%javaconst(0) BIG;
%javaconst(0) LARGE;

#define EXPRESSION (0x100+5)
#define BIG 1000LL
#define LARGE 2000ULL

generates:

public interface exampleConstants {
public final static int EXPRESSION = (0x100+5);
public final static long BIG = exampleJNI.BIG_get();
public final static java.math.Biginteger LARGE = exampleJNI.LARGE_get();

}

Note that SWIG has inferred the C long long type from BIG and used an appropriate Java type (long) as a Java long is the
smallest sized Java type that will take all possible values for a C long long. Similarly for LARGE.

Be careful using the %javaconst(1) directive as not all C code will compile as Java code. For example neither the 1000LL
value for BIG nor 2000ULL for LARGE above would generate valid Java code. The example demonstrates how you can target
particular constants (BIG and LARGE) with %javaconst. SWIG doesn't use %javaconst(1) as the default as it tries to

generate code that will always compile. However, using a %javaconst(1) at the top of your interface file is strongly
recommended as the preferred compile time constants will be generated and most C constants will compile as Java code and i
anycase the odd constant that doesn't can be fixed using %javaconst(0).

There is an alternative directive which can be used for these rare constant values that won't compile as Java code. This is the
%javaconstvalue(value) directive, where value is a Java code replacement for the C constant and can be either a string

or a number. This is useful if you do not want to use either the parsed C value nor a JNI call, such as when the C parsed value
not compile as Java code and a compile time constant is required. The same example demonstrates this:

%javaconst(1);
%javaconstvalue("new java.math.Biglnteger(\"2000\")") LARGE;
%javaconstvalue(1000) BIG;

#define EXPRESSION (0x100+5)

#define BIG 1000LL
#define LARGE 2000ULL

Note the string quotes for "2000" are escaped. The following is then generated:

public interface exampleConstants {
public final static int EXPRESSION = (0x100+5);
public final static long BIG = 1000;

20.3.4 Constants 257

SWIG-1.3 Documentation

public final static java.math.Biginteger LARGE = new java.math.Biglnteger("2000");
}

Note: declarations declared as const are wrapped as read-only variables and will be accessed using a getter as described in tl
previous section. They are not wrapped as constants.

Compatibility Note: In SWIG-1.3.19 and earlier releases, the constants were generated into the module class and the constant
interface didn't exist. Backwards compatibility is maintained as the module class implements the constants interface (even thot
some consider this type of interface implementation to be bad practice):

public class example implements exampleConstants {

}

You thus have the choice of accessing these constants from either the module class or the constants interface, for example,
example. EXPRESSION or exampleConstants. EXPRESSION. Or if you decide this practice isn't so bad and your own
class implements exampleConstants, you can of course just use EXPRESSION.

20.3.5 Enumerations

SWIG handles both named and unnamed (anonymous) enumerations. There is a choice of approaches to wrapping named C/(
enums. This is due to historical reasons as SWIG's initial support for enums was limited and Java did not originally have suppo
for enums. Each approach has advantages and disadvantages and it is important for the user to decide which is the most
appropriate solution. There are four approaches of which the first is the default approach based on the so called Java typesafe
enum pattern. The second generates proper Java enums. The final two approaches use simple integers for each enum item. B
looking at the various approaches for wrapping named C/C++ enums, anonymous enums are considered.

20.3.5.1 Anonymous enums

There is no name for anonymous enums and so they are handled like constants. For example:
enum { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

is wrapped into the constants interface, in a similar manner as constants (see previous section):

public interface exampleConstants {
public final static int ALE = exampleJNI.ALE_get();
public final static int LAGER = exampleJNI.LAGER_get();
public final static int STOUT = exampleJNI.STOUT_get();
public final static int PILSNER = exampleJNI.PILSNER_get();
public final static int PILZ = exampleJNI.PILZ_get();

}

The %javaconst(flag) and %javaconstvalue(value) directive introduced in the previous section on constants can

also be used with enums. As is the case for constants, the default is %javaconst(0) as not all C values will compile as Java
code. However, it is strongly recommended to add in a %javaconst(1) directive at the top of your interface file as it is only on
very rare occasions that this will produce code that won't compile under Java. Using %javaconst(1) will ensure compile time
constants are generated, thereby allowing the enum values to be used in Java switch statements. Example usage:

%javaconst(1);
%javaconst(0) PILSNER;
enum { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER },

generates:

public interface exampleConstants {
public final static int ALE = 0;
public final static int LAGER = 10;
public final static int STOUT = LAGER + 1;
public final static int PILSNER = exampleJNI.PILSNER_get();
public final static int PILZ = PILSNER,;

20.3.5 Enumerations 258

SWIG-1.3 Documentation
}

As in the case of constants, you can access them through either the module class or the constants interface, for example,
example.ALE or exampleConstants.ALE.

20.3.5.2 Typesafe enums

This is the default approach to wrapping named enums. The typesafe enum pattern is a relatively well known construct to work
around the lack of enums in versions of Java prior to JDK 1.5. It basically defines a class for the enumeration and permits a
limited number of final static instances of the class. Each instance equates to an enum item within the enumeration. The
implementation is in the "enumtypesafe.swg" file. Let's look at an example:

%include "enumtypesafe.swg" // optional as typesafe enums are the default
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

will generate:

public final class Beverage {
public final static Beverage ALE = new Beverage("ALE");
public final static Beverage LAGER = new Beverage("LAGER", exampleJNI.LAGER_get());
public final static Beverage STOUT = new Beverage("STOUT");
public final static Beverage PILSNER = new Beverage("PILSNER");
public final static Beverage PILZ = new Beverage("PILZ", exampleJNI.PILZ_get());
[... additional support methods omitted for brevity ...]

}

See_Typesafe enum classes to see the omitted support methods. Note that the enum item with an initializer (LAGER) is initializ
with the enum value obtained via a JNI call. However, as with anonymous enums and constants, use of the %javaconst
directive is strongly recommended to change this behaviour:

%include "enumtypesafe.swg" // optional as typesafe enums are the default
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

will generate:

public final class Beverage {
public final static Beverage ALE = new Beverage("ALE");
public final static Beverage LAGER = new Beverage("LAGER", 10);
public final static Beverage STOUT = new Beverage("STOUT");
public final static Beverage PILSNER = new Beverage("PILSNER");
public final static Beverage PILZ = new Beverage("PILZ", PILSNER);
[... additional support methods omitted for brevity ...]

}

The generated code is easier to read and more efficient as a true constant is used instead of a JNI call. As is the case for cons
the default is %javaconst(0) as not all C values will compile as Java code. However, it is recommended to add in a
%javaconst(1) directive at the top of your interface file as it is only on very rare occasions that this will produce code that

won't compile under Java. The %javaconstvalue(value) directive can also be used for typesafe enums. Note that global

enums are generated into a Java class within whatever package you are using. C++ enums defined within a C++ class are
generated into a static final inner Java class within the Java proxy class.

Typesafe enums have their advantages over using plain integers in that they they can be used in a typesafe manner. However
there are limitations. For example, they cannot be used in switch statements and serialization is an issue. Please look at the
following references for further information: Replace Enums with Classes in Effective Java Programming on the Sun website,
Create enumerated constants in Java JavaWorld article, Java Tip 133: More on typesafe enums and Java Tip 122: Beware of .
typesafe enumerations JavaWorld tips.

Note that the syntax required for using typesafe enums is the same as that for proper Java enums. This is useful during the pel
that a project has to support legacy versions of Java. When upgrading to JDK 1.5 or later, proper Java enums could be used

20.3.5.1 Anonymous enums 259

http://java.sun.com/developer/Books/shiftintojava/page1.html#replaceenums
http://www.javaworld.com/javaworld/jw-07-1997/jw-07-enumerated.html
http://www.javaworld.com/javaworld/javatips/jw-javatip133.html
http://www.javaworld.com/javaworld/javatips/jw-javatip122.html
http://www.javaworld.com/javaworld/javatips/jw-javatip122.html

SWIG-1.3 Documentation

instead, without users having to change their code. The following section details proper Java enum generation.
20.3.5.3 Proper Java enums

Proper Java enums were only introduced in JDK 1.5 so this approach is only compatible with more recent versions of Java. Ja
enums have been designed to overcome all the limitations of both typesafe and type unsafe enums and should be the choice
solution, provided older versions of Java do not have to be supported. In this approach, each named C/C++ enum is wrapped |
Java enum. Java enums, by default, do not support enums with initializers. Java enums are in many respects similar to Java cl
in that they can be customised with additional methods. SWIG takes advantage of this feature to facilitate wrapping C/C++ enu
that have initializers. In order to wrap all possible C/C++ enums using proper Java enums, the "enums.swg" file must be used.
Let's take a look at an example.

%include "enums.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

will generate:

public enum Beverage {
ALE,
LAGER(10),
STOUT,
PILSNER,
PILZ(PILSNERY);
[... additional support methods omitted for brevity ...]

}

See Proper Java enum classes to see the omitted support methods. The generated Java enum has numerous additional metht
support enums with initializers, such as LAGER above. Note that as with the typesafe enum pattern, enum items with initializer
are by default initialized with the enum value obtained via a JNI call. However, this is not the case above as we have used the
recommended %javaconst(1) to avoid the JNI call. The %javaconstvalue(value) directive covered in the Constants

section can also be used for proper Java enums.

The additional support methods need not be generated if none of the enum items have initializers and this is covered later in th
Simpler Java enums for enums without initializers section.

20.3.5.4 Type unsafe enums

In this approach each enum item in a named enumeration is wrapped as a static final integer in a class named after the C/C++
enum name. This is a commonly used pattern in Java to simulate C/C++ enums, but it is not typesafe. However, the main
advantage over the typesafe enum pattern is enum items can be used in switch statements. In order to use this approach, the
"enumtypeunsafe.swg" file must be used. Let's take a look at an example.

%include "enumtypeunsafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

will generate:

public final class Beverage {
public final static int ALE = 0;
public final static int LAGER = 10;
public final static int STOUT = LAGER + 1;
public final static int PILSNER = STOUT + 1,
public final static int PILZ = PILSNER,;

}

As is the case previously, the default is %javaconst(0) as not all C/C++ values will compile as Java code. However, again it
is recommended to add in a %javaconst(1) directive. and the %javaconstvalue(value) directive covered in the
Constants section can also be used for type unsafe enums. Note that global enums are generated into a Java class within wha

20.3.5.2 Typesafe enums 260

SWIG-1.3 Documentation

package you are using. C++ enums defined within a C++ class are generated into a static final inner Java class within the Java
proxy class.

Note that unlike typesafe enums, this approach requires users to mostly use different syntax compared with proper Java enum:
Thus the upgrade path to proper enums provided in JDK 1.5 is more painful.

20.3.5.5 Simple enums

This approach is similar to the type unsafe approach. Each enum item is also wrapped as a static final integer. However, these
integers are not generated into a class named after the C/C++ enum. Instead, global enums are generated into the constants
interface. Also, enums defined in a C++ class have their enum items generated directly into the Java proxy class rather than ar
inner class within the Java proxy class. In fact, this approach is effectively wrapping the enums as if they were anonymous enu
and the resulting code is as per anonymous enums. The implementation is in the "enumsimple.swg" file.

Compatibility Note: SWIG-1.3.21 and earlier versions wrapped all enums using this approach. The type unsafe approach is
preferable to this one and this simple approach is only included for backwards compatibility with these earlier versions of SWIC

20.3.6 Pointers

C/C++ pointers are fully supported by SWIG. Furthermore, SWIG has no problem working with incomplete type information.
Here is a rather simple interface:

%module example

FILE *fopen(const char *filename, const char *mode);
int fputs(const char *, FILE *);
int fclose(FILE *);

When wrapped, you will be able to use the functions in a natural way from Java. For example:

SWIGTYPE_p_FILE f = example.fopen("junk","w");
example.fputs("Hello World\n", f);
example.fclose(f);

C pointers in the Java module are stored in a Java long and cross the JNI boundary held within this 64 bit number. Many other
SWIG language modules use an encoding of the pointer in a string. These scripting languages use the SWIG runtime type che
for dynamic type checking as they do not support static type checking by a compiler. In order to implement static type checking
pointers within Java, they are wrapped by a simple Java class. In the example above the FILE * pointer is wrapped with a type
wrapper class called SWIGTYPE_p_FILE.

Once obtained, a type wrapper object can be freely passed around to different C functions that expect to receive an object of tt
type. The only thing you can't do is dereference the pointer from Java. Of course, that isn't much of a concern in this example.

As much as you might be inclined to modify a pointer value directly from Java, don't. The value is not necessarily the same as
logical memory address of the underlying object. The value will vary depending on the native byte—ordering of the platform (i.e.
big—endian vs. little—endian). Most JVMs are 32 bit applications so any JNI code must also be compiled as 32 bit. The net resu
pointers in JNI code are also 32 bits and are stored in the high order 4 bytes on big—endian machines and in the low order 4 by
on little—endian machines. By design it is also not possible to manually cast a pointer to a new type by using Java casts as it is
particularly dangerous especially when casting C++ objects. If you need to cast a pointer or change its value, consider writing
some helper functions instead. For example:

%inline %({

[* C-style cast */

Bar *FooToBar(Foo *f) {
return (Bar *) f;

}

[* C++-style cast */
Foo *BarToFoo(Bar *b) {

20.3.5.4 Type unsafe enums 261

SWIG-1.3 Documentation

return dynamic_cast<Foo*>(b);

}

Foo *IncrFoo(Foo *f, int i) {
return f+i;

}
%}

Also, if working with C++, you should always try to use the new C++ style casts. For example, in the above code, the C-style c
may return a bogus result whereas as the C++-style cast will return a NULL pointer if the conversion can't be performed.

20.3.7 Structures

If you wrap a C structure, it is wrapped by a Java class with getters and setters for access to the member variables. For examp

struct Vector {
double x,y,z;

k

is used as follows:

Vector v = new Vector();
v.setX(3.5);

v.setY(7.2);

double x = v.getX();
double y = v.getY();

The variable setters and getters are also based on the JavaBean design pattern already covered under the Global variables se
Similar access is provided for unions and the public data members of C++ classes.

This object is actually an instance of a Java class that has been wrapped around a pointer to the C structure. This instance doe
actually do anything—-it just serves as a proxy. The pointer to the C object is held in the Java proxy class in much the same we
as pointers are held by type wrapper classes. Further details about Java proxy classes are covered a little later.

const members of a structure are read-only. Data members can also be forced to be read—only using the %immutable
directive. For example:

struct Foo {
%immutable;
int x; /* Read—-only members */

char *name;
%mutable;

h
When char * members of a structure are wrapped, the contents are assumed to be dynamically allocated using malloc or new

(depending on whether or not SWIG is run with the —c++ option). When the structure member is set, the old contents will be
released and a new value created. If this is not the behavior you want, you will have to use a typemap (described later).

If a structure contains arrays, access to those arrays is managed through pointers. For example, consider this:
struct Bar {
int x[16];
h
If accessed in Java, you will see behavior like this:

Bar b = new Bar();
SWIGTYPE_p_int x = b.getX();

20.3.6 Pointers 262

SWIG-1.3 Documentation

This pointer can be passed around to functions that expect to receive an int * (just like C). You can also set the value of an
array member using another pointer. For example:

Bar b = new Bar();

SWIGTYPE_p_int x = b.getX();

Bar ¢ = new Bar();

c.setX(x); /I Copy contents of b.x to ¢.x

For array assignment (setters not getters), SWIG copies the entire contents of the array starting with the data pointed to by b.x.
this example, 16 integers would be copied. Like C, SWIG makes no assumptions about bounds checking——-if you pass a bad
pointer, you may get a segmentation fault or access violation. The default wrapping makes it hard to set or get just one elemen
the array and so array access from Java is somewhat limited. This can be changed easily though by using the approach outline
later in the Wrapping C arrays with Java arrays_and Unbounded C Arrays sections.

When a member of a structure is itself a structure, it is handled as a pointer. For example, suppose you have two structures lik
this:

struct Foo {
int a;

k

struct Bar {
Foo f;

h
Now, suppose that you access the f member of Bar like this:

Bar b = new Bar();
Foo x = b.getF();

In this case, x is a pointer that points to the Foo that is inside b. This is the same value as generated by this C code:

Bar b;
Foo *x = &b—>f; /* Points inside b */

Because the pointer points inside the structure, you can modify the contents and everything works just like you would expect. F
example:

Bar b = new Bar();

b.getF().setA(3); // Modify b.f.a

Foo x = b.getF();

x.setA(3); /I Modify x.a - this is the same as b.f.a

20.3.8 C++ classes

C++ classes are wrapped by Java classes as well. For example, if you have this class,

class List {

public:
List();
~List();
int search(char *item);
void insert(char *item);
void remove(char *item);
char *get(int n);
int length;

h

you can use it in Java like this:

List | = new List();

20.3.7 Structures 263

SWIG-1.3 Documentation

linsert("Ale");
l.insert("Stout");
Linsert("Lager");
String item = l.get(2);
int length = l.getLength();
Class data members are accessed in the same manner as C structures.

Static class members are unsurprisingly wrapped as static members of the Java class:

class Spam {
public:
static void foo();
static int bar;

h
The static members work like any other Java static member:

Spam.foo();
int bar = Spam.getBar();

20.3.9 C++ inheritance

SWIG is fully aware of issues related to C++ inheritance. Therefore, if you have classes like this
class Foo {
3
class Bar : public Foo {
3
those classes are wrapped into a hierarchy of Java classes that reflect the same inheritance structure:

Bar b = new Bar();
Class ¢ = b.getClass();
System.out.printin(c.getSuperclass().getName());

will of course display:
Foo
Furthermore, if you have functions like this
void spam(Foo *f);
then the Java function spam() accepts instances of Foo or instances of any other proxy classes derived from Foo.

Note that Java does not support multiple inheritance so any multiple inheritance in the C++ code is not going to work. A warnin
is given when multiple inheritance is detected and only the first base class is used.

20.3.10 Pointers, references, arrays and pass by value

In C++, there are many different ways a function might receive and manipulate objects. For example:

void spam1(Foo *x); // Pass by pointer
void spam2(Foo &x); // Pass by reference
void spam3(Foo x); /I Pass by value

void spam4(Foo x[]); // Array of objects

20.3.8 C++ classes 264

SWIG-1.3 Documentation

In Java, there is no detailed distinction like this——specifically, there are only instances of classes. There are no pointers nor
references. Because of this, SWIG unifies all of these types together in the wrapper code. For instance, if you actually had the
above functions, it is perfectly legal to do this from Java:

Foo f = new Foo(); // Create a Foo
example.spaml(f); // Ok. Pointer
example.spam2(f); // Ok. Reference
example.spam3(f); // Ok. Value.
example.spam4(f); // Ok. Array (1 element)

Similar behavior occurs for return values. For example, if you had functions like this,

Foo *spam5();
Foo &spamé6();
Foo spam7();

then all three functions will return a pointer to some Foo object. Since the third function (spam7) returns a value, newly allocate
memory is used to hold the result and a pointer is returned (Java will release this memory when the returned object's finalizer i
run by the garbage collector).

20.3.10.1 Null pointers

Working with null pointers is easy. A Java null can be used whenever a method expects a proxy class or typewrapper class.
However, it is not possible to pass null to C/C++ functions that take parameters by value or by reference. If you try you will get
NullPointerException.

example.spam1(null); // Pointer — ok
example.spam2(null); // Reference — NullPointerException
example.spam3(null); // Value — NullPointerException
example.spam4(null); // Array — ok

For spam1 and spam4 above the Java null gets translated into a NULL pointer for passing to the C/C++ function. The
converse also occurs, that is, NULL pointers are translated into null Java objects when returned from a C/C++ function.

20.3.11 C++ overloaded functions

C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example, if you have two functions i
this:

%module example

void foo(int);
void foo(char *c);

You can use them in Java in a straightforward manner:

example.foo(3); /I foo(int)
example.foo("Hello"); // foo(char *c)

Similarly, if you have a class like this,

class Foo {
public:
Foo();
Foo(const Foo &);

N

you can write Java code like this:

20.3.10 Pointers, references, arrays and pass by value 265

SWIG-1.3 Documentation

Foo f = new Foo(); I/l Create a Foo
Foo g = new Foo(f); /I Copy f

Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG cannot disambiguate as there
be more than one C++ type mapping onto a single Java type. For example:

void spam(int);
void spam(unsigned short);

Here both int and unsigned short map onto a Java int. Here is another example:

void foo(Bar *b);
void foo(Bar &b);

If declarations such as these appear, you will get a warning message like this:

example.i:12: Warning(515): Overloaded method spam(unsigned short) ignored.
Method spam(int) at example.i:11 used.

To fix this, you either need to ignore or rename one of the methods. For example:

%rename(spam_short) spam(short);

void spam(int);
void spam(short); // Accessed as spam_short

or

%ignore spam(short);

void spam(int);
void spam(short); // Ignored

20.3.12 C++ default arguments

Any function with a default argument is wrapped by generating an additional function for each argument that is defaulted. For
example, if we have the following C++:

%module example

void defaults(double d=10.0, int i=0);
The following methods are generated in the Java module class:

public class example {
public static void defaults(double d, inti) { ... }
public static void defaults(double d) { ... }
public static void defaults() { ... }

}

Itis as if SWIG had parsed three separate overloaded methods. The same approach is taken for static methods, constructors ¢
member methods.

Compatibility note: Versions of SWIG prior to SWIG-1.3.23 wrapped these with a single wrapper method and so the default

values could not be taken advantage of from Java. Further details on default arguments and how to restore this approach are ¢
in the more general Default arguments section.

20.3.11 C++ overloaded functions 266

SWIG-1.3 Documentation
20.3.13 C++ namespaces

SWIG is aware of C++ namespaces, but namespace names do not appear in the module nor do namespaces result in a modul
is broken up into submodules or packages. For example, if you have a file like this,

%module example

namespace foo {
int fact(int n);
struct Vector {
double x,y,z;

¥

h

it works in Java as follows:

int f = example.fact(3);
Vector v = new Vector();
v.setX(3.4);

double y = v.getY();

If your program has more than one namespace, name conflicts (if any) can be resolved using %rename For example:

%rename(Bar_spam) Bar::spam;

namespace Foo {
int spam();

}

namespace Bar {
int spam();

}

If you have more than one namespace and you want to keep their symbols separate, consider wrapping them as separate SW
modules. Each SWIG module can be placed into a separate package.

20.3.14 C++ templates

C++ templates don't present a huge problem for SWIG. However, in order to create wrappers, you have to tell SWIG to create
wrappers for a particular template instantiation. To do this, you use the %template directive. For example:

%module example
9%{

#include "pair.h"
%0}

template<class T1, class T2>
struct pair {
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair();
pair(const T1&, const T2&);
~pair();
h

%template(pairii) pair<int,int>;
In Java:

pairii p = new pairii(3,4);
int first = p.getFirst();

20.3.13 C++ namespaces 267

SWIG-1.3 Documentation

int second = p.getSecond();

Obviously, there is more to template wrapping than shown in this example. More details can be found in the SWIG and C++
chapter.

20.3.15 C++ Smart Pointers

In certain C++ programs, it is common to use classes that have been wrapped by so—called "smart pointers." Generally, this
involves the use of a template class that implements operator—>() like this:

template<class T> class SmartPtr {
;I.'-*operator—>();
|
Then, if you have a class like this,

class Foo {
public:
int x;
int bar();
h
A smart pointer would be used in C++ as follows:

SmartPtr<Foo> p = CreateFoo(); // Created somehow (not shown)

p—>X = 3; /I Foo::x
inty = p—>bar(); /I Foo::bar

To wrap this in Java, simply tell SWIG about the SmartPtr class and the low-level Foo object. Make sure you instantiate
SmartPtr using %template if necessary. For example:

%module example

%template(SmartPtrFoo) SmartPtr<Foo>;

Now, in Java, everything should just "work":

SmartPtrFoo p = example.CreateFoo(); // Create a smart—pointer somehow
p.setX(3); /I Foo::x
inty = p.bar(); /I Foo::bar

If you ever need to access the underlying pointer returned by operator—>() itself, simply use the __deref () method. For
example:

Foo f =p.__deref__(); /I Returns underlying Foo *

20.4 Further details on the generated Java classes

In the previous section, a high-level view of Java wrapping was presented. A key component of this wrapping is that structures
and classes are wrapped by Java proxy classes and type wrapper classes are used in situations where no proxies are generat
This provides a very natural, type safe Java interface to the C/C++ code and fits in with the Java programing paradigm. Howev
a number of low-level details were omitted. This section provides a brief overview of how the proxy classes work and then covi
the type wrapper classes. Finally enum classes are covered. First, the crucial intermediary JNI class is considered.

20.3.14 C++ templates 268

SWIG-1.3 Documentation

20.4.1 The intermediary JNI class

In the "SWIG basics" and "SWIG and C++" chapters, details of low-level structure and class wrapping are described. To
summarize those chapters, if you have a global function and class like this

class Foo {
public:
int x;
int spam(int num, Foo* foo);
h
void egg(Foo* chips);

then SWIG transforms the class into a set of low—level procedural wrappers. These procedural wrappers essentially perform th
equivalent of this C++ code:

Foo *new_Foo() {
return new Foo();

void delete_Foo(Foo *f) {
delete f;

}

int Foo_x_get(Foo *f) {
return f->x;

}

void Foo_x_set(Foo *f, int value) {
f->x = value;

}

int Foo_spam(Foo *f, int num, Foo* foo) {
return f->spam(num, foo);

}

These procedural function names don't actually exist, but their functionality appears inside the generated JNI functions. The JN
functions have to follow a particular naming convention so the function names are actually:

JNIEXPORT jlong JNICALL Java_exampleJNI_new_1Foo(JNIEnv *jenv, jclass jcls);

JNIEXPORT void JNICALL Java_exampleJNI_delete_1Foo(JNIEnv *jenv, jclass jcls,
jlong jarg1);

JNIEXPORT void JNICALL Java_exampleJNI_Foo_1x_1set(JNIEnv *jenv, jclass jcls,
jlong jargl, jint jarg2);

JNIEXPORT jint INICALL Java_exampleJNI_Foo_1x_1get(JNIEnv *jenv, jclass jcls,
jlong jargl);

JNIEXPORT jint INICALL Java_exampleJNI_Foo_1spam(INIEnv *jenv, jclass jcls,

jlong jargl, jint jarg2, jlong jarg3);
JNIEXPORT void JNICALL Java_exampleJNI_egg(JNIEnv *jenv, jclass jcls, jlong jargl);

For every JNI C function there has to be a static native Java function. These appear in the intermediary JNI class:

class exampleJNI {
public final static native long new_Foo();
public final static native void delete_Foo(long jargl);
public final static native void Foo_x_set(long jargl, int jarg2);
public final static native int Foo_x_get(long jargl);
public final static native int Foo_spam(long jargl, int jarg2, long jarg3);
public final static native void egg(long jargl);

}

This class contains the complete Java — C/C++ interface so all function calls go via this class. As this class acts as a go—betwe
for all INI calls to C/C++ code from the Java proxy classes, type wrapper classes and module class, it is known as the
intermediary JNI class.

You may notice that SWIG uses a Java long wherever a pointer or class object needs traversing the Java—C/C++ boundary. Tt
approach leads to minimal JNI code which makes for better performance as JNI code involves a lot of string manipulation. SWiI

20.4.1 The intermediary JNI class 269

SWIG-1.3 Documentation

uses Java code wherever possible as it is compiled into byte code which requires fewer string operations.
The functions in the intermediary JNI class cannot be accessed outside of its package. Access to them is gained through the

module class for globals otherwise the appropriate proxy class.

The name of the intermediary JNI class can be changed from its default, that is, the module name with JNI appended after it. T
module directive attribute jniclassname is used to achieve this:

%module (jniclassname="name") modulename
If name is the same as modulename then the module class name gets changed from modulename to modulenameModule.
20.4.1.1 The intermediary JNI class pragmas

The intermediary JNI class can be tailored through the use of pragmas, but is not commonly done. The pragmas for this class :

Pragma Description

jniclassbase Base class for the intermediary JNI class

jniclassclassmodifief€lass modifiers and class type for the intermediary JNI class

jniclasscode Java code is copied verbatim into the intermediary JNI class

jniclassimports Java code, usually one or more import statements, placed before the intermediary JNI class defjnition
jniclassinterfaces |Comma separated interface classes for the intermediary JNI class

The pragma code appears in the generated intermediary JNI class where you would expect:

[jniclassimports pragma]

[jniclassclassmodifiers pragma] jniclassname extends [jniclassbase pragma]
implements [jniclassinterfaces pragma] {

[jniclasscode pragma]

... SWIG generated native methods ...

}

The jniclasscode pragma is quite useful for adding in a static block for loading the shared library / dynamic link library and
demonstrates how pragmas work:

%pragma(java) jniclasscode=%{
static {
try {
System.loadLibrary("example");

} catch (UnsatisfiedLinkError e) {
System.err.printin("Native code library failed to load. \n" + e);
System.exit(1);

}

}
9%}

Pragmas will take either " or %{ %} as delimeters. For example, let's change the intermediary JNI class access to public.
%pragma(java) jniclassclassmodifiers="public class"

All the methods in the intermediary JNI class will then be callable outside of the package as the method modifiers are public by
default.

20.4.2 The Java module class
All global functions and variable getters/setters appear in the module class. For our example, there is just one function:
public class example {

20.4.1.1 The intermediary JNI class pragmas 270

SWIG-1.3 Documentation

public static void egg(Foo chips) {
exampleJNI.egg(Foo.getCPtr(chips));

}
}

The module class is necessary as there is no such thing as a global in Java so all the C globals are put into this class. They ar
generated as static functions and so must be accessed as such by using the module name in the static function call:

example.egg(new Foo());
The primary reason for having the module class wrapping the calls in the intermediary JNI class is to implement static type
checking. In this case only a Foo can be passed to the egg function, whereas any long can be passed to the egg function in the
intermediary JNI class.

20.4.2.1 The Java module class pragmas

The module class can be tailored through the use of pragmas, in the same manner as the intermediary JNI class. The pragma:s
similarly named and are used in the same way. The complete list follows:

Pragma Description

modulebase Base class for the module class
moduleclassmodifiers Class modifiers and class type for the module class
modulecode Java code is copied verbatim into the module class

Java code, usually one or more import statements, placed before the module clags
definition

moduleinterfaces Comma separated interface classes for the module class
The pragma code appears in the generated module class like this:

moduleimports

[moduleimports pragma]

[modulemodifiers pragma] modulename extends [modulebase pragma]
implements [moduleinterfaces pragma] {

[modulecode pragma]

... SWIG generated wrapper functions ...

}

See_The intermediary JNI class pragmas section for further details on using pragmas.
20.4.3 Java proxy classes

A Java proxy class is generated for each structure, union or C++ class that is wrapped. The default proxy class for our previou:
example looks like this:

public class Foo {
private long swigCPtr;
protected boolean swigCMemOwn;

protected Foo(long cPtr, boolean cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = cPtr;

}

protected static long getCPtr(Foo obj) {
return obj.swigCPtr;

}

protected void finalize() {
delete();

}

20.4.2 The Java module class 271

SWIG-1.3 Documentation

public void delete() {
if(swigCPtr 1= 0 && swigCMemOwn) {
exampleJNI.delete_Foo(swigCPtr);
swigCMemOwn = false;

}
swigCPtr = 0;

}

public void setX(int x) {
exampleJNI.Foo_x_set(swigCPtr, x);

}

public int getX() {
return exampleJNI.Foo_x_get(swigCPtr);

}

public int spam(int num, Foo foo) {
return exampleJNI.Foo_spam(swigCPtr, num, Foo.getCPtr(foo));

}

public Foo() {
this(exampleJNIl.new_Foo(), true);

}
}

This class merely holds a pointer to the underlying C++ object (swigCPtr). It also contains all the methods in the C++ class it is
proxying plus getters and setters for public member variables. These functions call the native methods in the intermediary JNI
class. The advantage of having this extra layer is the type safety that the proxy class functions offer. It adds static type checkin
which leads to fewer surprises at runtime. For example, you can see that if you attempt to use the spam() function it will only
compile when the parameters passed are an int and a Foo. From a user's point of view, it makes the class work as if it were a
Java class:

Foo f = new Foo();
f.setX(3);
inty = f.spam(5, new Foo());

20.4.3.1 Memory management

Each proxy class has an ownership flag swigCMemOwn. The value of this flag determines who is responsible for deleting the
underlying C++ object. If set to true, the proxy class's finalizer will destroy the C++ object when the proxy class is garbage
collected. If set to false, then the destruction of the proxy class has no effect on the C++ object.

When an object is created by a constructor or returned by value, Java automatically takes ownership of the result. On the othel
hand, when pointers or references are returned to Java, there is often no way to know where they came from. Therefore, the
ownership is set to false. For example:

class Foo {
public:
Foo();
Foo barl();
Foo &bar2();
Foo *bar2();
¥

In Java:

Foo f = new Foo(); // f.swigCMemOwn = true
Foo f1 = f.barl(); // fl.swigCMemOwn = true

Foo f2 = f.bar2(); // f2.swigCMemOwn = false
Foo f3 = f.bar3(); // f3.swigCMemOwn = false

This behavior for pointers and references is especially important for classes that act as containers. For example, if a method

20.4.3 Java proxy classes 272

SWIG-1.3 Documentation

returns a pointer to an object that is contained inside another object, you definitely don't want Java to assume ownership and
destroy it!

For the most part, memory management issues remain hidden. However, there are situations where you might have to manual
change the ownership of an object. For instance, consider code like this:

class Obj {};
class Node {
Obj *value;
public:
void set_value(Obj *v) { value = v; }

h
Now, consider the following Java code:

Node n = new Node(); // Create a node

{
Obj o = new Obj(); // Create an object
n.set_value(0); /I Set value

} /I o goes out of scope

In this case, the Node n is holding a reference to o internally. However, SWIG has no way to know that this has occurred. The
Java proxy class still thinks that it has ownership of 0. As 0 has gone out of scope, it could be garbage collected in which case
C++ destructor will be invoked and n will then be holding a stale—pointer to o. If you're lucky, you will only get a segmentation
fault.

To work around this, the ownership flag of o needs changing to false. The ownership flag is a private member variable of the
proxy class so this is not possible without some customization of the proxy class. This can be achieved by using a typemap to
customise the proxy class with pure Java code as detailed later in the section on Java typemaps.

Sometimes a function will create memory and return a pointer to a newly allocated object. SWIG has no way of knowing this sc
by default the proxy class does not manage the returned object. However, you can tell the proxy class to manage the memory |
you specify the %newobject directive. Consider:

class Obj {...};
class Factory {
public:
static Obj *createObj() { return new Obj(); }
¥
If we call the factory function, then we have to manually delete the memory:

Obj obj = Factory.createObj(); // obj.swigCMemOwn = false

obj.delete();
Now add in the %newobject directive:

%newobject Factory::createObj();

class Obj {...};
class Factory {
public:
static Obj *createODbj() { return new Obj(); }

¥

A call to delete() is no longer necessary as the garbage collector will make the C++ destructor call because swigCMemOwn is
now true.

Obj obj = Factory.createObj(); // obj.swigCMemOwn = true;

20.4.3.1 Memory management 273

SWIG-1.3 Documentation

Some memory management issues are quite tricky to fix and may only be noticeable after using for a long time. One such issu
early garbage collection of an object created from Java and resultant usage from C++ code. The section on typemap examples

cover two such scenarigs, Memory management for objects passed to the C++ layer and Memory management when returning
references to member variables

20.4.3.2 Inheritance

Java proxy classes will mirror C++ inheritance chains. For example, given the base class Base and its derived class Derived:

class Base {
public:
virtual double foo();

g

class Derived : public Base {
public:
virtual double foo();

h
The base class is generated much like any other proxy class seen so far:

public class Base {
private long swigCPtr;
protected boolean swigCMemOwn;

protected Base(long cPtr, boolean cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = cPtr;

}

protected static long getCPtr(Base obj) {
return obj.swigCPtr;

}

protected void finalize() {
delete();
}

public void delete() {
if(swigCPtr 1= 0 && swigCMemOwn) {
exampleJNI.delete_Base(swigCPtr);
swigCMemOwn = false;
}
swigCPtr = 0;
}

public double foo() {
return exampleJNI.Base_foo(swigCPtr);

}

public Base() {
this(exampleJNIl.new_Base(), true);

}
}

The Derived class extends Base mirroring the C++ class inheritance hierarchy.

public class Derived extends Base {
private long swigCPtr;

protected Derived(long cPtr, boolean cMemoryOwn) {
super(exampleJNI.SWIGDerivedUpcast(cPtr), cMemoryOwn);
swigCPtr = cPtr;

}

20.4.3.2 Inheritance 274

SWIG-1.3 Documentation

protected static long getCPtr(Derived obj) {
return obj.swigCPtr;

}

protected void finalize() {
delete();
}

public void delete() {
if(swigCPtr 1= 0 && swigCMemOwn) {
exampleJNI.delete_Derived(swigCPtr);
swigCMemOwn = false;

}
swigCPtr = 0;
super.delete();

}

public double foo() {
return exampleJNI.Derived_foo(swigCPtr);

}

public Derived() {
this(exampleJNIl.new_Derived(), true);

}
}

Note the memory ownership is controlled by the base class. However each class in the inheritance hierarchy has its own pointe
value which is obtained during construction. The SWIGDerivedUpcast() call converts the pointer from a Derived * to a
Base *. This is a necessity as C++ compilers are free to implement pointers in the inheritance hierarchy with different values.

It is of course possible to extend Base using your own Java classes. If Derived is provided by the C++ code, you could for
example add in a pure Java class Extended derived from Base. There is a caveat and that is any C++ code will not know abou
your pure Java class Extended so this type of derivation is restricted. However, true cross language polymorphism can be
achieved using the directors feature.

20.4.3.3 Proxy classes and garbage collection

By default each proxy class has a delete() and a finalize() method. The finalize() method calls delete() which

frees any malloc'd memory for wrapped C structs or calls the C++ class destructors. The idea is for delete() to be called when
you have finished with the C/C++ object. Ideally you need not call delete(), but rather leave it to the garbage collector to call

it from the finalizer. The unfortunate thing is that Sun, in their wisdom, do not guarantee that the finalizers will be called. When
program exits, the garbage collector does not always call the finalizers. Depending on what the finalizers do and which operatir
system you use, this may or may not be a problem.

If the delete() call into JNI code is just for memory handling, there is not a problem when run on most operating systems, for
example Windows and Unix. Say your JNI code creates memory on the heap which your finalizers should clean up, the finalize
may or may not be called before the program exits. In Windows and Unix all memory that a process uses is returned to the sys
on exit, so this isn't a problem. This is not the case in some operating systems like vxWorks. If however, your finalizer calls into
JNI code invoking the C++ destructor which in turn releases a TCP/IP socket for example, there is no guarantee that it will be
released. Note that with long running programs the garbage collector will eventually run, thereby calling any unreferenced obje:
finalizers.

Some not so ideal solutions are:
1. Call the System.runFinalizersOnExit(true) or
Runtime.getRuntime().runFinalizersOnExit(true) to ensure the finalizers are called before the

program exits. The catch is that this is a deprecated function call as the documenation says:

This method is inherently unsafe. It may result in finalizers being called on live objects while other threads are
concurrently manipulating those objects, resulting in erratic behavior or deadlock.

20.4.3.3 Proxy classes and garbage collection 275

SWIG-1.3 Documentation

In many cases you will be lucky and find that it works, but it is not to be advocated. Have a look at Sun's Java web site
and search for runFinalizersOnExit.

2. From jdk1.3 onwards a new function, addShutdownHook(), was introduced which is guaranteed to be called when
your program exits. You can encourage the garbage collector to call the finalizers, for example, add this static block to
the class that has the main() function:

static {
Runtime.getRuntime().addShutdownHook(
new Thread() {
public void run() { System.gc(); System.runFinalization(); }

}
);
}

Although this usually works, the documentation doesn't guarantee that runFinalization() will actually call the
finalizers. As the the shutdown hook is guaranteed you could also make a JNI call to clean up any resources that are
being tracked by the C/C++ code.

3. Call the delete() function manually which will immediately invoke the C++ destructor. As a suggestion it may be a
good idea to set the object to null so that should the object be inadvertantly used again a Java null pointer exception is
thrown, the alternative would crash the JVM by using a null C pointer. For example given a SWIG generated class A:

A myA = new A();

/I use myA ...

myA.delete();

/I any use of myA here would crash the JVM

myA=null;

/I any use of myA here would cause a Java null pointer exception to be thrown

The SWIG generated code ensures that the memory is not deleted twice, in the event the finalizers get called in additic
to the manual delete() call.

4. Write your own object manager in Java. You could derive all SWIG classes from a single base class which could track
which objects have had their finalizers run, then call the rest of them on program termination. The section on Java
typemaps details how to specify a pure Java base class.

20.4.4 Type wrapper classes

The generated type wrapper class, for say an int *, looks like this:

public class SWIGTYPE_p_int{
private long swigCPtr;

protected SWIGTYPE_p_int(long cPtr, boolean bFutureUse) {
swigCPtr = cPtr;
}

protected SWIGTYPE_p_int() {
swigCPtr = 0;
}

protected static long getCPtr(SWIGTYPE_p_int obj) {
return obj.swigCPtr;

}
}

The methods do not have public access, so by default it is impossible to do anything with objects of this class other than pass t
around. The methods in the class are part of the inner workings of SWIG. If you need to mess around with pointers you will hav
to use some typemaps specific to the Java module to achieve this. The section on Java typemaps details how to modify the
generated code.

Note that if you use a pointer or reference to a proxy class in a function then no type wrapper class is generated because the p
class can be used as the function parameter. If however, you need anything more complicated like a pointer to a pointer to a pr

20.4.4 Type wrapper classes 276

http://java.sun.com

SWIG-1.3 Documentation

class then a typewrapper class is generated for your use.

Note that SWIG generates a type wrapper class and not a proxy class when it has not parsed the definition of a type that gets
For example, say SWIG has not parsed the definition of class Snazzy because it is in a header file that you may have
forgotten to use the %include directive on. Should SWIG parse Snazzy * being used in a function parameter, it will then
generates a type wrapper class around a Snazzy pointer. Also recall from earlier that SWIG will use a pointer when a class is
passed by value or by reference:

void spam(Snazzy *x, Snazzy &y, Snazzy z);

Should SWIG not know anything about Snazzy then a SWIGTYPE_p_Snazzy must be used for all 3 parameters in the spam
function. The Java function generated is:

public static void spam(SWIGTYPE_p_Snazzy x, SWIGTYPE_p_Snazzy y, SWIGTYPE_p_Snazzy z) {
}

Note that typedefs are tracked by SWIG and the typedef name is used to construct the type wrapper class name. For example,
consider the case where Snazzy is a typedef to an int which SWIG does parse:

typedef int Snazzy;
void spam(Snazzy *x, Snazzy &y, Snazzy z);

Because the typedefs have been tracked the Java function generated is:

public static void spam(SWIGTYPE_p_int x, SWIGTYPE_p_inty, intz){...}
20.4.5 Enum classes

SWIG can generate three types of enum classes. The Enumerations section discussed these but omitted all the details. The
following sub-sections detail the various types of enum classes that can be generated.

20.4.5.1 Typesafe enum classes

The following example demonstrates the typesafe enum classes which SWIG generates:

%include "enumtypesafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

The following is the code that SWIG generates:

public final class Beverage {
public final static Beverage ALE = new Beverage("ALE");
public final static Beverage LAGER = new Beverage("LAGER", 10);
public final static Beverage STOUT = new Beverage("STOUT");
public final static Beverage PILSNER = new Beverage("PILSNER");
public final static Beverage PILZ = new Beverage("PILZ", PILSNER);

public final int swigValue() {
return swigValue;

}

public String toString() {
return swigName;

}

public static Beverage swigToEnum(int swigValue) {
if (swigValue < swigValues.length && swigValue >= 0 &&
swigValues[swigValue].swigValue == swigValue)
return swigValues[swigValue];

20.4.5 Enum classes 277

SWIG-1.3 Documentation

for (inti = 0; i < swigValues.length; i++)
if (swigValues]i].swigValue == swigValue)
return swigValuesl[i];
throw new lllegalArgumentException("No enum " + Beverage.class + " with value " +
swigValue);
}

private Beverage(String swigName) {
this.swigName = swigName;
this.swigValue = swigNext++;

}

private Beverage(String swigName, int swigValue) {
this.swigName = swigName;
this.swigValue = swigValue;
swigNext = swigValue+1;

}

private Beverage(String swigName, Beverage swigEnum) {
this.swigName = swigName;
this.swigValue = swigEnum.swigValue;
swigNext = this.swigValue+1;

}

private static Beverage[] swigValues = { ALE, LAGER, STOUT, PILSNER, PILZ };
private static int swigNext = 0;

private final int swigValue;

private final String swigName;

}

As can be seen, there are a fair number of support methods for the typesafe enum pattern. The typesafe enum pattern involve:
creating a fixed number of static instances of the enum class. The constructors are private to enforce this. Three constructors &
available - two for C/C++ enums with an initializer and one for those without an initializer. Note that the two enums with
initializers, LAGER and PILZ, each call one the two different initializer constructors. In order to use one of these typesafe enum
the swigToEnum static method must be called to return a reference to one of the static instances. The JNI layer returns the ent
value from the C/C++ world as an integer and this method is used to find the appropriate Java enum static instance. The
swigValue method is used for marshalling in the other direction. The toString method is overridden so that the enum name

is available.

20.4.5.2 Proper Java enum classes

The following example demonstrates the Java enums approach:

%include "enums.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

SWIG will generate the following Java enum:

public enum Beverage {
ALE,
LAGER(10),
STOUT,
PILSNER,
PILZ(PILSNER);

public final int swigValue() {
return swigValue;

}

public static Beverage swigToEnum(int swigValue) {
Beverage[] swigValues = Beverage.class.getEnumConstants();
if (swigValue < swigValues.length && swigValue >= 0 &&
swigValues[swigValue].swigValue == swigValue)

20.4.5.1 Typesafe enum classes 278

SWIG-1.3 Documentation

return swigValues[swigValue];
for (Beverage swigEnum : swigValues)
if (swigEnum.swigValue == swigValue)
return swigEnum;
throw new lllegalArgumentException("No enum " + Beverage.class +
" with value " + swigValue);
}

private Beverage() {
this.swigValue = SwigNext.next++;

}

private Beverage(int swigValue) {
this.swigValue = swigValue;
SwigNext.next = swigValue+1;

}

private Beverage(Beverage swigEnum) {
this.swigValue = swigEnum.swigValue;
SwigNext.next = this.swigValue+1;

}
private final int swigValue;

private static class SwigNext {
private static int next = 0;

}
}

The enum items appear first. Like the typesafe enum pattern, the constructors are private. The constructors are required to har
C/C++ enums with initializers. The next variable is in the SwigNext inner class rather than in the enum class as static

primitive variables cannot be modified from within enum constructors. Marshalling between Java enums and the C/C++ enum
integer value is handled via the swigToEnum and swigValue methods. All the constructors and methods in the Java enum are
required just to handle C/C++ enums with initializers. These needn't be generated if the enum being wrapped does not have ar
initializers and the Simpler Java enums for enums without initializers section describes how typemaps can be used to achieve 1

20.4.5.3 Type unsafe enum classes

The following example demonstrates type unsafe enums:

%include "enumtypeunsafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };

SWIG will generate the following simple class:

public final class Beverage {
public final static int ALE = 0;
public final static int LAGER = 10;
public final static int STOUT = LAGER + 1;
public final static int PILSNER = STOUT + 1;
public final static int PILZ = PILSNER,;

20.5 Cross language polymorphism using directors (experimental)

Proxy classes provide a natural, object—oriented way to wrap C++ classes. as described earlier, each proxy instance has an
associated C++ instance, and method calls from Java to the proxy are passed to the C++ instance transparently via C wrapper
functions.

This arrangement is asymmetric in the sense that no corresponding mechanism exists to pass method calls down the inheritan
chain from C++ to Java. In particular, if a C++ class has been extended in Java (by deriving from the proxy class), these classe

20.4.5.2 Proper Java enum classes 279

SWIG-1.3 Documentation

will not be visible from C++ code. Virtual method calls from C++ are thus not able to access the lowest implementation in the
inheritance chain.

SWIG can address this problem and make the relationship between C++ classes and proxy classes more symmetric. To achie
this goal, new classes called directors are introduced at the bottom of the C++ inheritance chain. The job of the directors is to
route method calls correctly, either to C++ implementations higher in the inheritance chain or to Java implementations lower in
the inheritance chain. The upshot is that C++ classes can be extended in Java and from C++ these extensions look exactly like
native C++ classes. Neither C++ code nor Java code needs to know where a particular method is implemented: the combinatic
proxy classes, director classes, and C wrapper functions transparently takes care of all the cross—-language method routing.

20.5.1 Enabling directors

The director feature is disabled by default. To use directors you must make two changes to the interface file. First, add the
"directors" option to the %module directive, like this:

%module(directors="1") modulename

Without this option no director code will be generated. Second, you must use the %feature("director") directive to tell SWIG
which classes and methods should get directors. The %feature directive can be applied globally, to specific classes, and to spe
methods, like this:

/I generate directors for all classes that have virtual methods
%feature("director");

/I generate directors for all virtual methods in class Foo
%feature("director") Foo;

/I generate a director for just Foo::bar()
%feature("director") Foo::bar;

You can use the %feature("nodirector”) directive to turn off directors for specific classes or methods. So for example,

%feature("director") Foo;
%feature("nodirector") Foo::bar;

will generate directors for all virtual methods of class Foo except bar().

Directors can also be generated implicitly through inheritance. In the following, class Bar will get a director class that handles tt
methods one() and two() (but not three()):

%feature("director") Foo;
class Foo {
public:
virtual void one();
virtual void two();
h
class Bar: public Foo {
public:
virtual void three();

h
20.5.2 Director classes
For each class that has directors enabled, SWIG generates a new class that derives from both the class in question and a spet
Swig::Director class. These new classes, referred to as director classes, can be loosely thought of as the C++ equivalent of

the Java proxy classes. The director classes store a pointer to their underlying Java proxy classes.

For simplicity let's ignore the Swig::Director class and refer to the original C++ class as the director's base class. By default,

20.5 Cross language polymorphism using directors (experimental) 280

SWIG-1.3 Documentation

a director class extends all virtual methods in the inheritance chain of its base class (see the preceding section for how to modi
this behavior). Thus all virtual method calls, whether they originate in C++ or in Java via proxy classes, eventually end up in at
the implementation in the director class. The job of the director methods is to route these method calls to the appropriate place
the inheritance chain. By "appropriate place" we mean the method that would have been called if the C++ base class and its Je
derived classes were seamlessly integrated. That seamless integration is exactly what the director classes provide, transparen
skipping over all the messy JNI glue code that binds the two languages together.

In reality, the "appropriate place" is one of only two possibilities: C++ or Java. Once this decision is made, the rest is fairly easy
If the correct implementation is in C++, then the lowest implementation of the method in the C++ inheritance chain is called
explicitly. If the correct implementation is in Java, the Java APl is used to call the method of the underlying Java object (after
which the usual virtual method resolution in Java automatically finds the right implementation).

20.5.3 Overhead and code bloat

Enabling directors for a class will generate a new director method for every virtual method in the class' inheritance chain. This
alone can generate a lot of code bloat for large hierarchies. Method arguments that require complex conversions to and from J
types can result in large director methods. For this reason it is recommended that directors are selectively enabled only for spe
classes that are likely to be extended in Java and used in C++.

Although directors make it natural to mix native C++ objects with Java objects (as director objects), one should be aware of the
obvious fact that method calls to Java objects from C++ will be much slower than calls to C++ objects. Additionally, compared t
classes that do not use directors, the call routing in the director methods adds a small overhead. This situation can be optimize
selectively enabling director methods (using the %feature directive) for only those methods that are likely to be extended in Jav

20.5.4 Simple directors example

Consider the following SWIG interface file:

%module(directors="1") example;
%feature("director") DirectorBase;

class DirectorBase {

public:

virtual ~DirectorBase() {}
virtual void upcall_method() {}

g

void callup(DirectorBase *director) {
director—>upcall_method();

}

The following directorDerived Java class is derived from the Java proxy class DirectorBase and overrides
upcall_method(). When C++ code invokes upcall_method(), the SWIG—-generated C++ code redirects the call via JNI

to the Java directorDerived subclass. Naturally, the SWIG generated C++ code and the generated Java intermediate class
marshall and convert arguments between C++ and Java when needed.

public class directorDerived extends DirectorBase {
public directorDerived() {

}

public void upcall_method() {
System.out.printin("directorDerived::upcall_method() invoked.");

}
}
Running the following Java code

directorDerived director = new directorDerived();
example.callup(director);

20.5.2 Director classes 281

SWIG-1.3 Documentation

will result in the following being output:

directorDerived::upcall_method() invoked.

20.6 Common customization features

An earlier section presented the absolute basics of C/C++ wrapping. If you do nothing but feed SWIG a header file, you will get
an interface that mimics the behavior described. However, sometimes this isn't enough to produce a nice module. Certain type:
functionality might be missing or the interface to certain functions might be awkward. This section describes some common
SWIG features that are used to improve the interface to existing C/C++ code.

20.6.1 C/C++ helper functions

Sometimes when you create a module, it is missing certain bits of functionality. For example, if you had a function like this

typedef struct Image {...};
void set_transform(Image *im, double m[4][4]);

it would be accessible from Java, but there may be no easy way to call it. The problem here is that a type wrapper class is
generated for the two dimensional array parameter so there is no easy way to construct and manipulate a suitable double
[4][4] value. To fix this, you can write some extra C helper functions. Just use the %inline directive. For example:

%inline %{
/* Note: double[4][4] is equivalent to a pointer to an array double (*)[4] */
double (*new_mat44())[4] {

return (double (*)[4]) malloc(16*sizeof(double));

void free_mat44(double (*x)[4]) {
free(x);

void mat44_set(double x[4][4], inti, int j, double v) {
X[0] = v;

}

double mat44_get(double x[4][4], inti, int) {
return x[i][j];

%}
From Java, you could then write code like this:

Image im = new Image();

SWIGTYPE_p_a_4__double a = example.new_mat44();
example.mat44_set(a,0,0,1.0);
example.mat44_set(a,1,1,1.0);
example.mat44_set(a,2,2,1.0);

example.set_transform(im,a);
example.free_mat44(a);

Admittedly, this is not the most elegant looking approach. However, it works and it wasn't too hard to implement. It is possible t

improve on this using Java code, typemaps, and other customization features as covered in later sections, but sometimes help
functions are a quick and easy solution to difficult cases.

20.6.2 Class extension with %extend

One of the more interesting features of SWIG is that it can extend structures and classes with new methods or constructors. He
is a simple example:

%module example
%{

20.5.4 Simple directors example 282

SWIG-1.3 Documentation

#include "someheader.h"
%%}

struct Vector {
double x,y,z;

g

%extend Vector {
char *toString() {
static char tmp[1024];
sprintf(tmp,"Vector(%g,%g,%g)", self->x,self->y,self->z);
return tmp;

}
Vector(double x, double y, double z) {

Vector *v = (Vector *) malloc(sizeof(Vector));
V=>X = X;

V=Y =Yy,

v—>7 = 7;

return v;

}
¥

Now, in Java

Vector v = new Vector(2,3,4);
System.out.printin(v);

will display
Vector(2,3,4)

%extend works with both C and C++ code. It does not modify the underlying object in any way——-the extensions only show up
in the Java interface.

20.6.3 Exception handling with %exception and %javaexception

If a C or C++ function throws an error, you may want to convert that error into a Java exception. To do this, you can use the
%exception directive. The %exception directive simply lets you rewrite part of the generated wrapper code to include an
error check. It is detailed in full in the Exception handling with %exception section.

In C, a function often indicates an error by returning a status code (a negative number or a NULL pointer perhaps). Here is a
simple example of how you might handle that:

%exception malloc {
$action
if (result) {
jclass clazz = (*jenv)—>FindClass(jenv, "java/lang/OutOfMemoryError");
(*Yjenv)->ThrowNew(jenv, clazz, "Not enough memory");
return $null;

}

void *malloc(size_t nbytes);
In Java,

SWIGTYPE_p_void a = example.malloc(2000000000);
will produce a familiar looking Java exception:

Exception in thread "main" java.lang.OutOfMemoryError: Not enough memory
at exampleJNI.malloc(Native Method)
at example.malloc(example.java:16)

20.6.2 Class extension with %extend 283

SWIG-1.3 Documentation

at main.main(main.java:112)
If a library provides some kind of general error handling framework, you can also use that. For example:

%exception malloc {
$action
if (err_occurred()) {
jclass clazz = (*jenv)—>FindClass(jenv, "java/lang/OutOfMemoryError");
(*jenv)—>ThrowNew(jenv, clazz, "Not enough memory");
return $null;

}

void *malloc(size_t nbytes);

No declaration name is given to %exception, it is applied to all wrapper functions. The $action is a SWIG special variable

and is replaced by the C/C++ function call being wrapped. The return $null; handles all native method return types, namely
those that have a void return and those that do not. This is useful for typemaps that will be used in native method returning all
return types. See the section_on Java special variables for further explanation.

C++ exceptions are also easy to handle. We can catch the C++ exception and rethrow it as a Java exception like this:

%exception getitem {
try {
$action
} catch (std::out_of_range &e) {
jclass clazz = jenv—>FindClass("java/lang/Exception™);
jenv=>ThrowNew(clazz, "Range error");
return $null;
}
}

class FooClass {
public:
FooClass *getitem(int index); // Might throw std::out_of_range exception

k

In the example above, java.lang.Exception is a checked exception class and so ought to be declared in the throws clause
of getitem. Classes can be specified for adding to the throws clause using %javaexception(classes) instead of
%exception, where classes is a string containing one or more comma separated Java classes. The %nojavaexception
feature is the equivalent to %noexception and clears previously declared exception handlers.

%javaexception("java.lang.Exception") getitem {
try {
$action
} catch (std::out_of_range &e) {
jclass clazz = jenv—>FindClass("java/lang/Exception");
jenv=>ThrowNew(clazz, "Range error");
return $null;
}
}

class FooClass {
public:
FooClass *getitem(int index); // Might throw std::out_of_range exception

h
The generated proxy method now generates a throws clause containing java.lang.Exception:

public class FooClass {

public FooClass getitem(int index) throws java.lang.Exception { ... }

20.6.3 Exception handling with %exception and %javaexception 284

SWIG-1.3 Documentation
}

The examples above first use the C JNI calling syntax then the C++ JNI calling syntax. The C++ calling syntax will not compile
as C and also visa versa. It is however possible to write JNI calls which will compile under both C and C++ and is covered in th

Typemaps for both C and C++ compilation section.

The language—-independent exception.i library file can also be used to raise exceptions. See the SWIG Library chapter. The
typemap example Handling C++ exception specifications as Java exceptions provides further exception handling capabilities.

20.6.4 Method access with %javamethodmodifiers

A Java feature called %javamethodmodifiers can be used to change the method modifiers from the default public. It
applies to both module class methods and proxy class methods. For example:

%javamethodmodifiers protect_me() "protected”;
void protect_me();

Will produce the method in the module class with protected access.

protected static void protect_me() {
exampleJNI.protect_me();

}

20.7 Tips and techniques

Although SWIG is largely automatic, there are certain types of wrapping problems that require additional user input. Examples
include dealing with output parameters, strings and arrays. This chapter discusses the common techniques for solving these
problems.

20.7.1 Input and output parameters using primitive pointers and references

A common problem in some C programs is handling parameters passed as simple pointers or references. For example:

void add(int x, inty, int *result) {
*result = x +;

}
or perhaps

int sub(int *x, int *y) {
return *x—*y;,

}
The typemaps.i library file will help in these situations. For example:

%module example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int sub(int *INPUT, int *INPUT);

In Java, this allows you to pass simple values. For example:

int result = example.sub(7,4);
System.out.printin("7 — 4 =" + result);
int[] sum = {0};

example.add(3,4,sum);
System.out.printin("3 + 4 =" + sum[0]);

20.6.4 Method access with %javamethodmodifiers 285

SWIG-1.3 Documentation

Which will display:
7-4=3
3+4=7

Notice how the INPUT parameters allow integer values to be passed instead of pointers and how the OUTPUT parameter will
return the result in the first element of the integer array.

If you don't want to use the names INPUT or OUTPUT, use the %apply directive. For example:

%module example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT {int *x, int *y};

void add(int x, int y, int *result);
int sub(int *x, int *y);

If a function mutates one of its parameters like this,
void negate(int *x) {
*y = —(*X);
}
you can use INOUT like this:
%include "typemaps.i"
;)éid negate(int *INOUT);
In Java, the input parameter is the first element in a 1 element array and is replaced by the output of the function. For example
int[] neg = {3};
example.negate(neg);
System.out.printin("Negative of 3 =" + neg[0]);
And no prizes for guessing the output:
Negative of 3 =-3
These typemaps can also be applied to C++ references. The above examples would work the same if they had been defined u
references instead of pointers. For example, the Java code to use the negate function would be the same if it were defined eith
as it is above:
void negate(int *INOUT);
or using a reference:

void negate(int &INOUT);

Note: Since most Java primitive types are immutable and are passed by value, it is not possible to perform in—place modificatic
of a type passed as a parameter.

Be aware that the primary purpose of the typemaps.i file is to support primitive datatypes. Writing a function like this

void foo(Bar *OUTPUT);

will not have the intended effect since typemaps.i does not define an OUTPUT rule for Bar.

20.7.1 Input and output parameters using primitive pointers and references 286

SWIG-1.3 Documentation

20.7.2 Simple pointers

If you must work with simple pointers such as int * or double * another approach to using typemaps.i is to use the
cpointer.i pointer library file. For example:

%module example
%include "cpointer.i"

%inline %{
extern void add(int x, int y, int *result);
9%}

%pointer_functions(int, intp);

The %pointer_functions(type,name) macro generates five helper functions that can be used to create, destroy, copy,
assign, and dereference a pointer. In this case, the functions are as follows:

int *new_intp();

int *copy_intp(int *x);

void delete_intp(int *x);

void intp_assign(int *x, int value);
int intp_value(int *x);

In Java, you would use the functions like this:

SWIGTYPE_p_int intPtr = example.new_intp();
example.add(3,4,intPtr);

int result = example.intp_value(intPtr);
System.out.printin("3 + 4 =" + result);

If you replace %pointer_functions(int,intp) by %pointer_class(int,intp), the interface is more class-like.

intp intPtr = new intp();
example.add(3,4,intPtr.cast());

int result = intPtr.value();
System.out.printin("3 + 4 =" + result);

See the SWIG Library chapter for further details.

20.7.3 Wrapping C arrays with Java arrays

SWIG can wrap arrays in a more natural Java manner than the default by using the arrays_java.i library file. Let's consider
an example:

%include "arrays_java.i";
int array[4];
void populate(int x[]) {
inti;
for (i=0; i

These one dimensional arrays can then be used as if they were Java arrays:

int[] array = new int[4];
example.populate(array);

System.out.print("array: ");
for (Int IZO, i<array.|ength; i++)
System.out.print(array[i] + " ");

example.setArray(array);

int[] global_array = example.getArray();

20.7.2 Simple pointers 287

SWIG-1.3 Documentation

System.out.print("\nglobal_array: ");
for (int i=0; i<array.length; i++)
System.out.print(global_array[i] + " ");

Java arrays are always passed by reference, so any changes a function makes to the array will be seen by the calling function.
is the output after running this code:

array: 100 101 102 103
global_array: 100 101 102 103

Note that for assigning array variables the length of the C variable is used, so it is possible to use a Java array that is bigger th:
the C code will cope with. Only the number of elements in the C array will be used. However, if the Java array is not large enou
then you are likely to get a segmentation fault or access violation, just like you would in C. When arrays are used in functions li
populate, the size of the C array passed to the function is determined by the size of the Java array.

Please be aware that the typemaps in this library are not efficient as all the elements are copied from the Java array to a C arre
whenever the array is passed to and from JNI code. There is an alternative approach using the SWIG array library and this is
covered in the next section.

20.7.4 Unbounded C Arrays

Sometimes a C function expects an array to be passed as a pointer. For example,

int sumitems(int *first, int nitems) {
inti, sum=0;
for (i = O; i < nitems; i++) {
sum += first[i];

}

return sum;

}
One of the ways to wrap this is to apply the Java array typemaps that come in the arrays_java.i library file:

%include "arrays_java.i"
Y%apply int[] {int *};

The ANY size will ensure the typemap is applied to arrays of all sizes. You could narrow the typemap matching rules by
specifying a particular array size. Now you can use a pure Java array and pass it to the C code:

int[] array = new int[10000000]; /I Array of 10—million integers
for (int i=0; i<array.length; i++) { // Set some values
array[i] = i;

int sum = example.sumitems(array,10000);
System.out.printin("Sum =" + sum);

and the sum would be displayed:

Sum = 49995000

This approach is probably the most natural way to use arrays. However, it suffers from performance problems when using large
arrays as a lot of copying of the elements occurs in transferring the array from the Java world to the C++ world. An alternative
approach to using Java arrays for C arrays is to use an alternative SWIG library file carrays.i. This approach can be more
efficient for large arrays as the array is accessed one element at a time. For example:

%include "carrays.i"
%array_functions(int, intArray);

20.7.3 Wrapping C arrays with Java arrays 288

SWIG-1.3 Documentation

The %array_functions(type,name) macro generates four helper functions that can be used to create and destroy arrays
and operate on elements. In this case, the functions are as follows:

int *new_intArray(int nelements);

void delete_intArray(int *x);

int intArray_getitem(int *x, int index);

void intArray_setitem(int *x, int index, int value);

In Java, you would use the functions like this:

SWIGTYPE_p_int array = example.new_intArray(10000000); // Array of 10—million integers
for (inti=0; i

If you replace %array_functions(int,intp) by %array_class(int,intp), the interface is more class-like and a
couple more helper functions are available for casting between the array and the type wrapper class.

%include "carrays.i"
Y%array_class(int, intArray);

The %array_class(type, name) macro creates wrappers for an unbounded array object that can be passed around as a
simple pointer like int * or double *. For instance, you will be able to do this in Java:

intArray array = new intArray(10000000); // Array of 10—million integers
for (inti=0; i

The array "object" created by %array_class() does not encapsulate pointers inside a special array object. In fact, there is no
bounds checking or safety of any kind (just like in C). Because of this, the arrays created by this library are extremely low-level
indeed. You can't iterate over them nor can you even query their length. In fact, any valid memory address can be accessed if
want (negative indices, indices beyond the end of the array, etc.). Needless to say, this approach is not going to suit all
applications. On the other hand, this low-level approach is extremely efficient and well suited for applications in which you nee
to create buffers, package binary data, etc.

20.8 Java typemaps

This section describes how you can modify SWIG's default wrapping behavior for various C/C++ datatypes using the %typema
directive. You are advised to be familiar with the the material in_the "Typemaps" chapter. While not absolutely essential
knowledge, this section assumes some familiarity with the Java Native Interface (JNI). JNI documentation can be consulted eitl
online at_Sun's Java web site or from a good JNI book. The following two books are recommended:

« Title: 'Essential JNI: Java Native Interface.' Author: Rob Gordon. Publisher: Prentice Hall. ISBN: 0-13-679895-0.
« Title: 'The Java Native Interface: Programmer's Guide and Specification.' Author: Sheng Liang. Publisher:
Addison-Wesley. ISBN: 0-201-32577-2.

Before proceeding, it should be stressed that typemaps are not a required part of using SWIG-—-the default wrapping behavio
enough in most cases. Typemaps are only used if you want to change some aspect of the generated code.

20.8.1 Default primitive type mappings

The following table lists the default type mapping from Java to C/C++.

JNI
C/C++ type Java type e
bool _
const bool & boolean jboolean
char .
const char & char jchar

20.7.4 Unbounded C Arrays 289

http://java.sun.com

SWIG-1.3 Documentation

signed char .
const signed char & byte jbyte
unsigned char .

const unsigned char & short jshort
short _
const short & short jshort
unsigned short int -
const unsigned short & J

int . ._
const int & int jint
unsigned int lon on
const unsigned int & 9 jlong
long .)
const long & int jint
unsigned long lon on
const unsigned long & 9 jlong
long long _
const long long & long jlong
unsigned long long : _ o
const unsigned long long &Java.math.B|glntegel]object
float .
const float & float jfloat
double .
const double & double jdouble
char * _ T
char [] String jstring

Note that SWIG wraps the C char type as a character. Pointers and arrays of this type are wrapped as strings. The signed
char type can be used if you want to treat char as a signed number rather than a character. Also note that all const references
primitive types are treated as if they are passed by value.

Given the following C function:

void func(unsigned short a, char *b, const long &c, unsigned long long d);
The module class method would be:

public static void func(int a, String b, int ¢, java.math.Biginteger d) {...}
The intermediary JNI class would use the same types:

public final static native void func(int jargl, String jarg2, int jarg3,
java.math.Biglnteger jarg4);

and the JNI function would look like this:

JNIEXPORT void JNICALL Java_exampleJNI_func(JNIEnv *jenv, jclass jcls,
jint jargl, jstring jarg2, jint jarg3, jobject jarg4) {...}

The mappings for C int and C long are appropriate for 32 bit applications which are used in the 32 bit JVMs. There is no

perfect mapping between Java and C as Java doesn't support all the unsigned C data types. However, the mappings allow the
range of values for each C type from Java.

20.8.1 Default primitive type mappings 290

SWIG-1.3 Documentation

20.8.2 Default typemaps for non—primitive types

The previous section covered the primitive type mappings. Non—primitive types such as classes and structs are mapped using
pointers on the C/C++ side and storing the pointer into a Java long variable which is held by the proxy class or type wrapper
class. This applies whether the type is marshalled as a pointer, by reference or by value. It also applies for any
unknown/incomplete types which use type wrapper classes.

So in summary, the C/C++ pointer to non—primitive types is cast into the 64 bit Java long type and therefore the JNI type is a
jlong. The Java type is either the proxy class or type wrapper class.

20.8.3 Sixty four bit JVMs

If you are using a 64 bit JVM you may have to override the C long, but probably not C int default mappings. Mappings will be
system dependent, for example long will need remapping on Unix LP64 systems (long, pointer 64 bits, int 32 bits), but not on
Microsoft 64 bit Windows which will be using a P64 1L32 (pointer 64 bits and int, long 32 bits) model. This may be automated in
a future version of SWIG. Note that the Java write once run anywhere philosophy holds true for all pure Java code when movin
to a 64 bit VM. Unfortunately it won't of course hold true for JNI code.

20.8.4 What is a typemap?

A typemap is nothing more than a code generation rule that is attached to a specific C datatype. For example, to convert intege
from Java to C, you might define a typemap like this:

%module example

%typemap(in) int {

$1 = $input;

printf("Received an integer : %d\n", $1);
}

%inline %{
extern int fact(int nonnegative);
9%}

Typemaps are always associated with some specific aspect of code generation. In this case, the "in" method refers to the
conversion of input arguments to C/C++. The datatype int is the datatype to which the typemap will be applied. The supplied C
code is used to convert values. In this code a number of special variables prefaced by a $ are used. The $1 variable is a
placeholder for a local variable of type int. The $input variable contains the Java data, the JNI jint in this case.

When this example is compiled into a Java module, it can be used as follows:

System.out.printin(example.fact(6));

and the output will be:

Received an integer : 6
720

In this example, the typemap is applied to all occurrences of the int datatype. You can refine this by supplying an optional
parameter name. For example:

%module example

%typemap(in) int nonnegative {

$1 = $input;

printf("Received an integer : %d\n", $1);
}

%inline %{
extern int fact(int nonnegative);

20.8.2 Default typemaps for non—primitive types 291

SWIG-1.3 Documentation

%0}
In this case, the typemap code is only attached to arguments that exactly match int nonnegative.

The application of a typemap to specific datatypes and argument names involves more than simple text-matching——typemaps
fully integrated into the SWIG C++ type—system. When you define a typemap for int, that typemap applies to int and qualified
variations such as const int. In addition, the typemap system follows typedef declarations. For example:

%typemap(in) int nonnegative {

$1 = $input;

printf("Received an integer : %d\n", $1);
%inline %({
typedef int Integer;

extern int fact(Integer nonnegative); // Above typemap is applied
9%}

However, the matching of typedef only occurs in one direction. If you defined a typemap for Integer, it is not applied to
arguments of type int.

Typemaps can also be defined for groups of consecutive arguments. For example:
%typemap(in) (char *str, int len) {
E
int count(char c, char *str, int len);

When a multi-argument typemap is defined, the arguments are always handled as a single Java parameter. This allows the
function to be used like this (notice how the length parameter is omitted):

int ¢ = example.count('e',"Hello World");
20.8.5 Typemaps for mapping C/C++ types to Java types
The typemaps available to the Java module include the common typemaps listed in the main typemaps section. There are a

number of additional typemaps which are necessary for using SWIG with Java. The most important of these implement the
mapping of C/C++ types to Java types:

Typemap Description
ini JNI C types. These provide the default mapping of types from C/C++ to JNI for use in the JNI (C/C++)
code.

Java intermediary types. These provide the default mapping of types from C/C++ to Java for use in the
jtype native functions in the intermediary JNI class. The type must be the equivalent Java type for the JNI C
type specified in the "jni" typemap.

Java types. These provide the default mapping of types from C/C++ to Java for use in the Java mpdule

jstype

class, proxy classes and type wrapper classes.

Conversion from jstype to jtype. These are Java code typemaps which transform the type used injthe Jav:
lavain module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap) to the type

used in the Java intermediary JNI class (as specified in the "jtype" typemap). In other words the typemap
provides the conversion to the native method call parameter types.

javaout Conversion from jtype to jstype. These are Java code typemaps which transform the type used injthe Jav:
intermediary JNI class (as specified in the "jtype" typemap) to the Java type used in the Java module clas:
proxy classes and type wrapper classes (as specified in the "jstype" typemap). In other words the[typemay

20.8.4 What is a typemap? 292

SWIG-1.3 Documentation

provides the conversion from the native method call return type.

Conversion from jtype to jstype for director methods. These are Java code typemaps which transform the
type used in the Java intermediary JNI class (as specified in the "jtype" typemap) to the Java typelused in
javadirectorin the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap). Thi
typemap provides the conversion for the parameters in the director methods when calling up from|C++ to
Java. See Director typemaps.
Conversion from jstype to jtype for director methods. These are Java code typemaps which transform the
type used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype"
javadirectorout typemap) to the type used in the Java intermediary JNI class (as specified in the "jtype" typemap)| This
typemap provides the conversion for the return type in the director methods when returning from the C++
to Java upcall. See Director typemaps.
Conversion from C++ type to jni type for director methods. These are C++ typemaps which convefts the
directorin parameters used in the C++ director method to the appropriate JNI intermediary type. The convergsion is
done in JNI code prior to calling the Java function from the JNI code. See Director typemaps.
If you are writing your own typemaps to handle a particular type, you will normally have to write a collection of them. The defau
typemaps are in "java.swg" and so might be a good place for finding typemaps to base any new ones on.

The "jni", "jtype" and "jstype" typemaps are usually defined together to handle the Java to C/C++ type mapping. An "in" typema
should be accompanied by a “javain" typemap and likewise an "out" typemap by a "javaout" typemap. If an "in" typemap is
written, a "freearg" and "argout" typemap may also need to be written as some types have a default "freearg" and/or "argout"
typemap which may need overriding. The "freearg" typemap sometimes releases memory allocated by the "in" typemap. The
"argout" typemap sometimes sets values in function parameters which are passed by reference in Java.

Note that the "in" typemap marshals the JNI type held in the "jni" typemap to the real C/C++ type and for the opposite direction
the "out" typemap marshals the real C/C++ type to the JNI type held in the "jni" typemap. For non—primitive types the "in" and
"out" typemaps are responsible for casting between the C/C++ pointer and the 64 bit jlong type. There is no portable way to ca
a pointer into a 64 bit integer type and the approach taken by SWIG is mostly portable, but breaks C/C++ aliasing rules. In
summary, these rules state that a pointer to any type must never be dereferenced by a pointer to any other incompatible type.
following code snippet might aid in understand aliasing rules better:

short a;
short* pa = 0;
inti=0x1234;

a = (short)i; /* okay */
a = *(short*)&i; /* breaks aliasing rules */

An email posting, Aliasing, pointer casts and gcc 3.3 elaborates further on the subject. In SWIG, the "in" and "out" typemaps fo
pointers are typically

%typemap(in) struct Foo * %{
$1 = *(struct Foo **)&S$input; /* cast jlong into C ptr */
96}
%typemap(out) struct Bar * %{
*(struct Bar **)&$result = $1; /* cast C ptr into jlong */
96}
struct Bar {...};
struct Foo {...};
struct Bar * FooBar(struct Foo *f);

resulting in the following code which breaks the aliasing rules:

JNIEXPORT jlong JNICALL Java_exampleJNI_FooBar(JNIEnv *jenv, jclass jcls, jlong jargl) {
jlong jresult =0 ;
struct Foo *argl = (struct Foo *) O ;
struct Bar *result =0 ;

(void)jenv;
(void)jcls;

20.8.5 Typemaps for mapping C/C++ types to Java types 293

http://mail-index.netbsd.org/tech-kern/2003/08/11/0001.html

SWIG-1.3 Documentation

argl = *(struct Foo **)&jargl; /* cast jlong into C ptr */

result = (struct Bar *)FooBar(argl);

*(struct Bar **)&jresult = result; /* cast C ptr into jlong */

return jresult;

}

If you are using gcc as your C compiler, you might get a "dereferencing type—punned pointer will break strict-aliasing rules"
warning about this. Please see Compiling a dynamic module to avoid runtime problems with these strict aliasing rules.

The default code generated by SWIG for the Java module comes from the typemaps in the "java.swg" library file which
implements the Default primitive type mappings and Default typemaps for non—primitive types covered earlier. There are other

type mapping typemaps in the Java library. These are listed below:

C Type Typemap File Kind |Java Type [Function
N . . Allows values to be used for C
primitive pointers and . Java basic .) . i
INPUT typemaps.i |input functions taking pointers for dg
references types .
input.
rimitive pointers and Java basic Allows values held within an
P P OUTPUT typemaps.i |output array to be used for C function
references type arrays : s
taking pointers for data output.
Allows values held within an
primitive pointers and INOUT typemaps.i input [Java basic array to b_e used for C fL_mct|on
references output [type arrays |taking pointers for data input
and output.
strmg [unnamed] std_string.i input String Use for ;td::stnng mapping to
wstring output Java String.
input 21 YS of Use for mapping C arrays to
arrays of primitive typegunnamed] arrays_javall P primitive Javg ppIng y
output Java arrays.
types
arrays of JAVA ARRAYSOFCLASSES . input [arrays of Use for mapping C arrays to
. arrays_javali
classes/structs/unions |macro output |proxy classeqJava arrays.
Use for mapping C arrays to
arrays of enums ARRAYSOFENUMS arrays_java ’nput int[] J_ava arrays (typeun_safe and
output simple enum wrapping
approaches only).
char * BYTE various.i |input |byte[] Java byte array is converted tg
char array
inout Use for mapping NULL
char ** STRING_ARRAY various.i ouptput String[] terminated arrays of C strings

Java String arrays

20.8.6 Java typemap attributes

There is an additional typemap attribute that the Java module supports. This is the 'throws' attribute. The throws attribute is
optional and specified after the typemap name and contains one or more comma separated classes for adding to the throws cl
for any methods that use that typemap. It is analogous to the %javaexception feature's throws attribute.

%typemap(typemapname, throws="ExceptionClassl, ExceptionClass2") type { ... }

20.8.6 Java typemap attributes

294

SWIG-1.3 Documentation

The attribute is necessary for supporting Java checked exceptions and can be added to just about any typemap. The list of
typemaps include all the C/C++ (INI) typemaps in the "Typemaps" chapter and the Java specific typemaps listed in the previol

section, barring the "jni", "jtype" and "jstype" typemaps as they could never contain code to throw an exception.

The throws clause is generated for the proxy method as well as the JNI method in the JNI intermediary class. If a method uses
more than one typemap and each of those typemaps have classes specified in the throws clause, the union of the exception cl
is added to the throws clause ensuring there are no duplicate classes._See the NaN exception example for further usage.

20.8.7 Java special variables

The standard SWIG special variables are available for use within typemaps as described in the Typemaps documentation, for
example $1, $input,$result etc.

The Java module uses a few additional special variables:

$javaclassname

$javaclassname is similar to $1_type. It expands to the class name for use in Java. When wrapping a union, struct or class,

it expands to the Java proxy class name. Otherwise it expands to the type wrapper class name. For example, $javaclassname
is replaced by Foo when the wrapping a struct Foo or struct Foo * and SWIGTYPE_p_unsigned_short is used

for unsigned short *.

$null
Used in input typemaps to return early from JNI functions that have either void or a non-void return type. Example:

%typemap(check) int * %{
if (error) {
SWIG_JavaThrowException(jenv, SWIG_JavalndexOutOfBoundsException, "Array element error");
return $null;

}
9%}

If the typemap gets put into a function with void as return, $null will expand to nothing:

JNIEXPORT void JNICALL Java_jnifn(...) {
if (error) {
SWIG_JavaThrowException(jenv, SWIG_JavalndexOutOfBoundsException, "Array element error");
return ;

}
=

otherwise $null expands to NULL

JNIEXPORT jobject INICALL Java_jnifn(...) {
if (error) {
SWIG_JavaThrowException(jenv, SWIG_JavalndexOutOfBoundsException, "Array element error");
return NULL;

}
=

$javainput, $jnicall and $Sowner

The $javainput special variable is used in "javain" typemaps and $jnicall and $owner are used in "javaout" typemaps. $jnicall is
analogous to $action in %exception. It is replaced by the call to the native method in the intermediary JNI class. $owner is
replaced by either true if %newobject has been used, otherwise false. $javainput is analogous to the $input special variable. It
is replaced by the parameter name.

Here is an example:

%typemap(javain) Class "Class.getCPtr($javainput)”

20.8.7 Java special variables 295

SWIG-1.3 Documentation

%typemap(javain) unsigned short "$javainput"
%typemap(javaout) Class * {
return new Class($jnicall, $owner);

}

%inline %({

class Class {...};

Class * bar(Class cls, unsigned short ush) { return new Class(); };
%0}

The generated proxy code is then:

public static Class bar(Class cls, int ush) {
return new Class(exampleJNI.bar(Class.getCPtr(cls), ush), false);

}

Here $javainput has been replaced by cls and ush. $jnicall has been replaced by the native method call,
exampleJNl.bar(...) and $owner has been replaced by false. If %newobject is used by adding the following at the
beginning of our example:

%newobject bar(Class cls, unsigned short ush);

The generated code constructs the return type using true indicating the proxy class Class is responsible for destroying the C++
memory allocated for it in bar:

public static Class bar(Class cls, int ush) {
return new Class(exampleJNI.bar(Class.getCPtr(cls), ush), true);

}
Pstatic
This special variable expands to either static or nothing depending on whether the class is an inner Java class or not. It is used

the "javaclassmodifiers" typemap so that global classes can be wrapped as Java proxy classes and nested C++ classes/enum:
be wrapped with the Java equivalent, that is, static inner proxy classes.

$jniinput, $javacall and $packagepath
These special variables are used in the directors typemaps. See Director specific typemaps for details.

$module
This special variable expands to the module name, as specified by %module or the —module commandline option.

$imclassname
This special variable expands to the intermediary class name. Usually this is the same as '$moduleJNI’, unless the jniclassnam
attribute is specified in the %module directive.

20.8.8 Typemaps for both C and C++ compilation

JNI calls must be written differently depending on whether the code is being compiled as C or C++. For example C compilation
requires the pointer to a function pointer struct member syntax like

const jclass clazz = (*jenv)—>FindClass(jenv, "java/lang/String");

whereas C++ code compilation of the same function call is a member function call using a class pointer like
const jclass clazz = jenv—>FindClass("java/lang/String");

To enable typemaps to be used for either C or C++ compilation, a set of JCALLx macros have been defined in

Lib/java/javahead.swg, where x is the number of arguments in the C++ version of the JNI call. The above JNI calls would be
written in a typemap like this

20.8.8 Typemaps for both C and C++ compilation 296

SWIG-1.3 Documentation

const jclass clazz = JCALL1(FindClass, jenv, "java/lang/String");

Note that the SWIG preprocessor expands these into the appropriate C or C++ JNI calling convention. The C calling conventiol
emitted by default and the C++ calling convention is emitted when using the —c++ SWIG commandline option. If you do not
intend your code to be targeting both C and C++ then your typemaps can use the appropriate JNI calling convention and need
use the JCALLx macros.

20.8.9 Java code typemaps

Most of SWIG's typemaps are used for the generation of C/C++ code. The typemaps in this section are used solely for the
generation of Java code. Elements of proxy classes and type wrapper classes come from the following typemaps (the defaults)

%typemap(javabase)

base (extends) for Java class: empty default
%typemap(javabody)

the essential support body for proxy classes (proxy base classes only), typewrapper classes and enum classes. Default
contains extra constructors, memory ownership control member variables (swigCMemOwn, swigCPtr), the getCPtr
method etc.

%typemap(javabody_derived)

the essential support body for proxy classes (derived classes only). Same as "javabody" typemap, but only used for proxy
derived classes.
%typemap(javaclassmodifiers)

class modifiers for the Java class: default is "public class"
%typemap(javacode)

Java code is copied verbatim to the Java class: empty default
%typemap(javadestruct, methodname="delete")

destructor wrapper — the delete() method (proxy classes only), used for all proxy classes except those which have a base
class : default calls C++ destructor (or frees C memory) and resets swigCPtr and swigCMemOwn flags

Note that the delete() method name is configurable and is specified by the methodname attribute.
%typemap(javadestruct_derived, methodname="delete")

destructor wrapper — the delete() method (proxy classes only), same as "javadestruct” but only used for derived proxy
classes : default calls C++ destructor (or frees C memory) and resets swigCPtr and swigCMemOwn flags

Note that the delete() method name is configurable and is specified by the methodname attribute.
%typemap(javaimports)

import statements for Java class: empty default
%typemap(javainterfaces)

interfaces (extends) for Java class: empty default
%typemap(javafinalize)

the finalize() method (proxy classes only): default calls the delete() method
Compatibility Note: In SWIG-1.3.21 and earlier releases, typemaps called "javagetcptr” and "javaptrconstructormodifiers" were
available. These are deprecated and the "javabody" typemap can be used instead.

In summary the contents of the typemaps make up a proxy class like this:

20.8.9 Java code typemaps 297

SWIG-1.3 Documentation

[javaimports typemap]

[javaclassmodifiers typemap] javaclassname extends [javabase typemap]
implements [javainterfaces typemap] {

[javabody or javabody_derived typemap]

[javafinalize typemap]

public void delete() [javadestruct OR javadestruct_derived typemap]

[javacode typemap]

... proxy functions ...

}

Note the delete() methodname is configurable, see "javadestruct" and "javadestruct_derived" typemaps above.
The type wrapper class is similar in construction:

[javaimports typemap]

[javaclassmodifiers typemap] javaclassname extends [javabase typemap]
implements [javainterfaces typemap] {

[javabody typemap]

[javacode typemap]

}
The enum class is also similar in construction:

[javaimports typemap]

[javaclassmodifiers typemap] javaclassname extends [javabase typemap]
implements [javainterfaces typemap] {

... Enum values ...

[javabody typemap]

[javacode typemap]

}

The "javaimports" typemap is ignored if the enum class is wrapped by an inner Java class, that is when wrapping an enum
declared within a C++ class.

The defaults can be overridden to tailor these classes. Here is an example which will change the getCPtr method and
constructor from the default protected access to public access. This has a practical application if you are invoking SWIG more
than once and generating the wrapped classes into different packages in each invocation. If the classes in one package are us
the classes in another package, then these methods need to be public.

%typemap(javabody) SWIGTYPE %({
private long swigCPtr;
protected boolean swigCMemOwn;

public $javaclassname(long cPtr, boolean cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = cPtr;

}

public static long getCPtr($javaclassname obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}
%0}

The typemap code is the same that is in "java.swg", barring the two method modifiers. Note that SWIGTYPE will target all
proxy classes, but not the type wrapper classes. Also the above typemap is only used for proxy classes that are potential base
classes. To target proxy classes that are derived from a wrapped class as well, the "javabody_derived" typemap should also be
overridden.

For the typemap to be used in all type wrapper classes, all the different types that type wrapper classes could be used for shou
targeted:

%typemap(javabody) SWIGTYPE *, SWIGTYPE &, SWIGTYPE [], SWIGTYPE (CLASS::*) %{

20.8.9 Java code typemaps 298

SWIG-1.3 Documentation

private long swigCPtr;

public $javaclassname(long cPtr, boolean bFutureUse) {
swigCPtr = cPtr;
}

protected $javaclassname() {
swigCPtr = 0;
}

public static long getCPtr($javaclassname obj) {
return (obj == null) ? 0 : obj.swigCPtr;

}
%}

Again this is the same that is in "java.swg", barring the method modifier for getCPtr.

20.8.10 Director specific typemaps

The Java directors feature requires the "javadirectorin®, "javadirectorout" and the "directorin” typemaps in order to work properl
The "javapackage" typemap is an optional typemap used to identify the Java package path for individual SWIG generated prox
classes.

%typemap(directorin)
The "directorin" typemap is used for converting arguments in the C++ director class to the appropriate JNI type before the
upcall to Java. This typemap also specifies the INI field descriptor for the type in the "descriptor" attribute. For example,
integers are converted as follows:

%typemap(directorin,descriptor="1") int "$input = (jint) $1;"

$input is the SWIG name of the JNI temporary variable passed to Java in the upcall. The descriptor="1" will put an
| into the JNI field descriptor that identifies the Java method that will be called from C++. For more about JNI field
descriptors and their importance, refer to_the JNI documentation mentioned earlier. A typemap for C character strings is:

%typemap(directorin,descriptor="Ljava/lang/String;") char *
%{ $input = jenv—>NewStringUTF($1); %}

User—defined types have the default "descriptor” attribute "L$packagepath/$javaclassname;" where
$packagepath is the package name passed from the SWIG command line and $javaclassname is the Java proxy
class' name. If the —package commandline option is not used to specify the package, then '$packagepath/* will be removec
from the resulting output JNI field descriptor. Do not forget the terminating ';' for JNI field descriptors starting with 'L".
If the ;' is left out, Java will generate a "method not found" runtime error.
%typemap(javadirectorin)
Conversion from jtype to jstype for director methods. These are Java code typemaps which transform the type used in the
Java intermediary JNI class (as specified in the "jtype" typemap) to the Java type used in the Java module class, proxy

classes and type wrapper classes (as specified in the "jstype" typemap). This typemap provides the conversion for the
parameters in the director methods when calling up from C++ to Java.

For primitive types, this typemap is usually specified as:
%typemap(javadirectorin) int "$jniinput”

The $jniinput special variable is analogous to $javainput special variable. It is replaced by the input parameter
name.

%typemap(javadirectorout)

20.8.10 Director specific typemaps 299

SWIG-1.3 Documentation

Conversion from jstype to jtype for director methods. These are Java code typemaps which transform the type used in the
Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap) to the type used in the J
intermediary JNI class (as specified in the "jtype" typemap). This typemap provides the conversion for the return type in th
director methods when returning from the C++ to Java upcall.

For primitive types, this typemap is usually specified as:

%typemap(javadirectorout) int "$javacall”

The $javacall special variable is analogous to the $jnicall special variable. It is replaced by the call to the target Java
method. The target method is the method in the Java proxy class which overrides the virtual C++ method in the C++ base
class.

%typemap(javapackage)

The "javapackage" typemap is optional; it serves to identify a class's Java package. This typemap should be used in
conjunction with classes that are defined outside of the current SWIG interface file. For example:

/I class Foo is handled in a different interface file:
%import "Foo.i"

%feature("director") Example;

%inline {
class Bar { };

class Example {

public:

virtual ~Example();

void ping(Foo *argl, Bar *arg2);
h
}

Assume that the Foo class is part of the Java package com.wombat.foo but the above interface file is part of the Java pacl
com.wombat.example. Without the "javapackage" typemap, SWIG will assume that the Foo class belongs to
com.wombat.example class. The corrected interface file looks like:

/I class Foo is handled in a different interface file:

%import "Foo.i"

%typemap("javapackage") Foo, Foo *, Foo & "com.wombat.foo";
%feature("director") Example;

%inline {
class Bar { };

class Example {

public:

virtual ~Example();

void ping(Foo *argl, Bar *arg2);
h
}

SWIG looks up the package based on the actual type (plain Foo, Foo pointer and Foo reference), so it is important to
associate all three types with the desired package. Practically speaking, you should create a separate SWIG interface file,
which is %import-ed into each SWIG interface file, when you have multiple Java packages. Note the helper macros below
OTHER_PACKAGE_SPEC and ANOTHER_PACKAGE_SPEC, which reduce the amount of extra typing. "TYPE..." is
useful when passing templated types to the macro, since multiargument template types appear to the SWIG preprocessor
multiple macro arguments.

%typemap(“javapackage") SWIGTYPE, SWIGTYPE *, SWIGTYPE &
"package.for.most.classes";

20.8.10 Director specific typemaps 300

SWIG-1.3 Documentation

%define OTHER_PACKAGE_SPEC(TYPE...)
%typemap(“javapackage") TYPE, TYPE *, TYPE & "package.for.other.classes";
%enddef

%define ANOTHER_PACKAGE_SPEC(TYPE...)
%typemap('javapackage") TYPE, TYPE *, TYPE & "package.for.another.set";
%enddef

OTHER_PACKAGE_SPEC(Package_2_class_one)
ANOTHER_PACKAGE_SPEC(Package 3_class_two)
* etc */

The basic strategy here is to provide a default package typemap for the majority of the classes, only providing "javapackac
typemaps for the exceptions.

20.9 Typemap Examples

This section includes a few examples of typemaps. For more examples, you might look at the files "java.swg" and
"typemaps.i" in the SWIG library.

20.9.1 Simpler Java enums for enums without initializers

The default Proper Java enums approach to wrapping enums is somewhat verbose. This is to handle all possible C/C++ enum
particular enums with initializers. The generated code can be simplified if the enum being wrapped does not have any initializel

The following shows how to remove the support methods that are generated by default and instead use the methods in the Jav
enum base class java.lang.Enum and java.lang.Class for marshalling enums between C/C++ and Java. The type used

for the typemaps below is enum SWIGTYPE which is the default type used for all enums. The "enums.swg" file should be
examined in order to see the original overridden versions of the typemaps.

%include "enums.swg"

%typemap(javain) enum SWIGTYPE "$javainput.ordinal()"
%typemap(javaout) enum SWIGTYPE {
return $javaclassname.class.getEnumConstants()[$jnicall];

}
%typemap(javabody) enum SWIGTYPE "

%inline %{
enum HairType { blonde, ginger, brunette },
void setHair(HairType h);
HairType getHair();

%}

SWIG will generate the following Java enum, which is somewhat simpler than the default:

public enum HairType {
blonde,

ginger,
brunette;

}
and the two Java proxy methods will be:

public static void setHair(HairType h) {
exampleJNl.setHair(h.ordinal());

}

public static HairType getHair() {
return HairType.class.getEnumConstants()[exampleJNI.getHair()];

}

20.9 Typemap Examples 301

SWIG-1.3 Documentation

For marshalling Java enums to C/C++ enums, the ordinal method is used to convert the Java enum into an integer value for
passing to the JNI layer, see the "javain" typemap. For marshalling C/C++ enums to Java enums, the C/C++ enum value is cas
an integer in the C/C++ typemaps (not shown). This integer value is then used to index into the array of enum constants that th
Java language provides. See the getEnumConstants method in the "javaout" typemap.

These typemaps can often be used as the default for wrapping enums as in many cases there won't be any enum initializers. Ii
a good strategy is to always use these typemaps and to specifically handle enums with initializers using %apply. This would be
done by using the original versions of these typemaps in "enums.swg" under another typemap name for applying using %apply

20.9.2 Handling C++ exception specifications as Java exceptions

This example demonstrates various ways in which C++ exceptions can be tailored and converted into Java exceptions. Let's
consider a simple file class SimpleFile and an exception class FileException which it may throw on error:

%include "std_string.i" // for std::string typemaps
#include <string>

class FileException {
std::string message;
public:
FileException(const std::string& msg) : message(msg) {}
std::string what() {
return message;
}
h

class SimpleFile {
std::string filename;

public:
SimpleFile(const std::string& filename) : filename(filename) {}
void open() throw(FileException) {

¥

As the open method has a C++ exception specification, SWIG will parse this and know that the method can throw an exceptior
The "throws" typemap is then used when SWIG encounters an exception specification. The default generic "throws" typemap
looks like this:

%typemap(throws) SWIGTYPE, SWIGTYPE &, SWIGTYPE *, SWIGTYPE [ANY] %{
SWIG_JavaThrowException(jenv, SWIG_JavaRuntimeException,
"C++ $1_type exception thrown");
return $null;
%0}

Basically SWIG will generate a C++ try catch block and the body of the "throws" typemap constitutes the catch block. The aboy
typemap calls a SWIG supplied method which throws a java.lang.RuntimeException. This exception class is a runtime
exception and therefore not a checked exception. If, however, we wanted to throw a checked exception, say
java.io.|OException, then we could use the following typemap:

%typemap(throws, throws="java.io.lOException") FileException {
jclass excep = jenv—>FindClass("java/io/IOException");
if (excep)
jenv—>ThrowNew(excep, $1.what().c_str());
return $null;

}

Note that this typemap uses the 'throws' typemap attribute to ensure a throws clause is generated. The generated proxy metho
then specifies the checked exception by containing java.io.|[OException in the throws clause:

public class SimpleFile {

20.9.1 Simpler Java enums for enums without initializers 302

SWIG-1.3 Documentation

public void open() throws java.io.lOException{ ... }

}

Lastly, if you don't want to map your C++ exception into one of the standard Java exceptions, the C++ class can be wrapped a
turned into a custom Java exception class. If we go back to our example, the first thing we must do is get SWIG to wrap
FileException and ensure that it derives from java.lang.Exception. Additionally, we might want to override the
java.lang.Exception.getMessage() method. The typemaps to use then are as follows:

%typemap(javabase) FileException "java.lang.Exception";
%typemap(javacode) FileException %f{
public String getMessage() {
return what();

9%}
This generates:

public class FileException extends java.lang.Exception {

public String getMessage() {
return what();

}
public FileException(String msg) { ... }

public String what() {
return exampleJNI.FileException_what(swigCPtr);
}
}

We could alternatively have used %rename to rename what() into getMessage().
20.9.3 NaN Exception — exception handling for a particular type

A Java exception can be thrown from any Java or JNI code. Therefore, as most typemaps contain either Java or JNI code, just
about any typemap could throw an exception. The following example demonstrates exception handling on a type by type basis
checking for 'Not a number' (NaN) whenever a parameter of type float is wrapped.

Consider the following C++ code:

bool calculate(float first, float second);

To validate every float being passed to C++, we could preceed the code being wrapped by the following typemap which throws
a runtime exception whenever the float is 'Not a Number":

%module example
%typemap(javain) float "$module.CheckForNaN($javainput)"
%pragma(java) modulecode=%{
/** Simply returns the input value unless it is not a number,
whereupon an exception is thrown. */
static protected float CheckForNaN(float num) {
if (Float.isNaN(num))
throw new RuntimeException("Not a number");
return num;

}
%}

Note that the CheckForNaN support method has been added to the module class using the modulecode pragma. The
following shows the generated code of interest:

public class example {

20.9.2 Handling C++ exception specifications as Java exceptions 303

SWIG-1.3 Documentation

/** Simply returns the input value unless it is not a number,
whereupon an exception is thrown. */
static protected float CheckForNaN(float num) {
if (Float.isNaN(num))
throw new RuntimeException("Not a humber");
return num;

}

public static boolean calculate(float first, float second) {
return exampleJNI.calculate(example.CheckForNaN(first), example.CheckForNaN(second));

}
}

Note that the "javain" typemap is used for every occurrence of a float being used as an input. Of course, we could have
targetted the typemap at a particular parameter by using float first, say, instead of just float. If we decide that what we

actually want is a checked exception instead of a runtime exception, we can change this easily enough. The proxy method that
uses float as an input, must then add the exception class to the throws clause. SWIG can handle this as it supports the 'throws
typemap attribute for specifying classes for the throws clause. Thus we can modify the pragma and the typemap for the throws
clause:

%typemap(javain, throws="java.lang.Exception") float "$module.CheckForNaN($javainput)"
%pragma(java) modulecode=%{
/** Simply returns the input value unless it is not a number,
whereupon an exception is thrown. */
static protected float CheckForNaN(float num) throws java.lang.Exception {
if (Float.isNaN(num))
throw new RuntimeException("Not a number");
return num;

}
%}

The calculate method now has a throws clause and even though the typemap is used twice for both float first and
float second, the throws clause contains a single instance of java.lang.Exception:

public class example {

/** Simply returns the input value unless it is not a number,
whereupon an exception is thrown. */
static protected float CheckForNaN(float num) throws java.lang.Exception {
if (Float.isNaN(num))
throw new RuntimeException("Not a number");
return num;

}

public static boolean calculate(float first, float second) throws java.lang.Exception {
return exampleJNI.calculate(example.CheckForNaN(first), example.CheckForNaN(second));
}
}

If we were a martyr to the JNI cause, we could replace the succinct code within the "javain" typemap with a few pages of JNI
code. If we had, we would have put it in the "in" typemap which, like all INI and Java typemaps, also supports the ‘throws'
attribute.

20.9.4 Converting Java String arrays to char **

A common problem in many C programs is the processing of command line arguments, which are usually passed in an array o
NULL terminated strings. The following SWIG interface file allows a Java String array to be used as a char ** object.

%module example

/* This tells SWIG to treat char ** as a special case when used as a parameter

20.9.3 NaN Exception — exception handling for a particular type 304

SWIG-1.3 Documentation

in a function call */
%typemap(in) char ** (jint size) {
inti=0;
size = (*jenv)->GetArrayLength(jenv, $input);
$1 = (char **) malloc((size+1)*sizeof(char *));
/* make a copy of each string */
for (i = 0; i<size; i++) {
jstring j_string = (jstring)(*jenv)->GetObjectArrayElement(jenv, $input, i);
const char * ¢_string = (*jenv)—>GetStringUTFChars(jenv, j_string, 0);
$1[i] = malloc(strlen((c_string)+1)*sizeof(const char *));
strepy($1[i], c_string);
(*jenv)—>ReleaseStringUTFChars(jenv, j_string, c_string);
(*jenv)—>DeleteLocalRef(jenv, j_string);
}
$1[i]=0;
}

* This cleans up the memory we malloc'd before the function call */
%typemap(freearg) char ** {
inti;
for (i=0; i<size$argnum-1; i++)
free($1[i]);
free($1);
}

/* This allows a C function to return a char ** as a Java String array */
%typemap(out) char ** {

inti;

int len=0;

jstring temp_string;

const jclass clazz = (*jenv)—->FindClass(jenv, "java/lang/String");

while ($1[len]) len++;
jresult = (*jenv)->NewObijectArray(jenv, len, clazz, NULL);
[* exception checking omitted */

for (i=0; i<len; i++) {
temp_string = (*jenv)->NewStringUTF(jenv, *result++);
(*jenv)—>SetObjectArrayElement(jenv, jresult, i, temp_string);
(*jenv)—>DeleteLocalRef(jenv, temp_string);
}
}

/* These 3 typemaps tell SWIG what JNI and Java types to use */
%typemap(jni) char ** "jobjectArray"

%typemap(jtype) char ** "String[]"

%typemap(jstype) char ** "String[]"

/* These 2 typemaps handle the conversion of the jtype to jstype typemap type
and visa versa */

%typemap(javain) char ** "$javainput"

%typemap(javaout) char ** {
return $jnicall;

}

/* Now a few test functions */
%inline %({

int print_args(char **argv) {
inti=0;
while (argv[i]) {
printf("argv[%d] = %s\n", i, argv[i]);
i++;
}

return i;

}

char **get_args() {

20.9.4 Converting Java String arrays to char ** 305

SWIG-1.3 Documentation

static char *values[] = { "Dave", "Mike", "Susan", "John", "Michelle", 0};
return &values[0];

}

%}

Note that the 'C' INI calling convention is used. Checking for any thrown exceptions after JNI function calls has been omitted.
When this module is compiled, our wrapped C functions can be used by the following Java program:

/I File main.java
public class main {

static {
try {
System.loadLibrary("example");
} catch (UnsatisfiedLinkError e) {
System.err.printin("Native code library failed to load. " + e);
System.exit(1);
}
}

public static void main(String argv[]) {
String animals[] = {"Cat","Dog","Cow","Goat"};
example.print_args(animals);
String args[] = example.get_args();
for (int i=0; i<args.length; i++)

System.out.printin(i + ":" + argsli]);
}
}

When compiled and run we get:

$ java main
argv[0] = Cat
argv[1] = Dog
argv[2] = Cow
argv[3] = Goat
0:Dave
1:Mike
2:Susan
3:John
4:Michelle

In the example, a few different typemaps are used. The "in" typemap is used to receive an input argument and convert it to a C
array. Since dynamic memory allocation is used to allocate memory for the array, the "freearg” typemap is used to later release

this memory after the execution of the C function. The "out" typemap is used for function return values. Lastly the "jni", "jtype"
and "jstype" typemaps are also required to specify what Java types to use.

20.9.5 Expanding a Java object to multiple arguments
Suppose that you had a collection of C functions with arguments such as the following:
int foo(int argc, char **argv);

In the previous example, a typemap was written to pass a Java String array as the char **argv. This allows the function to be
used from Java as follows:

example.foo(4, new String[}{"red", "green", "blue", "white"});

Although this works, it's a little awkward to specify the argument count. To fix this, a multi-argument typemap can be defined.
This is not very difficult——you only have to make slight modifications to the previous example's typemaps:

20.9.5 Expanding a Java object to multiple arguments 306

SWIG-1.3 Documentation

%typemap(in) (int argc, char **argv) {

inti=0;

$1 = (*jenv)—>GetArrayLength(jenv, $input);

$2 = (char **) malloc(($1+1)*sizeof(char *));

/* make a copy of each string */

for (i=0; i<$1; i++) {
jstring j_string = (jstring)(*jenv)->GetObjectArrayElement(jenv, $input, i);
const char * c_string = (*jenv)->GetStringUTFChars(jenv, j_string, 0);
$2[i] = malloc(strlen((c_string)+1)*sizeof(const char *));
strepy($2]i], c_string);
(*jenv)—>ReleaseStringUTFChars(jenv, j_string, c_string);
(*jenv)—>DeleteLocalRef(jenv, j_string);

}
$2[] = 0;
}

%typemap(freearg) (int argc, char **argv) {

inti;

for (i=0; i<$1-1; i++)

free($2[i]);

free($2);
}
%typemap(jni) (int argc, char **argv) "jobjectArray"
%typemap(jtype) (int argc, char **argv) "String[]"
%typemap(jstype) (int argc, char **argv) "String[]"

%typemap(javain) (int argc, char **argv) "$javainput"

When writing a multiple—argument typemap, each of the types is referenced by a variable such as $1 or $2. The typemap code
simply fills in the appropriate values from the supplied Java parameter.

With the above typemap in place, you will find it no longer necessary to supply the argument count. This is automatically set by
the typemap code. For example:

example.foo(new String[J{"red", "green", "blue", "white"});
20.9.6 Using typemaps to return arguments

A common problem in some C programs is that values may be returned in function parameters rather than in the return value ¢
function. The typemaps.i file defines INPUT, OUTPUT and INOUT typemaps which can be used to solve some instances of
this problem. This library file uses an array as a means of moving data to and from Java when wrapping a C function that takes
non const pointers or non const references as parameters.

Now we are going to outline an alternative approach to using arrays for C pointers. The INOUT typemap uses a double[] array
for receiving and returning the double* parameters. In this approach we are able to use a Java class myDouble instead of
doublel[] arrays where the C pointer double* is required.

Here is our example function:

/* Returns a status value and two values in outl and out2 */
int spam(double a, double b, double *outl1, double *out2);

If we define a structure MyDouble containing a double member variable and use some typemaps we can solve this problem.
For example we could put the following through SWIG:

%module example

/* Define a new structure to use instead of double * */
%inline %{
typedef struct {

double value;

20.9.6 Using typemaps to return arguments 307

SWIG-1.3 Documentation

} MyDouble;
9%}

%{
/* Returns a status value and two values in outl and out2 */
int spam(double a, double b, double *outl, double *out2) {
int status = 1;
*outl = a*10.0;
*out2 = b*100.0;
return status;
h
%0}

/*
This typemap will make any double * function parameters with name OUTVALUE take an
argument of MyDouble instead of double *. This will
allow the calling function to read the double * value after returning from the function.
*/
%typemap(in) double *OUTVALUE {
jclass clazz = jenv—>FindClass("MyDouble");
jfieldID fid = jenv—>GetFieldID(clazz, "swigCPtr", "J");
jlong cPtr = jenv—>GetLongField($input, fid);
MyDouble *pMyDouble = NULL;
*(MyDouble **)&pMyDouble = *(MyDouble **)&cPtr;
$1 = &pMyDouble—>value;
}

%typemap(jtype) double *OUTVALUE "MyDouble"
%typemap(jstype) double *OUTVALUE "MyDouble"
%typemap(jni) double *XOUTVALUE "jobject"

%typemap(javain) double *OUTVALUE "$javainput”

/* Now we apply the typemap to the named variables */
%apply double *OUTVALUE { double *outl, double *out2 };
int spam(double a, double b, double *outl1, double *out2);

Note that the C++ JNI calling convention has been used this time and so must be compiled as C++ and the —c++ commandline
must be passed to SWIG. JNI error checking has been omitted for clarity.

What the typemaps do are make the named double* function parameters use our new MyDouble wrapper structure. The "in"
typemap takes this structure, gets the C++ pointer to it, takes the double value member variable and passes it to the C++
spam function. In Java, when the function returns, we use the SWIG created getValue() function to get the output value. The
following Java program demonstrates this:

/I File: main.java
public class main {

static {
try {
System.loadLibrary("example");
} catch (UnsatisfiedLinkError e) {
System.err.printin("Native code library failed to load. " + e);
System.exit(1);
}
}

public static void main(String argv[]) {
MyDouble outl = new MyDouble();
MyDouble out2 = new MyDouble();
int ret = example.spam(1.2, 3.4, outl, out2);
System.out.printin(ret + " " + outl.getValue() +" " + out2.getValue());
}
}

20.9.6 Using typemaps to return arguments 308

SWIG-1.3 Documentation

When compiled and run we get:

$ java main
112.0 340.0

20.9.7 Adding Java downcasts to polymorphic return types

SWIG support for polymorphism works in that the appropriate virtual function is called. However, the default generated code
does not allow for downcasting. Let's examine this with the following code:

%include "std_string.i"

#include <iostream>
using namespace std;
class Vehicle {
public:

virtual void start() = 0;

h
class Ambulance : public Vehicle {
string vol,
public:
Ambulance(string volume) : vol(volume) {}

virtual void start() {
cout << "Ambulance started" << endl;

}
void sound_siren() {
cout << vol << " siren sounded!" << endl;

)
E

Vehicle *vehicle_factory() {
return new Ambulance("Very loud");

}
If we execute the following Java code:

Vehicle vehicle = example.vehicle_factory();
vehicle.start();

Ambulance ambulance = (Ambulance)vehicle;
ambulance.sound_siren();

We get:

Ambulance started
java.lang.ClassCastException
at main.main(main.java:16)

Even though we know from examination of the C++ code that vehicle_factory returns an object of type Ambulance, we

are not able to use this knowledge to perform the downcast in Java. This occurs because the runtime type information is not
completely passed from C++ to Java when returning the type from vehicle_factory(). Usually this is not a problem as

virtual functions do work by default, such as in the case of start(). There are a few solutions to getting downcasts to work.

The first is not to use a Java cast but a call to C++ to make the cast. Add this to your code:

%exception Ambulance::dynamic_cast(Vehicle *vehicle) {
$action
if (result) {
jclass excep = jenv—>FindClass("java/lang/ClassCastException");
if (excep) {

20.9.7 Adding Java downcasts to polymorphic return types 309

SWIG-1.3 Documentation

jenv=>ThrowNew(excep, "dynamic_cast exception");
}

}
}
%extend Ambulance {
static Ambulance *dynamic_cast(Vehicle *vehicle) {
return dynamic_cast<Ambulance *>(vehicle);
}
h

It would then be used from Java like this

Ambulance ambulance = Ambulance.dynamic_cast(vehicle);
ambulance.sound_siren();

Should vehicle not be of type ambulance then a Java ClassCastException is thrown. The next solution is a purer
solution in that Java downcasts can be performed on the types. Add the following before the definition of vehicle_factory:

%typemap(out) Vehicle * {
Ambulance *downcast = dynamic_cast<Ambulance *>($1);
*(Ambulance **)&$result = downcast;

}

%typemap(javaout) Vehicle * {
return new Ambulance($jnicall, $owner);

}

Here we are using our knowledge that vehicle_factory always returns type Ambulance so that the Java proxy is created as
a type Ambulance. If vehicle_factory can manufacture any type of Vehicle and we want to be able to downcast using
Java casts for any of these types, then a different approach is needed. Consider expanding our example with a new Vehicle tyj

and a more flexible factory function:

class FireEngine : public Vehicle {
public:
FireEngine() {}
virtual void start() {
cout << "FireEngine started" << endl;
}
void roll_out_hose() {
cout << "Hose rolled out" << endl;

}
h
Vehicle *vehicle_factory(int vehicle_number) {
if (vehicle_number == 0)
return new Ambulance("Very loud");
else
return new FireEngine();

}
To be able to downcast with this sort of Java code:

FireEngine fireengine = (FireEngine)example.vehicle_factory(1);
fireengine.roll_out_hose();

Ambulance ambulance = (Ambulance)example.vehicle_factory(0);
ambulance.sound_siren();

the following typemaps targeted at the vehicle_factory function will achieve this. Note that in this case, the Java class is
constructed using JNI code rather than passing a pointer across the JNI boundary in a Java long for construction in Java code.

%typemap(jni) Vehicle *vehicle_factory "jobject"
%typemap(jtype) Vehicle *vehicle_factory "Vehicle"
%typemap(jstype) Vehicle *vehicle_factory "Vehicle"
%typemap(javaout) Vehicle *vehicle_factory {

20.9.7 Adding Java downcasts to polymorphic return types 310

SWIG-1.3 Documentation

return $jnicall;

}

%typemap(out) Vehicle *vehicle_factory {
Ambulance *ambulance = dynamic_cast<Ambulance *>($1);
FireEngine *fireengine = dynamic_cast<FireEngine *>($1);
if (ambulance) {
/I call the Ambulance(long cPtr, boolean cMemoryOwn) constructor
jclass clazz = jenv—>FindClass("Ambulance");
if (clazz) {
jmethodID mid = jenv—>GetMethodID(clazz, "<init>", "(JZ)V");
if (mid) {
jlong cptr = 0;
*(Ambulance **)&cptr = ambulance;
$result = jenv—>NewObject(clazz, mid, cptr, false);

}

} else if (fireengine) {
/I call the FireEngine(long cPtr, boolean cMemoryOwn) constructor
jclass clazz = jenv—>FindClass("FireEngine");
if (clazz) {
jmethodID mid = jenv—>GetMethodID(clazz, "<init>", "(JZ)V");
if (mid) {
jlong cptr = 0;
*(FireEngine **)&cptr = fireengine;
$result = jenv—>NewODbject(clazz, mid, cptr, false);
}
}
}

else {
cout << "Unexpected type " << end|;

}

if (!$result)
cout << "Failed to create new java object" << end|;
}

Better error handling would need to be added into this code. There are other solutions to this problem, but this last example
demonstrates some more involved JNI code. SWIG usually generates code which constructs the proxy classes using Java cod
it is easier to handle error conditions and is faster. Note that the JNI code above uses a number of string lookups to call a
constructor, whereas this would not occur using byte compiled Java code.

20.9.8 Adding an equals method to the Java classes

When a pointer is returned from a JNI function, it is wrapped using a new Java proxy class or type wrapper class. Even when t
pointers are the same, it will not be possible to know that the two Java classes containing those pointers are actually the same
object. It is common in Java to use the equals() method to check whether two objects are equivalent. An equals method is
easily added to all proxy classes. For example:

%typemap(javacode) SWIGTYPE %({
public boolean equals(Object obj) {
boolean equal = false;
if (obj instanceof $javaclassname)
equal = ((($javaclassname)obj).swigCPtr == this.swigCPtr);
return equal;

}
%}

class Foo {};
Foo* returnFoo(Foo *foo) { return foo; }

The following would display false without the javacode typemap above. With the typemap defining the equals method the
result is true.

20.9.8 Adding an equals method to the Java classes 311

SWIG-1.3 Documentation

Foo fool = new Foo();
Foo foo2 = example.returnFoo(fool);
System.out.printin("fool? " + fool.equals(foo2));

20.9.9 Void pointers and a common Java base class

One might wonder why the common code that SWIG emits for the proxy and type wrapper classes is not pushed into a base cl
The reason is that although swigCPtr could be put into a common base class for all classes wrapping C structures, it would not
work for C++ classes involved in an inheritance chain. Each class derived from a base needs a separate swigCPtr because C+
compilers sometimes use a different pointer value when casting a derived class to a base. Additionally as Java only supports s
inheritance, it would not be possible to derive wrapped classes from your own pure Java classes if the base class has been 'us
by SWIG. However, you may want to move some of the common code into a base class. Here is an example which uses a
common base class for all proxy classes and type wrapper classes:

%typemap(javabase) SWIGTYPE, SWIGTYPE *, SWIGTYPE &, SWIGTYPE [,
SWIGTYPE (CLASS:*) "SWIG"

%typemap(javacode) SWIGTYPE, SWIGTYPE *, SWIGTYPE &, SWIGTYPE],
SWIGTYPE (CLASS::*) %{
protected long getPointer() {
return swigCPtr;

}
%)}

Define new base class called SWIG:

public abstract class SWIG {
protected abstract long getPointer();

public boolean equals(Object obj) {
boolean equal = false;
if (obj instanceof SWIG)
equal = (((SWIG)obj).getPointer() == this.getPointer());
return equal;

}

SWIGTYPE_p_void getVoidPointer() {
return new SWIGTYPE_p_void(getPointer(), false);
}
}

This example contains some useful functionality which you may want in your code.

* It has an equals() method. Unlike the previous example, the method code isn't replicated in all classes.
« It also has a function which effectively implements a cast from the type of the proxy/type wrapper class to a void pointe
This is necessary for passing a proxy class or a type wrapper class to a function that takes a void pointer.

20.9.10 Struct pointer to pointer

Pointers to pointers are often used as output parameters in C factory type functions. These are a bit more tricky to handle.
Consider the following situation where a Butler can be hired and fired:

typedef struct {
int hoursAvailable;
char *greeting;

} Butler;

/I Note: HireButler will allocate the memory

/I The caller must free the memory by calling FireButler()!!
extern int HireButler(Butler **ppButler);

extern void FireButler(Butler *pButler);

20.9.9 Void pointers and a common Java base class 312

SWIG-1.3 Documentation

C code implementation:

int HireButler(Butler **ppButler) {
Butler *pButler = (Butler *)malloc(sizeof(Butler));
pButler->hoursAvailable = 24;
pButler->greeting = (char *)malloc(32);
strepy(pButler—>greeting, "At your service Sir");
*ppButler = pButler;
return 1;

void FireButler(Butler *pButler) {
free(pButler—>greeting);
free(pButler);

}

Let's take two approaches to wrapping this code. The first is to provide a functional interface, much like the original C interface.
The following Java code shows how we intend the code to be used:

Butler jeeves = new Butler();

example.HireButler(jeeves);

System.out.printin("Greeting: " + jeeves.getGreeting());
System.out.printin("Availability: " + jeeves.getHoursAvailable() + " hours per day");
example.FireButler(jeeves);

Resulting in the following output when run:

Greeting: At your service Sir
Availability: 24 hours per day

Note the usage is very much like it would be used if we were writing C code, that is, explicit memory management is needed. N
C memory is allocated in the construction of the Butler proxy class and the proxy class will not destroy the underlying C
memory when it is collected. A number of typemaps and features are needed to implement this approach. The following interfa
file code should be placed before SWIG parses the above C code.

%module example

/I Do not generate the default proxy constructor or destructor
%nodefaultctor Butler;
%nodefaultdtor Butler;

/I Add in pure Java code proxy constructor
%typemap(javacode) Butler %{
I** This constructor creates the proxy which initially does not create nor own any C memory */
public Butler() {
this(0, false);
}
9%}

/I Type typemaps for marshalling Butler **
%typemap(jni) Butler ** "jobject"
%typemap(jtype) Butler ** "Butler"
%typemap(jstype) Butler ** "Butler"

/I Typemaps for Butler ** as a parameter output type
%typemap(in) Butler ** (Butler *ppButler = 0) %{
$1 = &ppButler;
9%}
%typemap(argout) Butler ** {
/I Give Java proxy the C pointer (of newly created object)
jclass clazz = (*jenv)—->FindClass(jenv, "Butler");
jfieldID fid = (*jenv)—>GetFieldID(jenv, clazz, "swigCPtr", "J");
jlong cPtr = 0;
*(Butler **)&cPtr = *$1;
(*jenv)—>SetLongField(jenv, $input, fid, cPtr);
}

20.9.10 Struct pointer to pointer 313

SWIG-1.3 Documentation

%typemap(javain) Butler ** "$javainput"

Note that the IJNI code sets the proxy's swigCPtr member variable to point to the newly created object. The swigCMemOwn
remains unchanged (at false), so that the proxy does not own the memory.

Note: The old %nodefault directive disabled the default constructor and destructor at the same time. This is unsafe in most of tl
cases, and you can use the explicit %nodefaultctor and %nodefaultdtor directives to achieve the same result if needed.

The second approach offers a more object oriented interface to the Java user. We do this by making the Java proxy class's
constructor call the HireButler() method to create the underlying C object. Additionally we get the proxy to take ownership
of the memory so that the finalizer will call the FireButler() function. The proxy class will thus take ownership of the
memory and clean it up when no longer needed. We will also prevent the user from being able to explicitly call the
HireButler() and FireButler() functions. Usage from Java will simply be:

Butler jeeves = new Butler();
System.out.printin("Greeting: " + jeeves.getGreeting());
System.out.printin("Availability: " + jeeves.getHoursAvailable() + " hours per day");

Note that the Butler class is used just like any other Java class and no extra coding by the user needs to be written to clear up
underlying C memory as the finalizer will be called by the garbage collector which in turn will call the FireButler()
function. To implement this, we use the above interface file code but remove the javacode typemap and add the following:

/I Don't expose the memory allocation/de—allocation functions
%ignore FireButler(Butler *pButler);
%ignore HireButler(Butler **ppButler);

/I Add in a custom proxy constructor and destructor
%extend Butler {
Butler() {
Butler *pButler = 0;
HireButler(&pButler);
return pButler,;

}
~Butler() {
FireButler(self);

}
}

Note that the code in %extend is using a C++ type constructor and destructor, yet the generated code will still compile as C
code, see Adding member functions to C structures. The C functional interface has been completely morphed into an
object-oriented interface and the Butler class would behave much like any pure Java class and feel more natural to Java users

20.9.11 Memory management when returning references to member variables

This example shows how to prevent early garbage collection of objects when the underlying C++ class returns a pointer or
reference to a member variable.

Consider the following C++ code:

struct Wheel {

int size;

Wheel(int sz) : size(sz) {}
h

class Bike {
Wheel wheel;
public:
Bike(int val) : wheel(val) {}
Wheel& getWheel() { return wheel; }

g

20.9.11 Memory management when returning references to member variables 314

SWIG-1.3 Documentation

and the following usage from Java after running the code through SWIG:

Wheel wheel = new Bike(10).getWheel();
System.out.printin("wheel size: " + wheel.getSize());
/I Simulate a garbage collection

System.gc();

System.runFinalization();

System.out.printin("wheel size: " + wheel.getSize());

Don't be surprised that if the resulting output gives strange results such as...

wheel size: 10
wheel size: 135019664

What has happened here is the garbage collector has collected the Bike instance as it doesn't think it is needed any more. The
proxy instance, wheel, contains a reference to memory that was deleted when the Bike instance was collected. In order to
prevent the garbage collector from collecting the Bike instance a reference to the Bike must be added to the wheel instance.
You can do this by adding the reference when the getWheel() method is called using the following typemaps.

%typemap(javacode) Wheel %{
/I Ensure that the GC doesn't collect any Bike instance set from Java
private Bike bikeReference;
protected void addReference(Bike bike) {
bikeReference = bike;

}
%)}

/I Add a Java reference to prevent early garbage collection and resulting use
/I of dangling C++ pointer. Intended for methods that return pointers or
/l references to a member variable.
%typemap(javaout) Wheel& getWheel {
long cPtr = $jnicall;
$javaclassname ret = null;
if (cPtr!1=0) {
ret = new $javaclassname(cPtr, $owner);
ret.addReference(this);
}

return ret;

}

The code in the first typemap gets added to the Wheel proxy class. The code in the second typemap constitutes the bulk of the
code in the generated getWheel() function:

public class Wheel {

/I Ensure that the GC doesn't collect any bike set from Java
private Bike bikeReference;
protected void addReference(Bike bike) {
bikeReference = bike;
}
}

public class Bike {

public Wheel getWheel() {
long cPtr = exampleJNI.Bike_getWheel(swigCPtr);
Wheel ret = null;
if (cPtr!=0) {
ret = new Wheel(cPtr, false);
ret.addReference(this);
}
return ret;
}
}

20.9.11 Memory management when returning references to member variables 315

SWIG-1.3 Documentation

Note the addReference call.

20.9.12 Memory management for objects passed to the C++ layer

Managing memory can be tricky when using C++ and Java proxy classes. The previous example shows one such case and thi
example looks at memory management for a class passed to a C++ method which expects the object to remain in scope after
function has returned. Consider the following two C++ classes:

struct Element {

int value;
Element(int val) : value(val) {}
¥
class Container {

Element* element;
public:
Container() : element(0) {}
void setElement(Element* e) { element = e; }
Element* getElement() { return element; }

h
and usage from C++

Container container;

Element element(20);

container.setElement(&element);

cout << "element.value: " << container.getElement()—>value << endl;

and more or less equivalent usage from Java

Container container = new Container();
container.setElement(new Element(20));
System.out.printin("element value: " + container.getElement().getValue());

The C++ code will always print out 20, but the value printed out may not be this in the Java equivalent code. In order to
understand why, consider a garbage collection occuring...

Container container = new Container();

container.setElement(new Element(20));

/I Simulate a garbage collection

System.gc();

System.runFinalization();

System.out.printin("element value: " + container.getElement().getValue());

The temporary element created with new Element(20) could get garbage collected which ultimately means the container
variable is holding a dangling pointer, thereby printing out any old random value instead of the expected value of 20. One solut
is to add in the appropriate references in the Java layer...

public class Container {

/I Ensure that the GC doesn't collect any Element set from Java
/I as the underlying C++ class stores a shallow copy
private Element elementReference;
private long getCPtrAndAddReference(Element element) {
elementReference = element;
return Element.getCPtr(element);

}

public void setElement(Element e) {
exampleJNI.Container_setElement(swigCPtr, getCPtrAndAddReference(e));
}
}

20.9.12 Memory management for objects passed to the C++ layer 316

SWIG-1.3 Documentation

The following typemaps will generate the desired code. The ‘javain’ typemap matches the input parameter type for the
setElement method. The ‘javacode' typemap simply adds in the specified code into the Java proxy class.

%typemap(javain) Element *e "getCPtrAndAddReference($javainput)"

%typemap(javacode) Container %{
/I Ensure that the GC doesn't collect any element set from Java
/I as the underlying C++ class stores a shallow copy
private Element elementReference;
private long getCPtrAndAddReference(Element element) {
elementReference = element;
return Element.getCPtr(element);

}
%}

20.10 Living with Java Directors
This section is intended to address frequently asked questions and frequently encountered problems when using Java director:

1. When my program starts up, it complains that method_foo cannot be found in a Java method called swig_module_init.
How do | fix this?

Open up the C++ wrapper source code file and look for "method_foo" (include the double quotes, they are

important!) Look at the JNI field descriptor and make sure that each class that occurs in the descriptor has the correct

package name in front of it. If the package name is incorrect, put a “javapackage" typemap in your SWIG interface file.
2. I'm compiling my code and I'm using templates. | provided a javapackage typemap, but SWIG doesn't generate the rigl

JNI field descriptor.

Use the template's renamed name as the argument to the "javapackage" typemap:

%typemap(javapackage) std::vector<int> "your.package.here"
%template(VectorOfint) std::vector<int>;

3. When | pass class pointers or references through a C++ upcall and I try to type cast them, Java complains with a
ClassCastException. What am | doing wrong?

Normally, a non—director generated Java proxy class creates temporary Java objects as follows:

public static void MyClass_method_upcall(MyClass self, long jarg1)
{

Foo dargl = new Foo(jargl, false);

self.method_upcall(dargl);
}

Unfortunately, this loses the Java type information that is part of the underlying Foo director proxy class's Java object
pointer causing the type cast to fail. The SWIG Java module's director code attempts to correct the problem, but only fi
director—enabled classes, since the director class retains a global reference to its Java object. Thus, for director—enabl
classes and only for director—enabled classes, the generated proxy Java code looks something like:

public static void MyClass_method_upcall(MyClass self, long jarg1l,
Foo jargl_object)
{

Foo dargl = (jargl_object != null ? jargl_object : new Foo(jargl, false));

self.method_upcall(dargl);
}

When you import a SWIG interface file containing class definitions, the classes you want to be director-enabled must
have the feature("director") enabled for type symmetry to work. This applies even when the class being
wrapped isn't a director-enabled class but takes parameters that are director-enabled classes.

20.10 Living with Java Directors 317

SWIG-1.3 Documentation

The current "type symmetry" design will work for simple C++ inheritance, but will most likely fail for anything more
compicated such as tree or diamond C++ inheritance hierarchies. Those who are interested in challenging problems ai
more than welcome to hack the Java::Java_director_declaration method in

Source/Modules/java.cxx.

If all else fails, you can use the downcastXXXXX() method to attempt to recover the director class's Java object pointer

For the Java Foo proxy class, the Foo director class's java object pointer can be accessed through the javaObjectFoo(
method. The generated method's signature is:

public static Foo javaObjectFoo(Foo obj);

From your code, this method is invoked as follows:

public class MyClassDerived {
public void method_upcall(Foo foo_object)
{
FooDerived derived = (foo_object != null ?
(FooDerived) Foo.downcastFoo(foo_object) : null);
* rest of your code here */
}
}

An good approach for managing downcasting is placing a static method in each derived class that performs the downc
from the superclass, e.g.,

public class FooDerived extends Foo {

.

public static FooDerived downcastFooDerived(Foo foo_object)

{
try {
return (foo_object != null ? (FooDerived) Foo.downcastFoo(foo_object);
}

catch (ClassCastException exc) {
/I Wasn't a FooDerived object, some other sublcass of Foo
return null;
}
}
}

Then change the code in MyClassDerived as follows:

public class MyClassDerived extends MyClass {

¥
public void method_upcall(Foo foo_object)
{

FooDerived derived = FooDerived.downcastFooDerived(foo_object);
* rest of your code here */

}
}

4. Why isn't the proxy class declared abstract? Why aren't the director upcall methods in the proxy class declared abstrac

Declaring the proxy class and its methods abstract would break the JNI argument marshalling and SWIG's downcall
functionality (going from Java to C++.) Create an abstract Java subclass that inherits from the director—enabled class
instead. Using the previous Foo class example:

public abstract class UserVisibleFoo extends Foo {
/** Make sure user overrides this method, it's where the upcall
* happens.
*
public abstract void method_upcall(Foo foo_object);

/Il Downcast from Foo to UserVisibleFoo

20.10 Living with Java Directors 318

SWIG-1.3 Documentation

public static UserVisibleFoo downcastUserVisibleFoo(Foo foo_object)

{

try {
return (foo_object != null ? (FooDerived) Foo.downcastFoo(foo_object) : null);

}

catch (ClassCastException exc) {
/I Wasn't a FooDerived object, some other sublcass of Foo
return null;

}
}
}

This doesn't prevent the user from creating subclasses derived from Foo, however, UserVisibleFoo provides the safety
net that reminds the user to override the method_upcall() method.

20.11 Odds and ends

20.11.1 JavaDoc comments

The SWIG documentation system is currently deprecated. When it is resurrected JavaDoc comments will be fully supported. If
you can't wait for the full documentation system a couple of workarounds are available. The %javamethodmodifiers feature
can be used for adding proxy class method comments and module class method comments. The "javaimports” typemap can b
hijacked for adding in proxy class JavaDoc comments. The jniclassimports or jniclassclassmodifiers pragmas

can also be used for adding intermediary JNI class comments and likewise the moduleimports or

moduleclassmodifiers pragmas for the module class. Here is an example adding in a proxy class and method comment:

%javamethodmodifiers Barmy::lose_marbles() "

/**

* Calling this method will make you mad.
* Use with utmost caution.
*

public";

%typemap(javaimports) Barmy "
/** The crazy class. Use as a last resort. */"

class Barmy {
public:
void lose_marbles() {}

g

Note the "public" added at the end of the %javamethodmodifiers as this is the default for this feature. The generated proxy
class with JavaDoc comments is then as follows:

/** The crazy class. Use as a last resort. */
public class Barmy {

/**
* Calling this method will make you mad.
* Use with utmost caution.
*/

public void lose_marbles() {

}...

20.11.2 Functional interface without proxy classes

It is possible to run SWIG in a mode that does not produce proxy classes by using the —noproxy commandline option. The
interface is rather primitive when wrapping structures or classes and is accessed through function calls to the module class. All

20.11 Odds and ends 319

SWIG-1.3 Documentation

functions in the module class are wrapped by functions with identical names as those in the intermediary JNI class.

Consider the example we looked at when examining proxy classes:

class Foo {
public:
int x;
int spam(int num, Foo* foo);

¥

When using —noproxy, type wrapper classes are generated instead of proxy classes. Access to all the functions and variables i
through a C like set of functions where the first parameter passed is the pointer to the class, that is an instance of a type wrapp
class. Here is what the module class looks like:

public class example {
public static void Foo_x_get(SWIGTYPE_p_Foo self, int x) {...}
public static int Foo_x_get(SWIGTYPE_p_Foo self) {...}
public static int Foo_spam(SWIGTYPE_p_Foo self, int num, SWIGTYPE_p_Foo foo) {...}
public static SWIGTYPE_p_Foo new_Foo() {...}
public static void delete_Foo(SWIGTYPE_p_Foo self) {...}

}
This approach is not nearly as natural as using proxy classes as the functions need to be used like this:

SWIGTYPE_p_Foo foo = example.new_Foo();
example.Foo_x_set(foo, 10);

int var = example.Foo_x_get(foo);
example.Foo_spam(foo, 20, foo);
example.delete_Foo(foo);

Unlike proxy classes, there is no attempt at tracking memory. All destructors have to be called manually for example the
delete_Foo(foo) call above.

20.11.3 Using your own JNI functions

You may have some hand written JNI functions that you want to use in addition to the SWIG generated JNI functions. Adding
these to your SWIG generated package is possible using the %native directive. If you don't want SWIG to wrap your JNI
function then of course you can simply use the %ignore directive. However, if you want SWIG to generate just the Java code
for a JNI function then use the %native directive. The C types for the parameters and return type must be specified in place of
the JNI types and the function name must be the native method name. For example:

%native (HandRolled) void HandRolled(int, char *);

9%{

JNIEXPORT void JNICALL Java_packageName_moduleName_HandRolled(IJNIEnv *, jclass,
jlong, jstring);

%0}

No C JNI function will be generated and the Java_packageName_moduleName_HandRolled function will be accessible
using the SWIG generated Java native method call in the intermediary JNI class which will look like this:

public final static native void HandRolled(int jargl, String jarg2);
and as usual this function is wrapped by another which for a global C function would appear in the module class:

public static void HandRolled(int arg0, String argl) {
exampleJNI.HandRolled(arg0, argl);

}

The packageName and moduleName must of course be correct else you will get linker errors when the JVM dynamically

loads the JNI function. You may have to add in some "jtype", "jstype", "javain" and "javaout" typemaps when wrapping some Ji

20.11.2 Functional interface without proxy classes 320

SWIG-1.3 Documentation

types. Here the default typemaps work for int and char *.

In summary the %native directive is telling SWIG to generate the Java code to access the JNI C code, but not the JNI C
function itself. This directive is only really useful if you want to mix your own hand crafted JNI code and the SWIG generated
code into one Java class or package.

20.11.4 Performance concerns and hints

If you're directly manipulating huge arrays of complex objects from Java, performance may suffer greatly when using the array
functions in arrays_java.i. Try and minimise the expensive JNI calls to C/C++ functions, perhaps by using temporary Java
variables instead of accessing the information directly from the C/C++ object.

Java classes without any finalizers generally speed up code execution as there is less for the garbage collector to do. Finalizer
generation can be stopped by using an empty javafinalize typemap:

%typemap(javafinalize) SWIGTYPE "™

However, you will have to be careful about memory management and make sure that you code in a call to the delete()
member function. This method normally calls the C++ destructor or free() for C code.

20.12 Examples

The directory Examples/java has a number of further examples. Take a look at these if you want to see some of the techniques
described in action. The Examples/index.html file in the parent directory contains the SWIG Examples Documentation and is a
useful starting point. If your SWIG installation went well Unix users should be able to type make in each example directory, thei
java main to see them running. For the benefit of Windows users, there are also Visual C++ project files in a couple of the

Windows Examples.

20.11.3 Using your own JNI functions 321

21 SWIG and Common Lisp

« Allegro Common Lisp
« CLISP
¢ Additional Commandline Options

¢ Details on CLISP bindings
* UFFI

Common Lisp is a high-level, all-purpose, object-oriented, dynamic, functional programming language with long history.
Common Lisp is used in many fields, ranging from web development to finance, and also common in computer science educat
There are more than 9 different implementations of common lisp which are available, all have different foreign function
interfaces. SWIG currently supports only the Allegro Common Lisp, CLisp and UFFI foreign function interfaces.

21.1 Allegro Common Lisp

Allegro Common Lisp support in SWIG has been updated to include support for both C and C++. You can read about the
interface_here

21.2 CLISP

CLISP is a feature—loaded implementation of common lisp which is portable across most of the operating system environments
and hardware. CLISP includes an interpreter, a compiler, a debugger, CLOS, MOP, a foreign language interface, i18n, regular
expressions, a socket interface, and more. An X11 interface is available through CLX, Garnet and CLUE/CLIO. Command line
editing is provided by readline. CLISP runs Maxima, ACL2 and many other Common Lisp packages.

To run the SWIG module of clisp requires very little effort, you just need to execute:

swig —clispcl -module module-name file—name

Because of the high level nature of the CLISP FFlI, the bindings generated by SWIG may not be absolutely correct, and you meé
need to modify them. The good thing is that you don't need to complex interface file for the CLISP module. The CLISP module
tries to produce code which is both human readable and easily modifyable.

21.2.1 Additional Commandline Options
The following table list the additional commandline options available for the CLISP module. They can also be seen by using:

swig —clisp —help

CLISP specific options

If this option is given then clisp definitions for all the functions
—extern-all and global variables will be created otherwise only definitions for
externed functions and variables are created.

If this option is given then def-c-type will be used to generate
shortcuts according to the typedefs in the input.

21.2.2 Details on CLISP bindings

—generate—typedef

As mentioned earlier the CLISP bindings generated by SWIG may need some modifications. The clisp module creates a lisp fil
with the same name as the module name. This lisp file contains a 'defpackage’ declaration, with the package name same as th
module name. This package uses the ‘common-lisp' and 'ffi' packages. Also, package exports all the functions, structures and
variables for which an ffi binding was generated.

After generating the defpackage statement, the clisp module also sets the default language.

21 SWIG and Common Lisp 322

http://clisp.cons.org

SWIG-1.3 Documentation

(defpackage :test
(:use :common-lisp :ffi)
(:export
:make-bar
:bar—x
:bar-y
:bar-a
:bar-b
:bar-z
:bar-n
:pointer_func
:func123
:make—cfunr
:lispsort_double
‘test123))

(in—package :test)

(default-foreign—language :stdc)

The ffi wrappers for functions and variables are generated as shown below. When functions have arguments of type "double *
array", SWIG doesn't knows whether it is an 'out' argument or it is an array which will be passed, so SWIG plays it safe by
declaring it as an '(array (ffi.c—ptr DOUBLE-FLOAT))'. For arguments of type "int **z[100]" where SWIG has more
information, i.e., it knows that 'z' is an array of pointers to pointers of integers, SWIG defines it to be '(z (ffi.c—ptr (ffi.c—array
(ffi.c—ptr (ffi.c—ptr ffi;int)) 100)))'

extern "C" {
int pointer_func(void (*ClosureFun)(void* _fun, void* _data, void* _evt), inty);

int func123(div_t * x,int **z[100],int y[][1000][10]);
void lispsort_double (int n, double * array);
void test123(float x , double y);

}

(ffi:def—call-out pointer_func
(:name "pointer_func")

(:arguments (ClosureFun (ffi:c—function (:arguments (argO (ffi:c—pointer NIL))
(argl (ffi:c—pointer NIL))
(arg2 (ffi:c—pointer NIL)))

(:return—type NIL)))
(y ffiint))
(:return—type ffi:int)
(:library +library—name+))

(ffi:def-call-out func123
(:name "func123")
(:arguments (x (ffi:c—pointer div_t))
(z (ffi:c—ptr (ffi:c—array (ffi.c—ptr (ffi.c—ptr ffi:int)) 100)))
(y (ffi:c—ptr (ffi:c—ptr (ffi:c—array ffi:int (1000 10))))))
(:return—type ffi:int)
(:library +library—name+))

(ffi:def-call-out lispsort_double
(:name "lispsort_double™)
(-arguments (n ffi:int)
(array (ffi:c—ptr DOUBLE-FLOAT)))
(:return—type NIL)
(:library +library-name+))

(ffi:def-call-out test123

(:name "test")
(:arguments (x SINGLE-FLOAT)

21.2.2 Details on CLISP bindings 323

SWIG-1.3 Documentation

(y DOUBLE-FLOAT))
(:return—type NIL)
(:library +library-name+))

The module also handles strutcures and #define constants as shown below. SWIG automatically adds the constructors and
accessors created for the struct to the list of symbols exported by the package.

struct bar {
short x, y;
char a, b;
int *z[1000];
struct bar * n;

k
#define max 1000

(ffi:def-c—struct bar
(x :type ffi:short)
(y :type ffi:short)
(a :type character)
(b :type character)
(z :type (ffi:c—array (ffi:c—ptr ffi:int) 1000))
(n :type (ffi:c—pointer bar)))

(defconstant max 1000)

21.3 UFFI

21.3 UFFI 324

22 SWIG and Lua

 Preliminaries

e Running SWIG
¢ Compiling and Linking and Interpreter
¢ Compiling a dynamic module
¢ Using your module

« A tour of basic C/C++ wrapping
Modules

Eunctions

Global variables

Constants and enums

Pointers

Structures

C++ classes

C++ inheritance

Pointers, references, values, and arrays
C++ overloaded functions

C++ operators
Class extension with %extend

C++ templates
¢ C++ Smart Pointers
« Details on the Lua binding

¢ Binding global data into the module.
+ Userdata and Metatables

+ Memory management

L 2 2 R JEE N R R 2R R N N 2

Lua is an extension programming language designed to support general procedural programming with data description facilitie:
also offers good support for object—-oriented programming, functional programming, and data—driven programming. Lua is
intended to be used as a powerful, light-weight configuration language for any program that needs one. Lua is implemented as
library, written in clean C (that is, in the common subset of ANSI C and C++). Its also a really tiny language, less than 6000 line
of code, which compiles to <100 kilobytes of binary code. It can be found at http://www.lua.org

22.1 Preliminaries

The current SWIG implementation is designed to work with Lua 5.0. It should work with later versions of Lua, but certainly not
with Lua 4.0 due to substantial API changes. ((Currently SWIG generated code has only been tested on Windows with MingW,
though given the nature of Lua, is should not have problems on other OS's)). It is possible to either static link or dynamic link a
Lua module into the interpreter (normally Lua static links its libraries, as dynamic linking is not available on all platforms).

Note: Lua 5.1 (alpha) has just (as of September 05) been released. The current version of SWIG will produce wrappers which «
compatible with Lua 5.1, though the dynamic loading mechanism has changed (see below). The configure script and makefiles
should work correctly with with Lua 5.1, though some small tweaks may be needed.

22.2 Running SWIG

Suppose that you defined a SWIG module such as the following:

%module example
%{

#include "example.h"
9%}

int ged(int x, int y);
extern double Foo;

To build a Lua module, run SWIG using the —lua option.

22 SWIG and Lua 325

http://www.lua.org

SWIG-1.3 Documentation

$ swig —lua example.i

If building a C++ extension, add the —c++ option:

$ swig —c++ —lua example.i

This creates a C/C++ source file example_wrap.c or example_wrap.cxx. The generated C source file contains the
low-level wrappers that need to be compiled and linked with the rest of your C/C++ application to create an extension module.

The name of the wrapper file is derived from the name of the input file. For example, if the input file is example.i, the name of
the wrapper file is example_wrap.c. To change this, you can use the —o option. The wrappered module will export one
function "int Example_Init(LuaState* L)" which must be called to register the module with the Lua interpreter. The

name "Example_Init" depends upon the name of the module. Note: SWIG will automatically capitalise the module name, so
"module example;" becomes "Example_Init".

22.2.1 Compiling and Linking and Interpreter

Normally Lua is embedded into another program and will be statically linked. An extremely simple stand-alone interpreter
(min.c) is given below:

#include <stdio.h>
#include "lua.h"
#include "lualib.h"
#include "lauxlib.h"

extern int Example_Init(LuaState* L); // declare the wrapped module
int main(int argc,char* argv[])

lua_State *L;
if (argc

A much improved set of code can be found in the Lua distribution src/lua/lua.c. Include your module, just add the external
declaration & add a #define LUA_EXTRALIBS {"example",Example_Init}, at the relevant place.

The exact commands for doing this vary from platform to platform. Here is a possible set of commands of doing this:

$ swig —lua example.i

$ gcc —l/usr/include/lua —¢c min.c —o0 min.o

$ gcc —l/usrf/include/lua —c example_wrap.c —0 example_wrap.o

$ gcc —c example.c —o example.o

$ gcce —l/usrfinclude/lua —L/usr/lib/lua min.o example_wrap.o example.o —o my_lua

22.2.2 Compiling a dynamic module

Most, but not all platforms support the dynamic loading of modules (Windows & Linux do). Refer to the Lua manual to determin
if your platform supports it. For compiling a dynamically loaded module the same wrapper can be used. The commands will be
something like this:

$ swig —lua example.i

$ gcc —l/usrlinclude/lua —c example_wrap.c —0 example_wrap.o

$ gcc —c example.c —o example.o

$ gcc —shared —l/usr/include/lua —L/usr/lib/lua example_wrap.o example.o —o example.so

You will also need an interpreter with the loadlib function (such as the default interpreter compiled with Lua). In order to
dynamically load a module you must call the loadlib function with two parameters: the filename of the shared library, and the
function exported by SWIG. Calling loadlib should return the function, which you then call to initialise the module

my_init=loadlib("example.so","Example_Init") —— for Unix/Linux
——my_init=loadlib("example.dIl","Example_Init") —— for Windows

22.2 Running SWIG 326

SWIG-1.3 Documentation

assert(my_init) —— name sure its not nil
my_init() —— call the init fn of the lib

Or can be done in a single line of Lua code
assert(loadlib("example.so","Example_Init"))()

Update for Lua 5.1 (alpha):
The wrappers produced by SWIG can be compiled and linked with Lua 5.1. The loading is now much simpler.

require("example™)

If the code didn't work, don't panic. The best thing to do is to copy the module and your interpreter into a single directory and th
execute the interpreter and try to manually load the module (take care, all this code is case sensitive).

a,b,c=loadlib("example.so","Example_lInit") —— for Unix/Linux
—--a,b,c=loadlib("example.dll","Example_Init") —— for Windows
print(a,b,c)

Note: for Lua 5.1:
The loadlib() function has been moved into the package table, so you must use package.loadlib() instead.

if 'a' is a function, this its all working fine, all you need to do is call it
a()
to load your library which will add a table 'example’ with all the functions added.

If it doesn't work, look at the error messages, in particular mesage 'b'

The specified module could not be found.

Means that is cannot find the module, check your the location and spelling of the module.

The specified procedure could not be found.

Means that it loaded the module, but cannot find the named function. Again check the spelling, and if possible check to make s
the functions were exported correctly.

'loadlib' not installed/supported

Is quite obvious (Go back and consult the Lua documents on how to enable loadlib for your platform).

22.2.3 Using your module

Assuming all goes well, you will be able to this:

$./my_lua

> print(example.gcd(4,6))
2

> print(example.Foo)

3

> example.Foo=4

> print(example.Foo)

4

>

22.3 A tour of basic C/C++ wrapping

By default, SWIG tries to build a very natural Lua interface to your C/C++ code. This section briefly covers the essential aspect
of this wrapping.

22.2.2 Compiling a dynamic module 327

SWIG-1.3 Documentation

22.3.1 Modules

The SWIG module directive specifies the name of the Lua module. If you specify ‘'module example', then everything is wrappec
into a Lua table 'example’ containing all the functions and variables. When choosing a module name, make sure you don't use
same name as a built-in Lua command or standard module name.

22.3.2 Functions

Global functions are wrapped as new Lua built—in functions. For example,

%module example
int fact(int n);

creates a built—in function example.fact(n) that works exactly like you think it does:

> print example.fact(4)
24
>

To avoid name collisions, SWIG create a Lua table which it keeps all the functions and global variables in. It is possible to copy
the functions out of this and into the global environment with the following code. This can easily overwrite existing functions, so
this must be used with care.

> for k,v in pairs(example) do _G[k]=v end
> print(fact(4))

24

>

It is also possible to rename the module with an assignment.

> e=example

> print(e.fact(4))

24

> print(example.fact(4))
24

22.3.3 Global variables

Global variables (which are linked to C code) are supported, and appear to be just another variable in Lua. However the actual
mechanism is more complex. Given a global variable:

%module example
extern double Foo;

SWIG will actually generate two functions example.Foo_set() and example.Foo_get(). It then adds a metatable to the

table 'example' to call these functions at the correct time (when you attempt to set or get examples.Foo). Therefore if you were
attempt to assign the global to another variable, you will get a local copy within the interpreter, which is no longer linked to the ¢
code.

> print(example.Foo)

> c=example.Foo --cis a COPY of example.Foo, not the same thing
> example.Foo=4

> print(c)

3

> ¢=5 —- this will not effect the original example.Foo

> print(example.Foo,c)

4 5

22.3.1 Modules 328

SWIG-1.3 Documentation

Its is therefore not possible to 'move' the global variable into the global namespace as it is with functions. It is however, possibl
to rename the module with an assignment, to make it more convenient.

> e=example

> —— e and example are the same table

> —— so e.Foo and example.Foo are the same thing
> example.Foo=4

> print(e.Foo)

4

If a variable is marked with the immutable directive then any attempts to set this variable are silently ignored.

Another interesting feature is that it is not possible to add new values into the module from within the interpreter, this is becaus
of the metatable to deal with global variables. It is possible (though not recommended) to use rawset() to add a new value.

> —— example.PI does not exist

> print(example.PI)

nil

> example.P1=3.142 -~ assign failed, example.PI does still not exist
> print(example.PI)

nil

> —— a rawset will work, after this the value is added

> rawset(example,"P1",3.142)

> print(example.Pl)

3.142

22.3.4 Constants and enums

Because Lua doesn't really have the concept of constants, C/C++ constants are not really constant in Lua. They are actually ju
copy of the value into the Lua interpreter. Therefore they can be changed just as any other value. For example given some
constants:

%module example

%constant int ICONST=42;

#define SCONST "Hello World"

enum Days{SUNDAY,MONDAY,TUESDAY,WEDNESDAY,THURSDAY,FRIDAY,SATURDAY};

This is 'effectively' converted into the following Lua code:

example.|ICONST=42
example.SCONST="Hello World"
example.SUNDAY=0

Constants are not guaranteed to remain constant in Lua. The name of the constant could be accidentally reassigned to refer to
some other object. Unfortunately, there is no easy way for SWIG to generate code that prevents this. You will just have to be
careful.

22.3.5 Pointers

C/C++ pointers are fully supported by SWIG. Furthermore, SWIG has no problem working with incomplete type information.
Given a wrapping of the <file.h> interface:

%module example

FILE *fopen(const char *filename, const char *mode);
int fputs(const char *, FILE *);
int fclose(FILE *);

When wrapped, you will be able to use the functions in a natural way from Lua. For example:

22.3.3 Global variables 329

SWIG-1.3 Documentation

> fzexample.fopen("junk”,"w")
> example.fputs("Hello World",f)
> example.fclose(f)

Unlike many scripting languages, Lua has had support for pointers to C/C++ object built in for a long time. They are called
‘'userdata’. Unlike many other SWIG versions which use some kind of encoded character string, all objects will be represented
userdata. The SWIG-Lua bindings provides a special function swig_type(), which if given a userdata object will return the

type of object pointed to as a string (assuming it was a SWIG wrappered object).

> print(f)
userdata: 003FDA80

> print(swig_type(f))
_p_FILE — its a FILE*

Lua enforces the integrity of its userdata, so it is virtually impossible to corrupt the data. But as the user of the pointer, you are
responsible for freeing it, or closing any resources associated with it (just as you would in a C program). This does not apply sc
strictly to classes & structs (see below). One final note: if a function returns a NULL pointer, this is not encoded as a userdata, |
as a Lua nil.

> f=example.fopen("not there","r") —— this will return a NULL in C
> print(f)

nil

22.3.6 Structures

If you wrap a C structure, it is also mapped to a Lua userdata. By adding a metatable to the userdata, this provides a very natu
interface. For example,

struct Point{
int x,y;

¥
is used as follows:

> p=example.Point()
> p.x=3

>p.y=5

> print(p.x,p.y)

3 5

>

Similar access is provided for unions and the data members of C++ classes.
SWIG will also create a function new_Point() which also creates a new Point structure.

If you print out the value of p in the above example, you will see something like this:

> print(p)
userdata: 003FA320

Like the pointer in the previous section, this is held as a userdata. However, additional features have been added to make this
usable. SWIG creates some accessor/mutator functions Point_set_x() and Point_get_x(). These will be wrappered, and

then added to the metatable added to the userdata. This provides the natural access to the member variables that were shown
above (see end of the document for full details).

const members of a structure are read—only. Data members can also be forced to be read—only using the immutable directive.
As with other immutable's, setting attempts will be silently ignored. For example:

struct Foo {

%immutable;

22.3.5 Pointers 330

SWIG-1.3 Documentation

int X; /I Read—only members
char *name;
%mutable;

B

The mechanism for managing char* members as well as array members is similar to other languages. It is somewhat cumbers
and should probably be better handled by defining of typemaps (described later).

When a member of a structure is itself a structure, it is handled as a pointer. For example, suppose you have two structures lik
this:
struct Foo {
int a;
h

struct Bar {
Foo f;

h
Now, suppose that you access the f attribute of Bar like this:

>b = Bar()
>x=h.f

In this case, x is a pointer that points to the Foo that is inside b. This is the same value as generated by this C code:

Bar b;
Foo *x = &b—>f; /I Points inside b

Because the pointer points inside the structure, you can modify the contents and everything works just like you would expect. F
example:

> b = Bar()

>pbfa=3 —- Modify attribute of structure member
>x=hf

>x.a=3 —— Modifies the same structure

22.3.7 C++ classes

C++ classes are wrapped by a Lua userdata as well. For example, if you have this class,

class List {

public:
List();
~List();
int search(char *item);
void insert(char *item);
void remove(char *item);
char *get(int n);
int length;

h

you can use it in Lua like this:

> | = example.List()
> liinsert("Ale")

> l:insert("Stout")

> liinsert("Lager")
> print(l:get(1))
Stout

> print(l:length)

22.3.6 Structures 331

SWIG-1.3 Documentation

(Note: for calling methods of a class, you use class:method(args), not class.method(args), its an easy mistake to
make. However for data attributes it is class.attribute)

Class data members are accessed in the same manner as C structures. Static class members present a special problem for Lt
Lua doesn't have support for such features. Therefore, SWIG generates wrappers that try to work around some of these issues
illustrate, suppose you have a class like this:

class Spam {
public:
static void foo();
static int bar;

¥

In Lua, the static members can be accessed as follows:

> example.Spam_foo() —— Spam::foo() the only way currently
> a=example.Spam_bar_get() = —— Spam::bar the hard way

> a=example.Spam_bar —— Spam::bar the nicer way

> example.Spam_bar_set(b) —- Spam::bar the hard way

> example.Spam_bar=b —— Spam::bar the nicer way

It is not (currently) possible to access static members of an instance:

> s=example.Spam() -- sis a Spam instance
> s.foo() —- Spam::foo() via an instance
—— does NOT work

22.3.8 C++ inheritance

SWIG is fully aware of issues related to C++ inheritance. Therefore, if you have classes like this
class Foo {
3
class Bar : public Foo {
y
And if you have functions like this
void spam(Foo *f);
then the function spam() accepts a Foo pointer or a pointer to any class derived from Foo.

It is safe to use multiple inheritance with SWIG.
22.3.9 Pointers, references, values, and arrays

In C++, there are many different ways a function might receive and manipulate objects. For example:

void spam1(Foo *x); // Pass by pointer
void spam2(Foo &x); // Pass by reference
void spam3(Foo x); /I Pass by value

void spam4(Foo x[]); // Array of objects

22.3.7 C++ classes 332

SWIG-1.3 Documentation

In SWIG, there is no detailed distinction like this——specifically, there are only "objects". There are no pointers, references, arra)
and so forth. Because of this, SWIG unifies all of these types together in the wrapper code. For instance, if you actually had the
above functions, it is perfectly legal to do this:

> f = Foo() —— Create a Foo

> spaml(f) —— Ok. Pointer

> spam2(f) —— Ok. Reference

> spam3(f) —- Ok. Value.

> spam4(f) —— Ok. Array (1 element)

Similar behaviour occurs for return values. For example, if you had functions like this,

Foo *spam5();
Foo &spamé6();
Foo spam7();

then all three functions will return a pointer to some Foo object. Since the third function (spam7) returns a value, newly allocate
memory is used to hold the result and a pointer is returned (Lua will release this memory when the return value is garbage
collected). The other two are pointers which are assumed to be managed by the C code and so will not be garbage collected.

22.3.10 C++ overloaded functions

C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example, if you have two functions |i
this:

void foo(int);
void foo(char *c);

You can use them in Lua in a straightforward manner:

> foo(3) —— foo(int)
> foo("Hello") —- foo(char *c)

However due to Lua's coercion mechanism is can sometimes do strange things.
> foo("3") ——"3" can be coerced into an int, so it calls foo(int)!

As this coercion mechanism is an integral part of Lua, there is no easy way to get around this other than renaming of functions
(see below).

Similarly, if you have a class like this,

class Foo {
public:
Foo();
Foo(const Foo &);

h
you can write Lua code like this:

> f = Foo() —- Create a Foo
> g = Foo(f) —— Copy f

Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG can't disambiguate. For examy

void spam(int);
void spam(short);

or

22.3.9 Pointers, references, values, and arrays 333

SWIG-1.3 Documentation

VOID FOO(bAR *B);
void foo(Bar &b);

If declarations such as these appear, you will get a warning message like this:

example.i:12: Warning(509): Overloaded spam(short) is shadowed by spam(int)
at example.i:11.

To fix this, you either need to ignore or rename one of the methods. For example:

%rename(spam_short) spam(short);

void spam(int);
void spam(short); // Accessed as spam_short

or

%ignore spam(short);

void spam(int);
void spam(short); // Ignored

SWIG resolves overloaded functions and methods using a disambiguation scheme that ranks and sorts declarations according
set of type—precedence rules. The order in which declarations appear in the input does not matter except in situations where
ambiguity arises——in this case, the first declaration takes precedence.

Please refer to the "SWIG and C++" chapter for more information about overloading.

Dealing with the Lua coercion mechanism, the priority is roughly (integers, floats, strings, userdata). But it is better to rename tl
functions rather than rely upon the ordering.

22.3.11 C++ operators

Certain C++ overloaded operators can be handled automatically by SWIG. For example, consider a class like this:

class Complex {

private:
double rpart, ipart;

public:
Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) {}
Complex &operator=(const Complex &c);
Complex operator+(const Complex &c) const;
Complex operator—(const Complex &c) const;
Complex operator*(const Complex &c) const;
Complex operator—() const;

double re() const { return rpart; }
double im() const { return ipart; }

h
When wrapped, it works like you expect:

> ¢ = Complex(3,4)
> d = Complex(7,8)
>e=c+d

> ere()

10.0

> e:im()

12.0

22.3.10 C++ overloaded functions 334

SWIG-1.3 Documentation

One restriction with operator overloading support is that SWIG is not able to fully handle operators that aren't defined as part of
the class. For example, if you had code like this

class Complex {

friend Complex operator+(double, const Complex &c);
h

then SWIG doesn't know what to do with the friend function——in fact, it simply ignores it and issues a warning. You can still
wrap the operator, but you may have to encapsulate it in a special function. For example:

%rename(Complex_add_dc) operator+(double, const Complex &);

aomplex operator+(double, const Complex &c);
There are ways to make this operator appear as part of the class using the %extend directive. Keep reading.

Also, be aware that certain operators don't map cleanly to Lua, and some Lua operators don't map cleanly to C++ operators. F
instance, overloaded assignment operators don't map to Lua semantics and will be ignored, and C++ doesn't support Lua's
concatenation operator (..).

In order to keep maximum compatibility within the different languages in SWIG, the Lua bindings uses the same set of operato
names as python. Although internally it renames the functions to something else (on order to work with Lua).

The current list of operators which can be overloaded (and the alternative function names) are:

e add__ operator+

e _sub__ operator-

e __mul__ operator *

e div__ operator/

* __neg__ unary minus

e call__ operator() (often used in functor classes)

e pow__ the exponential fn (no C++ equivalent, Lua uses ")
e _concat__ the concatenation operator (SWIG maps C++'s ~to Lua's ..)
e __eq__ operator==

e It operator<

 le operator<=

Note: in Lua, only the equals, less than, and less than equals operators are defined. The other operators (!=,>,>=) are achieve
using a logical not applied to the results of other operators.

The following operators cannot be overloaded (mainly because they are not supported in Lua)

s ++and ——

. +:1—:,*: etc

% operator (you have to use math.mod)
* assignment operator

all bitwise/logical operations

SWIG also accepts the __str__ () member function which converts an object to a string. This function should return a const
char*, preferably to static memory. This will be used for the print() and tostring() functions in Lua. Assuming the
complex class has a function

const char* __str_ ()

{
static char buffer[255];
sprintf(buffer,"Complex(%g,%ag)",this—>re(),this—>im());

22.3.11 C++ operators 335

SWIG-1.3 Documentation

return buffer;

}
Then this will support the following code in Lua

> ¢ = Complex(3,4)

>d = Complex(7,8)

>e=c+d

> print(e)

Complex(10,12)

> s=tostring(e) —— s is the number in string form
> print(s)

Complex(10,12)

It is also possible to overload the operator[], but currently this cannot be automatically performed. To overload the operator(]
you need to provide two functions, __getitem__ () and __setitem__ ()

class Complex

{
/...
double __getitem__ (int i)const; // i is the index, returns the data
void __setitem__(int i,double d); // i is the index, d is the data

¥
22.3.12 Class extension with %extend

One of the more interesting features of SWIG is that it can extend structures and classes with new methods. In the previous
section, the Complex class would have benefited greatly from an __str__ () method as well as some repairs to the operator
overloading. It can also be used to add additional functions to the class if they are needed.

Take the original Complex class

class Complex {

private:
double rpart, ipart;

public:
Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
Complex &operator=(const Complex &c);
Complex operator+(const Complex &c) const;
Complex operator—(const Complex &c) const;
Complex operator*(const Complex &c) const;
Complex operator—() const;

double re() const { return rpart; }
double im() const { return ipart; }

¥
Now we extend it with some new code

%extend Complex {

const char*__str_ () {
static char tmp[1024];
sprintf(tmp,"Complex(%g,%g)", self->re(),self->im());
return tmp;

}

bool operator==(const Complex& c)

{ return (self->re()==c.re() && self->im()==c.im();}

h
Now, in Lua
> ¢ = Complex(3,4)

22.3.12 Class extension with %extend 336

SWIG-1.3 Documentation

> d = Complex(7,8)

>e=c+d

>print(e) —— printuses __str__ to get the string form to print
Complex(10,12)

> print(e==Complex(10,12)) —- testing the == operator

true

> print(e!l=Complex(12,12)) —- the != uses the == operator
true

Extend works with both C and C++ code, on classes and structs. It does not modify the underlying object in any way——-the
extensions only show up in the Lua interface. The only item to take note of is the code has to use the 'self' instead of 'this', and
you cannot access protected/private members of the code (as you are not officially part of the class).

22.3.13 C++ templates

C++ templates don't present a huge problem for SWIG. However, in order to create wrappers, you have to tell SWIG to create
wrappers for a particular template instantiation. To do this, you use the template directive. For example:

%module example
9%{

#include "pair.h"
9%}

template<class T1, class T2>
struct pair {
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;

pair();
pair(const T1&, const T2&);

~pair();
¥

%template(pairii) pair<int,int>;
In Lua:
> p = example.pairii(3,4)

> print(p.first,p.second)
3 4

Obviously, there is more to template wrapping than shown in this example. More details can be found in the SWIG and C++
chapter. Some more complicated examples will appear later.

22.3.14 C++ Smart Pointers

In certain C++ programs, it is common to use classes that have been wrapped by so—called "smart pointers." Generally, this
involves the use of a template class that implements operator—>() like this:

template<class T> class SmartPtr {
T *operator—>();
}

Then, if you have a class like this,

class Foo {
public:

int x;

int bar();

22.3.13 C++ templates 337

SWIG-1.3 Documentation
h
A smart pointer would be used in C++ as follows:

SmartPtr<Foo> p = CreateFoo(); // Created somehow (not shown)

p—>X = 3; /l Foo::x
inty = p—>bar(); /I Foo::bar

To wrap this, simply tell SWIG about the SmartPtr class and the low-level Foo object. Make sure you instantiate SmartPtr usin
template if necessary. For example:

%module example

%template(SmartPtrFoo) SmartPtr<Foo>;

Now, in Lua, everything should just "work":

> p = example.CreateFoo() —— Create a smart—pointer somehow
>px=3 —— Foo::x
> print(p:bar()) —— Foo::bar

If you ever need to access the underlying pointer returned by operator—>() itself, simply use the __deref () method. For
example:

>f=p:__deref () —— Returns underlying Foo *

22.4 Details on the Lua binding

In the previous section, a high-level view of Lua wrapping was presented. Obviously a lot of stuff happens behind the scenes t
make this happen. This section will explain some of the low-level details on how this is achieved.

If you just want to use SWIG and don't care how it works, then stop reading here. This is going into the guts of the code and hc
it works. Its mainly for people who need to know whats going on within the code.

22.4.1 Binding global data into the module.

Assuming that you had some global data that you wanted to share between C and Lua. How does SWIG do it?

%module example;
extern double Foo;

SWIG will effectively generate the pair of functions

void Foo_set(double);
double Foo_get();

At initialisation time, it will then add to the interpreter a table called ‘example’, which represents the module. It will then add all i
functions to the module. But it also adds a metatable to this table, which has two functions (__index and __newindex) as well
as two tables (.get and .set) The following Lua code will show these hidden features.

> print(example)

table: 003F8F90

> m=getmetatable(example)

> table.foreach(m,print)

.set table: 003F9088

.get table: 003F9038

__index function: 003F8FEO
__newindex function: 003F8FF8

22.3.14 C++ Smart Pointers 338

SWIG-1.3 Documentation

>g=m[.get]

> table.foreach(g,print)
Foo function: 003FAFD8
>

The .get and .set tables are lookups connecting the variable name 'Foo' to the accessor/mutator functions (Foo_set,Foo_get)

The Lua equivalent of the code for the __index and __newindex looks a bit like this

function __index(mod,name)
local g=getmetatable(mod)['.get] —— gets the table
if not g then return nil end
local f=g[name] —— looks for the function
—- calls it & returns the value
if type(f)=="function" then return f() end
return nil
end

function __newindex(mod,name,value)
local s=getmetatable(mod)['.set'] —— gets the table
if not s then return end
local f=s[name] —- looks for the function
—- calls it to set the value
if type(f)=="function" then f(value) end
end

That way when you call 'a=example.Foo', the interpreter looks at the table ‘example’ sees that there is no field 'Foo' and calls
__index. This will in turn check in '.get' table and find the existence of 'Foo' and then return the value of the C function call
'Foo_get()'. Similarly for the code 'example.Foo=10', the interpreter will check the table, then call the __newindex which will
then check the '.set' table and call the C function 'Foo_set(10)".

22.4.2 Userdata and Metatables

As mentioned earlier, classes and structures, are all held as pointer, using the Lua 'userdata’' structure. This structure is actuall
pointer to a C structure 'swig_lua_userdata’', which contains the pointer to the data, a pointer to the swig_type_info (an internal
SWIG struct) and a flag which marks if the object is to be disposed of when the interpreter no longer needs it. The actual
accessing of the object is done via the metatable attached to this userdata.

The metatable is a Lua 5.0 feature (which is also why SWIG cannot wrap Lua 4.0). Its a table which holds a list of functions,
operators and attributes. This is what gives the userdata the feeling that it is a real object and not just a hunk of memory.

Given a class

%module excpp;

class Point

{

public:

int x,y;

Point(){x=y=0;}

~Point(){}

virtual void Print(){printf("Point @%p (%d,%d)\n",this,x,y);}
h

SWIG will create a module excpp, with all the various function inside. However to allow the intuitive use of the userdata is also
creates up a set of metatables. As seen in the above section on global variables, use of the metatables allows for wrappers to |
used intuitively. To save effort, the code creates one metatable per class and stores it inside Lua's registry. Then when an new
object is instantiated, the metatable is found in the registry and the userdata associated to the metatable. Currently derived cla:
make a complete copy of the base classes table and then add on their own additional function.

Some of the internals can be seen by looking at a classes metatable.

22.4.1 Binding global data into the module. 339

SWIG-1.3 Documentation

> p=excpp.Point()

> print(p)

userdata: 003FDB28

> m=getmetatable(p)

> table.foreach(m,print)
type Point

__gc function: 003FB6C8
__newindex function: 003FB6B0
__index function: 003FB698
.get table: 003FB4D8

.set table: 003FB500

.fn table: 003FB528

The ".type' attribute is the string which is returned from a call to swig_type(). The ".get' and '.set' tables work in a similar manner
the modules, the main difference is the ".fn' table which also holds all the member functions. (The '__gc' function is the classes
destructor function)

The Lua equivalent of the code for enabling functions looks a little like this

function __index(obj,name)
local m=getmetatable(obj) —— gets the metatable
if not m then return nil end
local g=m['.get] —— gets the attribute table
if not g then return nil end
local f=g[name] —— looks for the get_attribute function
—— calls it & returns the value
if type(f)=="function" then return f() end
—- ok, so it not an attribute, maybe its a function
local fn=m['.fn'] —— gets the function table
if not fn then return nil end
local f=fn[name] —— looks for the function
—— if found the fn then return the function
—- so the interpreter can call it
if type(f)=="function" then return f end
return nil
end

So when 'p:Print()' is called, the __index looks on the object metatable for a 'Print' attribute, then looks for a 'Print’ function. Wh
it finds the function, it returns the function, and then interpreter can call 'Point_Print(p)'

In theory, you can play with this usertable & add new features, but remember that it is a shared table between all instances of
class, and you could very easily corrupt the functions in all the instances.

Note: Both the opaque structures (like the FILE*) and normal wrappered classes/structs use the same 'swig_lua_userdata’
structure. Though the opaque structures has do not have a metatable attached, or any information on how to dispose of them v
the interpreter has finished with them.

Note: Operator overloads are basically done in the same way, by adding functions such as' _add' &' call' to the classes
metatable. The current implementation is a bit rough as it will add any member function beginning with ' " into the metatable
too, assuming its an operator overload.

22.4.3 Memory management

Lua is very helpful with the memory management. The 'swig_lua_userdata' is fully managed by the interpreter itself. This mean
that neither the C code nor the Lua code can damage it. Once a piece of userdata has no references to it, it is not instantly
collected, but will be collected when Lua deems is necessary. (You can force collection by calling the Lua function
collectgarbage()). Once the userdata is about to be free'ed, the interpreter will check the userdata for a metatable and for a
function'__gc'. If this exists this is called. For all complete types (ie normal wrappered classes & structs) this should exist. The
' _gc' function will check the 'swig_lua_userdata’ to check for the 'own' field and if this is true (which is will be for all owned
data's) it will then call the destructor on the pointer.

22.4.2 Userdata and Metatables 340

SWIG-1.3 Documentation

It is currently not recommended to edit this field or add some user code, to change the behaviour. Though for those who wish t
try, here is where to look.

It is also currently not possible to change the ownership flag on the data (unlike most other scripting languages, Lua does not
permit access to the data from within the interpreter)

22.4.3 Memory management 341

23 SWIG and Modula—-3

* Overview

+ Why not scripting ?
¢+ Why Modula-3 ?

¢ WhyC/C++?

+ Why SWIG ?

» Conception
+ Interfaces to C libraries

+ Interfaces to C++ libraries
 Preliminaries

¢ Compilers

¢ Additional Commandline Options
« Modula—=3 typemaps

¢ Inputs and outputs

¢ Subranges, Enumerations, Sets

¢ Objects

¢ Imports

¢ Exceptions

¢+ Example
« More hints to the generator

+ Features

+ Pragmas
* Remarks

This chapter describes SWIG's support of Modula-3. You should be familiar with the basics of SWIG, especially typemaps.

23.1 Overview

The Modula—3 support is very basic and highly experimental! Many features are still not designed satisfyingly and | need more
discussion about the odds and ends. Don't rely on any feature, incompatible changes are likely in the future! The Modula—-3
generator was already useful for interfacing to the libraries

o

1.PLPlo
2.EETW.

—

| took some more time to explain why | think it's right what I'm doing. So the introduction got a bit longer than it should ... ;-)
23.1.1 Why not scripting ?

SWIG started as wrapper from the fast compiled languages C and C++ to high level scripting languages like Python. Although
scripting languages are designed to make programming life easier by hiding machine internals from the programmer there are
several aspects of todays scripting languages that are unfavourable in my opinion.

Besides C, C++, Cluster (a Modula derivate for Amiga computers) | evaluated several scripting like languages in the past:
Different dialects of BASIC, Perl, ARexx (a variant of Rexx for Amiga computers), shell scripts. | found them too inconsistent,
too weak in distinguishing types, too weak in encapsulating pieces of code. Eventually | have started several projects in Pythor
because of the fine syntax. But when projects became larger | lost the track. | got convinced that one can not have maintainabl
code in a language that is not statically typed. In fact the main advantages of scripting languages e.g. matching regular
expressions, complex built-in datatypes like lists, dictionaries, are not advantages of the language itself but can be provided by
function libraries.

23 SWIG and Modula-3 342

http://www.m3.org/
http://www.elegosoft.com/cgi-bin/cvsweb.cgi/cm3/m3-libs/plplot/
http://www.elegosoft.com/cgi-bin/cvsweb.cgi/cm3/m3-libs/fftw/

SWIG-1.3 Documentation

23.1.2 Why Modula-3 ?

Modula-3 is a compiler language in the tradition of Niklaus Wirth's Modula 2, which is in turn a successor of the popular Pasca
I have chosen Modula—3 because of its logical syntax, strong modularization, the type system which is very detailed for machir
types compared to other languages. Of course it supports all of the modern games like exceptions, objects, garbage collection,
threads. While C++ programmers must control three languages, namely the preprocessor, C and ++, Modula-3 is made in one
and the language definition is really compact.

On the one hand Modula-3 can be safe (but probably less efficient) in normal modules while providing much static and dynami
safety. On the other hand you can write efficient but less safe code in the style of C within UNSAFE modules.

Unfortunately Modula's safety and strength requires more writing than scripting languages do. Today if | want to safe character
prefer Haskell (similar to OCAML) - it's statically typed, too.

23.1.3Why C/C++?

Although it is no problem to write Modula—-3 programs that performs as fast as C most libraries are not written in Modula-3 but
in C. Fortunately the binary interface of most function libraries can be addressed by Modula-3. Even more fortunately even
non-C libraries may provide C header files. This is where SWIG becomes helpful.

23.1.4 Why SWIG ?

The C headers and the possibility to interface to C libraries still leaves the work for you to write Modula-3 interfaces to them. T
make things comfortable you will also need wrappers that convert between high-level features of Modula—3 (garbage collectint
exceptions) and the low level of the C libraries.

SWIG converts C headers to Modula—3 interfaces for you. You could call the C functions without loss of efficiency but it won't
be joy because you could not pass TEXTs or open arrays and you would have to process error return codes rather then except
But using some typemaps SWIG will also generate wrappers that bring the whole Modula—-3 comfort to you. If the library API is
ill designed writing appropriate typemaps can be still time-consuming. E.g. C programmers are very creative to work—around
missing data types like (real) enumerations and sets. You should turn such work—arounds back to the Modula—-3 way otherwise
you lose static safety and consistency.

But you have still a problem: C library interfaces are often ill. They lack for certain information because C compilers wouldn't
care about. You should integrate detailed type information by adding typedefs and consts and you should persuade the C
library programmer to add this information to his interface. Only this way other language users can benefit from your work and
only this way you can easily update your interfaces when a new library version is released. You will realise that writing good
SWIG interfaces is very costly and it will only amortise when considering evolving libraries.

Without SWIG you would probably never consider to call C++ libraries from Modula—3. But with SWIG this is worth a
consideration. SWIG can write C wrappers to C++ functions and object methods that may throw exceptions. In fact it breaks
down C++ libraries to C interfaces which can be in turn called from Modula—3. To make it complete you can hide the C interfac
with Modula-3 classes and exceptions.

Although SWIG does the best it can do it can only serve as a one—-way strategy. That means you can use C++ libraries with

Modula—-3 (even with call back functions), but it's certainly not possible to smoothly integrate Modula-3 code into a C / C++
project.

23.2 Conception

23.2.1 Interfaces to C libraries
Modula—-3 has an integrated support for calling C functions. This is also extensively used by the standard Modula-3 libraries to

call OS functions. The Modula-3 part of SWIG and the corresponding SWIG library modula3.swg contain code that uses these
features. Because of the built—in support there is no need for calling the SWIG kernel to generate wrappers written in C. All

23.1.2 Why Modula-3 ? 343

SWIG-1.3 Documentation

conversion and argument checking can be done in Modula-3 and the interfacing is quite efficient. All you have to do is to write
pieces of Modula—-3 code that SWIG puts together.

C library support integrated in Modula—3

Pragma <* EXTERNAL |Precedes a declaration of a PROCEDURE that is implemented in an external library instead| of a
*> Modula—3 module.

*
f>ragma <" CALLBACK Precedes a declaration of a PROCEDURE that should be called by external library code.
Module Ctypes Contains Modula—-3 types that match some basic C types.
Module M3toC Contains routines that convert between Modula—3's TEXT type and C's char * type.

In each run of SWIG the Modula—3 part generates several files:

Module name Identifier for Description
scheme %insert P

ModuleRaw.i3 marawintf Declaration of types that are equalent to thc_)se of the C library, EXTERNAL
procedures as interface to the C library functions

ModuleRaw.m3 m3rawimpl Almost empty.

Module.i3 m3wrapintf Declaration of comfortable wrappers to the C library functions.
Implementation of the wrappers that convert between Modula-3 and C types,

Module.m3 m3wrapimpl check for validity of values, hand—-over resource management to the garbage
collector using WeakRefs and raises exceptions.
Add the modules above to the Modula—3 project and specify the name of the

mamakefile mamakefile Modula—3 wrapper library to be generated. Today I'm not sure if it is a good|idea
to create a m3makefile in each run, because SWIG must be started for eac
Modula—3 module it creates. Thus the m3makefile is overwritten each time. [:—(

Here's a scheme of how the function calls to Modula—3 wrappers are redirected to C library functions:

Modula—3 wrapper
Module.i3
generated by Modula-3 part of SWIG
I

\Y

Modula-3 interface to C
ModuleRaw.i3 ——> C library
generated by Modula-3 part of SWIG
I have still no good conception how one can split C library interfaces into type oriented interfaces. A Module in Modula-3
represents an Abstract DataType (or call it a static classes, i.e. a class without virtual methods). E.g. if you have a principal typ
say Database, it is good Modula—3 style to set up one Module with the name Database where the database type is declared
with the name T and where all functions are declared that operates on it.

The normal operation of SWIG is to generate a fixed set of files per call. To generate multiple modules one has to write one

SWIG interface (different SWIG interfaces can share common data) per module. Identifiers belonging to a different module ma
ignored (%ignore) and the principal type must be renamed (%typemap).

23.2.2 Interfaces to C++ libraries

Interfaces to C++ files are much more complicated and there are some more design decisions that are not made, yet. Modula-
has no support for C++ functions but C++ compilers should support generating C++ functions with a C interface.

Here's a scheme of how the function calls to Modula—3 wrappers a redirected to C library functions:

C++ library

23.2.1 Interfaces to C libraries 344

SWIG-1.3 Documentation

Modula—3 wrapper
Module.i3
generated by Modula-3 part of SWIG

AN

v I
Modula-3 interface to C C interface to C++
ModuleRaw.i3 -—> module_wrap.cxx

generated by Modula-3 part of SWIG generated by the SWIG core
Wrapping C++ libraries arises additional problems:

« Is it sensible to wrap C++ classes with Modula—-3 classes?

« How to find the wrapping Modula—3 class for a class pointer that is returned by a C++ routine?

« How to deal with multiple inheritance which was neglected for Modula-3 for good reasons?

« Is it possible to sub—class C++ classes with Modula—-3 code? This issue is addressed by directors, a feature that was
experimentally added to some Language modules like Java and Python.

« How to manage storage with the garbage collector of Modula—3? Support for %newobject and
%typemap(newfree) isn't implemented, yet. What's about resources that are managed by the garbage collector but
shall be passed back to the storage management of the C++ library? This is a general issue which is not solved in a
satisfying fashion as far as | know.

« How to turn C++ exceptions into Modula—-3 exceptions? There's also no support for %exception, yet.

Be warned: There is no C++ library | wrote a SWIG interface for, so I'm not sure if this is possible or sensible, yet.

23.3 Preliminaries

23.3.1 Compilers

There are different Modula—3 compilers around: cm3, pm3, ezm3, Klagenfurth Modula—-3, Cambridge Modula-3. SWIG itself
does not contain compiler specific code but the library file modula3.swg may do so. For testing examples | use Critical Mass

cma3.

23.3.2 Additional Commandline Options

There are some experimental command line options that prevent SWIG from generating interface files. Instead files are emittec
that may assist you when writing SWIG interface files.

Modula—3 specifig
options

Description

—generateconst
<file>

Disable generation of interfaces and wrappers. Instead write code for computing numeric values of
to the specified file.

C code may contain several constant definitions written as preprocessor macros. Other language m
SWIG use compute—once—use-readonly variables or functions to wrap such definitions. All of them
invoke C code dynamically for computing the macro values. But if one wants to turn them into Mod\
integer constants, enumerations or set types, the values of these expressions has to be known stati
Although definitions like (1 << FLAG_MAXIMIZEWINDOW) must be considered as good C style the
hard to convert to Modula—3 since the value computation can use every feature of C.

Thus | implemented these switch to extract all constant definitions and write a C program that outpu
values of them. It works for numeric constants only and treats all of them as double. Future versiong
generate a C++ program that can detect the type of the macros by overloaded output functions. The
can also be processed.

Constant

odules ¢
can
la-3
cally.

y are

t the
may
n string

—generaterename
<file>

Disable generation of interfaces and wrappers. Instead generate suggestions for %rename.

C libraries use a naming style that is neither homogenous nor similar to that of Modula—-3. C functiof names

often contain a prefix denoting the library and some name components separated by underscores o
capitalization changes. To get library interfaces that are really Modula-3 like you should rename the

T

23.2.2 Interfaces to C++ libraries 345

SWIG-1.3 Documentation

function names with the %rename directive. This switch outputs a list of such directives with a namg
suggestion generated by a simple heuristic.

—generatetypema
<file>

23.4 Modula—-3 typemaps

g

isable generation of interfaces and wrappers. Instead generate templates for some basic typemap

23.4.1 Inputs and outputs

Each C procedure has a bunch of inputs and outputs. Inputs are passed as function arguments, outputs are updated referentia
arguments and the function value.

Each C type can have several typemaps that apply only in case if a type is used for an input argument, for an output argument,
for a return value. A further typemap may specify the direction that is used for certain parameters. | have chosen this separatio
order to be able to write general typemaps for the typemap library modula3.swg . In the library code the final usage of the type
is not known. Using separate typemaps for each possible use allows appropriate definitions for each case. If these pre-definitic
are fine then the direction of the function parameter is the only hint the user must give.

The typemaps specific to Modula—-3 have a common name scheme: A typemap name starts with "m3", followed by "raw" or
"wrap" depending on whether it controls the generation of the ModuleRaw.i3 or the Module.i3, respectively. It follows an "in"
for typemaps applied to input argument, "out" for output arguments, "arg" for all kind of arguments, "ret" for returned values.

The main task of SWIG is to build wrapper function, i.e. functions that convert values between C and Modula-3 and call the
corresponding C function. Modula—3 wrapper functions generated by SWIG consist of the following parts:

» Generate PROCEDURE signature.

« Declare local variables.

 Convert input values from Modula-3 to C.

« Check for input value integrity.

« Call the C function.

» Check returned values, e.g. error codes.

 Convert and write back values into Modula-3 records.
« Free temporary storage.

« Return values.

Typemap Example Description
m3wrapargvar [$1: INTEGER := $1_name: Declaration of some variables needed for temporafy
results.
m3wrapargcons$1 = "$1_name": Declaration of some constant, maybe for debug
purposes.

The expression that should be passed as argument to
the raw Modula-3 interface function.
Referential arguments can be used for input, outpd
update. ??7?

One of Modula—3 parameter modes VALUE (or
empty), VAR, READONLY

m3wrapargraw [ORD($1_name)

—

m3wrapargdir [out

m3wrapinmode |READONLY

m3wrapinname New name of the input argument.
m3wrapintype Modula-3 type of the input argument.
m3wrapindefaulf Default value of the input argument

—

Statement for converting the Modula-3 input value
C compliant value.

m3wrapinconv [$1 := M3toC.SharedTtoS($1_name); 0

IF Text.Length($1_name) > 10 THEN

RAISE E("str too long"); END: Check the integrity of the input value.

m3wrapincheck

23.3.2 Additional Commandline Options 346

SWIG-1.3 Documentation

Name of the RECORD field to be used for returning
m3wrapoutname multiple values. This applies to referential output
arguments that shall be turned into return values.
m3wranouttvoe Type of the value that is returned instead of a
poutlyp referential output argument.
m3wrapoutcony|
m3wrapoutcheck
m3wrapretraw
m3wrapretnamsg
m3wraprettype
m3wrapretvar
m3wrapretconv
m3wrapretchech
Free resources that were temporarily used in the
. wrapper. Since this step should never be skipped,
m3wrapfreearg |M3toC.FreeSharedS(str,arg1); SWIG will put it in the FINALLY branch of a TRY
.. FINALLY structure.

23.4.2 Subranges, Enumerations, Sets

Subranges, enumerations, and sets are machine oriented types that make Modula very strong and expressive compared with t
type systems of many other languages.

» Subranges are used for statically restricted choices of integers.
* Enumerations are used for named choices.
» Sets are commonly used for flag (option) sets.

Using them extensively makes Modula code very safe and readable.

C supports enumerations, too, but they are not as safe as the ones of Modula. Thus they are abused for many things: For nam
choices, for integer constant definitions, for sets. To make it complete every way of defining a value in C (#define, const

int, enum) is somewhere used for defining something that must be handled completely different in Modula-3 (INTEGER,
enumeration, SET).

| played around with several %features and %pragmas that split the task up into converting the C bit patterns (integer or bit
set) into Modula-3 bit patterns (integer or bit set) and change the type as requested. See the corresponding example. This is g
messy and not satisfying. So the best what you can currently do is to rewrite constant definitions manually. Though this is a
tedious work that I'd like to automate.

23.4.3 Objects

Declarations of C++ classes are mapped to OBJECT types while it is tried to retain the access hierarchy "public — protected —
private" using partial revelation. Though the implementation is not really useful, yet.

23.4.4 Imports

Pieces of Modula—3 code provided by typemaps may contain identifiers from foreign modules. If the typemap m3wrapinconv
for blah * contains code using the function M3toC.SharedTtoS you may declare

%typemap("m3wrapinconv:import") blah * %{M3toC%}. Then the module M3toC is imported if the

m3wrapinconv typemap for blah * is used at least once. Use %typemap("m3wrapinconv:import") blah *

%{MyConversions AS M3toC%} if you need module renaming. Unqualified import is not supported.

It is cumbersome to add this typemap to each piece of Modula—3 code. It is especially useful when writing general typemaps fc
the typemap library modula3.swg . For a monolithic module you might be better off if you add the imports directly:

23.4.1 Inputs and outputs 347

SWIG-1.3 Documentation

%insert(m3rawintf) %{
IMPORT M3toC;
9%}

23.4.5 Exceptions
Modula—-3 provides another possibility of an output of a function: exceptions.

Any piece of Modula-3 code that SWIG inserts due to a typemap can raise an exception. This way you can also convert an err
code from a C function into a Modula-3 exception.

The RAISES clause is controlled by typemaps with the throws extension. If the typemap m3wrapinconv for blah *
contains code that may raise the exceptions OSError.E you should declare %typemap("m3wrapinconv:throws")
blah * %{OSError.E%}.

23.4.6 Example

The generation of wrappers in Modula—3 needs very fine control to take advantage of the language features. Here is an exampg
a generated wrapper where almost everything is generated by a typemap:

(* %relabel m3wrapinmode m3wrapinname m3wrapintype m3wrapindefault *)
PROCEDURE Name (READONLY str o TEXT = "
(* m3wrapoutcheck:throws *)
: NameResult RAISES {E} =

CONST
arglname = "str"; (* m3wrapargconst *)
VAR
arg0 : C.char_star; (* m3wrapretvar *)
argl :C.char_star; (* m3wrapargvar *)
arg2 :C.int;

result : RECORD
(*m3wrapretname m3wraprettype*)
unixPath : TEXT;
(*m3wrapoutname m3wrapouttype*)
checksum : CARDINAL;
END;
BEGIN
TRY
argl := M3toC.SharedTtoS(str); (* m3wrapinconv *)
IF Text.Length(argl) > 10 THEN (* m3wrapincheck *)
RAISE E("str too long");
END;
(* m3wrapretraw m3wrapargraw *)
arg0 := MessyToUnix (argl, arg2);
result.unixPath := M3toC.CopyStoT(arg0); (* m3wrapretconv *)
result.checksum := arg2; (* m3wrapoutconv *)
IF result.checksum =0 THEN (* m3wrapoutcheck *)
RAISE E("invalid checksum");
END;
FINALLY
M3toC.FreeSharedS(str,argl); (* m3wrapfreearg *)
END;
END Name,;

23.5 More hints to the generator

23.5.1 Features

Feature Example Description
multiretval %m3multiretval get_box; or Let the denoted function return a RECORD
%feature("modula3:multiretval™) rather than a plain value. This RECORD

23.4.4 Imports 348

SWIG-1.3 Documentation

get_box; contains all arguments with "out" direction
including the return value of the C function (|f
there is one). If more than one argument is
"out" then the function must have the
multiretval feature activated, but it is
explicitly requested from the user to prevent
mistakes.

This feature can be used to tell Modula—3's
back-end of SWIG the value of an identifier
This is necessary in the cases where it was
defined by a non-trivial C expression. This
feature is used by the —generateconst
option. In future it may be generalized to other
kind of values such as strings.

%constnumeric(12) twelve; or

constnumeric " g o
%feature("constnumeric","12") twelve;

23.5.2 Pragmas

Pragma Example Description
unsafe %pragma(modula3) Mark the raw interface modules as UNSAFE. This will be necessgry in
unsafe="true"; many cases.
librar %pragma(modula3) Specifies the library name for the wrapper library to be created. |
y library="m3fftw"; should be distinct from the name of the library to be wrapped.

23.6 Remarks

» The Modula-3 part of SWIG doesn't try to generate nicely formatted code. Use m3pp to postprocess the Modula files,
does a very good job here.

23.5.1 Features 349

24 SWIG and MzScheme

« Creating native MzScheme structures

This section contains information on SWIG's support of MzScheme.

24.1 Creating native MzScheme structures

Example interface file:

/* define a macro for the struct creation */

%define handle_ptr(TYPE,NAME)

%typemap(argout) TYPE *NAME{
Scheme_Object *o = SWIG_NewsStructFromPtr($1, $*1_mangle);
SWIG_APPEND_VALUE(0);

}

%typemap(in,numinputs=0) TYPE *NAME (TYPE temp) {
$1 = &temp;

}
%enddef

* setup the typemaps for the pointer to an output parameter cntrs */
handle_ptr(struct diag_cntrs, cntrs);

Then in scheme, you can use regular struct access procedures like

; suppose a function created a struct foo as

; (define foo (make—diag—cntrs (#x1 #x2 #x3) (make—-inspector))
; Then you can do

(format "Ox~x" (diag—cntrs—field1 foo))

(format "Ox~x" (diag—cntrs—field2 foo))

Jetc...

That's pretty much it. It works with nested structs as well.

24 SWIG and MzScheme

350

25 SWIG and Ocaml

 Preliminaries

¢ Running SWIG

¢ Compiling the code

¢ The camlp4 module

¢ Using your module

¢ Compilation problems and compiling with C++
* The low-level Ocaml/C interface

¢ The generated module

¢ Enums
¢ Enum typing in Ocaml
¢ Arrays

¢ Simple types of bounded arrays

¢ Complex and unbounded arrays

¢ Using an object

O Example typemap for a function taking float * and int
¢ C++ Classes

O STL vector and string Example

O C++ Class Example

¢ Compiling the example

0 Sample Session
+ Director Classes

¢ Direc