
Analysis of the X Protocol for Security ConcernsDraft Version 2David P. WigginsX Consortium, Inc.May 10, 1996AbstractThis paper attempts to list all instances of certain types of securityproblems in the X Protocol. Issues with authorization are not addressed.We assume that a malicious client has already succeeded in connecting,and try to assess what harm it can then do. We propose modi�cations tothe semantics of the X Protocol to reduce these risks.



Copyright c
1996 X Consortium, Inc. All Rights Reserved.THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OFANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TOTHE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THEX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHERLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THESOFTWARE OR THE USE OF OR OTHER DEALINGS IN THE SOFT-WARE.Except as contained in this notice, the name of the X Consortium shall not beused in advertising or otherwise to promote the sale, use or other dealings inthis Software without prior written authorization from the X Consortium.

2



1 De�nition of ThreatsWe analyze the X protocol for the following threats.Theft occurs when a client gains access to information owned by another clientwithout explicit permission from that other client. For this analysis, wetake a broad view of ownership: any information that exists in the serverdue to the actions of a client is considered owned by that client. Further-more, the client that has input focus owns keyboard events, and the clientthat owns the window that the pointer is in owns mouse events. This viewmay reveal certain instances of \theft" that we don't care to stop, but wethink it is better to identify all potential candidates up front and cull thelist later than to do a partial analysis now and plan on reanalyzing forremaining holes later.Denial of service occurs when a client causes another client or the user tolose the ability to perform some operation.Spoo�ng occurs when a client attempts to mimic another client with the hopethat the user will interact with it as if it really were the mimicked client.A wide variety of requests may be used in a spoo�ng attack; we will onlypoint out a few likely candidates.Destruction occurs when a client causes another client to lose information ina way that the client or user is likely to notice. (This does not countexpected forms of destruction, e.g., exposures.)Alteration occurs when a client causes another client to lose information in away that the client or user is unlikely to notice. e.g., changing one pixelin a drawable.The line between alteration and destruction is subjective. Security literaturedoes often distinguish between them, though not always explicitly. Alterationis often considered more insidious because its e�ects may not be realized untillong after it has occurred. In the intervening time, each time the altered datais used, it can cause more damage.2 General security concerns and remediesThe following sections discuss security problems intrinsic to the X Protocol. Astatement of each problem is usually followed by potential remedies. A fewwords here about possible remedies will help frame the speci�c ones describedbelow. 3



If a client attempts a threatening operation, the server may take one of thefollowing actions, listed roughly in order of severity:1. Execute the request normally. This is the right choice when we decide thata particlar threat is not serious enough to worry about.2. Execute the request in some modi�ed form, e.g., substitute di�erent valuesfor some of the request �elds, or edit the reply.3. Arrange to ask the user what to do, given some subset of the other choicesin this list. This must be used sparingly because of the performance impact.4. Treat the request as a no-op. If the client will probably not notice, or if itseems likely that the intent was benign, this is a good choice.5. Send a protocol error to the client. If the client will be confused enough bythe other options that it will probably crash or become useless anyway, or if itseems likely that the intent was malicious, this is a good choice.6. Kill the client. This might be the right action if there is no doubt that theclient is hostile.In most cases we present the one option that seems most appropriate to counterthe threat, taking into account the seriousness of the threat, the implementationdi�culty, and the impact on applications. Our initial bias is to err on the sideof stronger security, with the accompanying tighter restrictions. As we uncoverimportant operations and applications that the new restrictions interfere with,we can apply selective loosening to allow the desired functionality.In some cases we will suggest returning an Access error where the X protocoldoes not explicitly allow one. These new Access errors arise when a client canonly perform a (non-empty) subset of the de�ned operations on a resource. Thedisallowed operations cause Access errors. The resiource at issue is usually aroot window.2.1 Access to Server ResourcesThe X protocol allows clients to manipulate resources (objects) belonging toother clients or to the server. Any request that speci�es a resource ID is vulner-able to some of the above threats. Such requests also provide a way for a clientto guess resource IDs of other clients. A client can make educated guesses forpossible resource IDs, and if the request succeeds, it knows it has determined avalid resource ID. We call this \resource ID guessing" in the list below.One likely defense against these problems is to have the server send an appro-priate protocol error to deny the existence of any resource speci�ed by a clientthat doesn't belong to that client. A variation on this policy lets cooperating4



groups of clients access each other's resources, but not those of other groups.The Broadway project will initially use a less general form of this idea by havingtwo groups, trusted and untrusted. Trusted clients can do everything that Xclients can do today. They will be protected from untrusted clients in ways de-scribed below. Untrusted clients will not be protected from each other. Thoughthis will be the initial design, we need to make sure there is a growth path tomultiple (more than two) groups.Most of the time, applications never access server resources that aren't theirown, so the impact of disallowing such accesses should be minimal. There area few notable exceptions, most of which will be discussed under the relevantprotocol requests. They are: ICCCM selection transfer, Motif drag and drop,and server-global resources like the root window and default colormap. Anothermajor exception is the window manager, which routinely manipulates windowsof other applications. The solution for window managers is to always run themas trusted applications.The implementation di�culty of limiting access to resources should not belarge. All resource accesses eventually funnel down to one of two functionsin dix/resource.c: LookupIDByType() and LookupIDByClass(). A few lines ofchecking at the top of these functions will form the heart of this defense. Thereis a small problem because these functions are not told which client is doingthe lookup, but that can be solved either by adding a client parameter (proba-bly as a new function to preserve compatibility), or by using the server globalrequestingClient.ISSUE: are we really going to be able to get away with hiding trusted resources,or will things like Motif drag and drop force us to expose them? (Either way,the operations that untrusted clients can do to trusted resources will have tobe limited.) Is there something in Xt or the ICCCM that breaks if you hideresources?2.2 Denial of Service2.2.1 Memory ExhaustionAny request that causes the server to consume resources (particularly memory)can be used in a denial of service attack. A client can use such requests repeat-edly until the server runs out of memory. When that happens, the server willeither crash or be forced to send Alloc errors. The most obvious candidates areresource creation requests, e.g., CreatePixmap, but in reality a large percent-age of requests cause memory allocation, if only temporarily, depending on theserver implementation. For this reason, the list of requests subject to this formof denial of service will be necessarily incomplete.5



To address this form of denial of service, the server could set per-client quotason memory consumption. When the limit is surpassed, the server could returnAlloc errors. The application impact is minimal as long as the application stayswithin quota. The implementation di�culty is another story.Conceptually, it seems easy: simply have a way to set the limit, and on everymemory (de)allocation operation, update the client's current usage, and returnan error if the client is over the limit. The �rst problem is something we'vealready touched on: the allocator functions aren't told which client the allo-cation belongs to. Unlike resource lookups, allocations are done in too manyplaces to consider a new interface that passes the client, so using the globalrequestingClient is practically mandatory.The problems run deeper. The logical thing for the allocator to do if theclient is over its limit is to return NULL, indicating allocation failure. Un-fortunately, there are many places in the server that will react badly if thishappens. Most of these places, but not all, are \protected" by setting the globalvariable Must_have_memory to True around the delicate code. We could helpthe problem by skipping the limit check if Must_have_memory is True. Thebest solution would be to bullet-proof the server against allocation failures, butthat is beyond the scope of Broadway. Another consideration is that the ad-ditional checking may have a measurable performance impact, since the serverdoes frequent allocations.A third problem is that there is no portable way to determine the size of achunk of allocated memory given just a pointer to the chunk, and that's all youhave inside Xrealloc() and Xfree(). The server could compensate by recordingthe sizes itself somewhere, but that would be wasteful of memory, since themalloc implementation also must be recording block sizes. On top of that,the redundant bookkeeping would hurt performance. One solution is to use acustom malloc that has the needed support, but that too seems beyond thescope of Broadway.Considering all of this, we think it is advisable to defer solving the memoryexhaustion problem to a future release. Keep this in mind when you see quotasmentioned as a defense in the list below.2.2.2 CPU MonopolizationAnother general way that a client can cause denial of service is to 
ood the serverwith requests. The server will spend a large percentage of its time servicingthose requests, possibly starving other clients and certainly hurting performance.Every request can be used for 
ooding, so we will not bother to list 
oodingon every request. A variation on this attack is to 
ood the server with newconnection attempts. 6



To reduce the e�ectiveness of 
ooding, the server could use a di�erent schedulingalgorithm that throttles clients that are monopolizing the server, or it couldsimply favor trusted clients over untrusted ones. Applications cannot dependon a particular scheduling algorithm anyway, so changing it should not a�ectthem. The Synchronization extension speci�es a way to set client priorities,and a simple priority scheduler already exists in the server to support it, so thisshould be simple to add.3 Security concerns with speci�c window at-tributes3.1 Background-pixmapClients can use windows with the background-pixmap attribute set to None(hereafter \background none windows") to obtain images of other windows. Abackground none window never paints its own background, so whatever hap-pened to be on the screen when the window was mapped can be read fromthe background none window with GetImage. This may well contain data fromother windows. The CreateWindow and ChangeWindowAttributes requests canset the background-pixmap attribute set to None, and many window operationscan cause data from other windows to be left in a background none window,including ReparentWindow, MapWindow, MapSubwindows, Con�gureWindow,and CirculateWindow.Background none windows can also be used to cause apparent alteration. Aclient can create a window with background none and draw to it. The drawingwill appear to the user to be in the windows below the background none window.To remedy these problems, the server could substitute a well-de�ned backgroundwhen a client speci�es None. Ideally the substituted background would lookdi�erent enough from other windows that the user wouldn't be confused. Atile depicting some appropriate international symbol might be reasonable. Webelieve that there are few applications that actually rely on background nonesemantics, and those that do will be easy for the user to identify because of thedistinctive tile. Implementation should not be a problem either. Luckily, thewindow background cannot be retrieved through the X protocol, so we won'thave to maintain any illusions about its value.ISSUE: Some vendors have extensions to let you query the window background.Do we need to accomodate that?ISSUE: Will this lead to unacceptable application breakage? Could the serverbe smarter, only painting with the well-de�ned background when the window7



actually contains bits from trusted windows?3.2 ParentRelative and CopyFromParentSeveral window attributes can take on special values that cause them to refer-ence (ParentRelative) or copy (CopyFromParent) the same attribute from thewindow's parent. This �ts our de�nition of theft. The window attributes areclass, background-pixmap, border-pixmap, and colormap. All of these can beset with CreateWindow; all but class can be set with ChangeWindowAttributes.These forms of theft aren't particularly serious, so sending an error doesn'tseem appropriate. Substitution of di�erent attribute values seems to be the onlyreasonable option, and even that is likely to cause trouble for clients. Untrustedclients are already going to be prevented from creating windows that are childrenof trusted clients (see CreateWindow below). We recommend that nothing morebe done to counter this threat.3.3 Override-redirectWindows with the override-redirect bit set to True are generally ignored by thewindow manager. A client can map an override-redirect window that coversmost or all of the screen, causing denial of service since other applications won'tbe visible.To prevent this, the server could prevent more than a certain percentage (con-�gurable) the of screen area from being covered by override-redirect windows ofuntrusted clients.Override-redirect windows also make some spoo�ng attacks easier since theclient can more carefully control the presentation of the window to mimic an-other client. Defenses against spoo�ng will be given under MapWindow.4 Security concerns with speci�c requestsTo reduce the space needed to discuss 120 requests, most of the following sectionsuse a stylized format. A threat is given, followed by an imperative statement.The implied subject is an untrusted client, and the object is usually a trustedclient. Following that, another statement starting with \Defense:" recommendsa countermeasure for the preceding threat(s).Resources owned by the server, such as the root window and the default col-ormap, are considered to be owned by a trusted client.8



4.1 CreateWindowAlteration: create a window as a child of another client's window, altering itslist of children.Defense: send Window error. Specifying the root window as the parent willhave to be allowed, though.Theft: create an InputOnly window or a window with background none on topof other clients' windows, select for keyboard/mouse input on that window, andsteal the input. The input can be resent using SendEvent or an input synthesisextension so that the snooped application continues to function, though thiswon't work convincingly with the background none case because the drawingwill be clipped.Defense: send an error if a top-level InputOnly window is created (or repar-ented to the root). Countermeasures for background none and SendEvent arediscussed elsewhere.ISSUE: The Motif drag and drop protocol creates and maps such a window (at�100,�100, size 10x10) to \cache frequently needed data on window propertiesto reduce roundtrip server requests." Proposed solution: we could only send anerror if the window is visible, which would require checking in, MapWindow,Con�gureWindow, and ReparentWindow.Theft: resource ID guessing (parent, background-pixmap, border-pixmap, col-ormap, and cursor).Defense: send Window, Pixmap, Colormap, or Cursor error.Denial of service: create windows until the server runs out of memory.Defense: quotas.Also see section 3.4.2 ChangeWindowAttributesAlteration: change the attributes of another client's window.Theft: select for events on another client's window.Defense for both of the above: send Window error.ISSUE: The Motif drop protocol states that \the initiator should select forDestroyNotify on the destination window such that it is aware of a potential re-ceiver crash." This will be a problem if the initiator is an untrusted window andthe destination is trusted. Can the server, perhaps with the help of the securitymanager, recognize that a drop is in progress and allow the DestroyNotify event9



selection in this limited case?ISSUE: The Motif pre-register drag protocol probably requires the initiator toselect for Enter/LeaveNotify on all top-level windows. Same problem as theprevious issue.Theft: resource ID guessing (background-pixmap, border-pixmap, colormap,and cursor).Defense: send Pixmap, Colormap, or Cursor error.Also see section 3.4.3 GetWindowAttributesTheft: get the attributes of another client's window.Theft: resource ID guessing (window).Defense for both of the above: send Window error.4.4 DestroyWindow, DestroySubwindowsDestruction: destroy another client's window.Theft: resource ID guessing (window).Defense for both of the above: send Window error.4.5 ChangeSaveSetAlteration: cause another client's windows to be reparented to the root whenthis client disconnects (only if the other client's windows are subwindows of thisclient's windows).Defense: process the request normally. The trusted client gives away some ofits protection by creating a subwindow of an untrusted window.Theft: resource ID guessing (window).Defense: send Window error.4.6 MapWindowSpoo�ng: map a window that is designed to resemble a window of another client.Additional requests will probably be needed to complete the illusion.10



Defense:We consider spoo�ng to be a signi�cant danger only if the user is convincedto interact with the spoof window. The defense centers on providing enoughinformation to enable the user to know where keyboard, mouse, and extensiondevice input is going. To accomplish this, the server will cooperate with thesecurity manager, an external process. The server will provide the followingfacilities to the security manager:1. A way to create a single window that is unobscurable by any window ofany other client, trusted or untrusted. It needs to be unobscurable so that it isspoof-proof.ISSUE: is a weaker form of unobscurability better? Should the window beobscurable by trusted windows, for example?ISSUE: does unobscurable mean that it is a child of the root that is always ontop in the stacking order?2. A way to determine if a given window ID belongs to an untrusted client.The security manager will need to select for the existing events FocusIn, Fo-cusOut, EnterNotify, LeaveNotify, DeviceFocusIn, and DeviceFocusOut on allwindows to track what window(s) the user's input is going to. Using the aboveserver facilities, it can reliably display the trusted/untrusted status of all clientscurrently receiving input.ISSUE: is it too much to ask the security manager to select for all these eventson every window? Do we need to provide new events that you select for *on thedevice* that tell where the device is focused?None of this should have any application impact.The unobscurable window may be tricky to implement. There is already somemachinery in the server to make an unobscurable window for the screen saver,which may help but may also get in the way now that we have to deal with twounobscurable windows.4.7 Window OperationsSpeci�cally, ReparentWindow, MapWindow, MapSubwindows, UnmapWindow,UnmapSubwindows, Con�gureWindow, and CirculateWindow.Alteration: manipulate another client's window.Theft: resource ID guessing (window, sibling).Defense for both of the above: send a Window error unless it is a root window,in which case we should send an Access error.11



4.8 GetGeometryTheft: get the geometry of another client's drawable.Theft: resource ID guessing (drawable).Defense for both of the above: send Drawable error. However, root windowswill be allowed.4.9 QueryTreeTheft: resource ID guessing (window).Defense: send Window error.Theft: discover window IDs that belong to other clients.Defense: For the child windows, censor the reply by removing window IDs thatbelong to trusted clients. Allow the root window to be returned. For the parentwindow, if it belongs to a trusted client, return the closest ancestor window thatbelongs to an untrusted client, or if such a window does not exist, return theroot window for the parent window.ISSUE: will some applications be confused if we �lter out the window managerframe window(s), or other windows between the queried window and the rootwindow?ISSUE: the Motif drag protocol (both preregister and dynamic) needs to be ableto locate other top-level windows for potential drop sites. See also section 2.1.4.10 InternAtomTheft: discover atom values of atoms interned by other clients. This lets youdetermine if a speci�c set of atoms has been interned, which may lead to otherinferences.Defense: This is a minor form of theft. Blocking it will interfere with many typesof inter-client communication. We propose to do nothing about this threat.Denial of service: intern atoms until the server runs out of memory.Defense: quotas.
12



4.11 GetAtomNameTheft: discover atom names of atoms interned by other clients. This lets youdetermine if a speci�c set of atoms has been interned, which may lead to otherinferences.Defense: This is a minor form of theft. We propose to do nothing about thisthreat.4.12 ChangePropertyAlteration: change a property on another client's window or one that was storedby another client.Theft: resource ID guessing (window).Defense for both of the above: send Window error.ISSUE: Selection transfer requires the selection owner to change a property onthe requestor's window. Does the security manager get us out of this? Does theserver notice the property name and window passed in ConvertSelection andtemporarily allow that window property to be written?ISSUE: should certain root window properties be writable?Denial of service: store additional property data until the server runs out ofmemory.Defense: quotas.4.13 DeletePropertyDestruction: delete a property stored by another client.Theft: resource ID guessing (window).Defense for both of the above: send Window error.4.14 GetPropertyTheft: get a property stored by another client.Theft: resource ID guessing (window).Defense for both of the above: send Window error.13



ISSUE: should certain root window properties be readable? Proposed answer:yes, some con�gurable list. Do those properties need to be polyinstantiated?ISSUE: Motif drag and drop needs to be able to read the following proper-ties: WM_STATE to identify top-level windows, _MOTIF_DRAG_WINDOWon the root window, _MOTIF_DRAG_TARGETS on the window given in the_MOTIF_DRAG_WINDOW property, and _MOTIF_DRAG_RECEIVER_INFOon windows with drop sites. Additionally, some properties are needed that donot have �xed names.4.15 RotatePropertiesAlteration: rotate properties stored by another client.Theft: resource ID guessing (window).Defense for both of the above: send Window error.4.16 ListPropertiesTheft: list properties stored by another client.Theft: resource ID guessing (window).Defense for both of the above: send Window error.ISSUE: should certain root window properties be listable?4.17 SetSelectionOwnerTheft: Steal ownership of a selection.Denial of service: do this repeatedly so that no other client can own the selection.Defense for both of the above: have a con�gurable list of selections that un-trusted clients can own. For other selections, treat this request as a no-op.ISSUE: how does the security manager get involved here? Is it the one that hasthe con�gurable list of selections instead of the server?Theft: resource ID guessing (window).Defense: send Window error.
14



4.18 GetSelectionOwnerTheft: discover the ID of another client's window via the owner �eld of thereply.Defense: if the selection is on the con�gurable list mentioned above, return theroot window ID, else return None.ISSUE: how does the security manager get involved here?4.19 ConvertSelectionTheft: this initiates a selection transfer (see the ICCCM) which sends the se-lection contents from the selection owner, which may be another client, to therequesting client.Defense: since in many cases ConvertSelection is done in direct response to userinteraction, it is probably best not to force it to fail, either silently or with anerror. The server should rely on the security manager to assist in handling theselection transfer.Theft: resource ID guessing (requestor).Defense: send Window error.4.20 SendEventA client can use SendEvent to cause events of any type to be sent to windowsof other clients. Similarly, a client could SendEvent to one of its own windowswith propogate set to True and arrange for the event to be propogated up toa window it does not own. Clients can detect events generated by SendEvent,but we cannot assume that they will.Defense: ignore this request unless the event being sent is a ClientMessage event,which should be sent normally so that selection transfer, Motif drag and drop,and certain input methods have a chance at working.ISSUE: does allowing all ClientMessages open up too big a hole?Theft: resource ID guessing (window).Defense: send Window error.4.21 Keyboard and Pointer GrabsSpeci�cally, GrabKeyboard, GrabPointer, GrabKey, and GrabButton.15



Denial of service/Theft: take over the keyboard and pointer. This could beviewed as denial of service since it prevents other clients from getting keyboardor mouse input, or it could be viewed as theft since the user input may not havebeen intended for the grabbing client.Defense: provide a way to break grabs via some keystroke combination, andhave a status area that shows which client is getting input. (See MapWindow.)Theft: resource ID guessing (grab-window, con�ne-to, cursor).Defense: send Window or Cursor error.4.22 ChangeActivePointerGrabTheft: resource ID guessing (cursor).Defense: send Cursor error.4.23 GrabServerDenial of service: a client can grab the server and not let go, locking out allother clients.Defense: provide a way to break grabs via some keystroke combination.4.24 QueryPointerTheft: A client can steal pointer motion and position, button input, modi�erkey state, and possibly a window of another client with this request.Defense: if the querying client doesn't have the pointer grabbed, and the pointeris not in one of its windows, the information can be zeroed.Theft: resource ID guessing (window).Defense: send Window error.4.25 GetMotionEventsTheft: steal pointer motion input that went to other clients.Defense: ideally, the server would return only pointer input that was not de-livered to any trusted client. The implementation e�ort to do that probablyoutweighs the marginal bene�ts. Instead, we will always return an empty listof motion events to untrusted clients. 16



Theft: resource ID guessing (window).Defense: send Window error.4.26 TranslateCoordinatesTheft: discover information about other clients' windows: position, screen, andpossibly the ID of one of their subwindows.Defense: send an error if src-window or dst-window do not belong to the re-questing client.Theft: resource ID guessing (src-window, dst-window).Defense: send Window error.4.27 WarpPointerA client can cause pointer motion to occur in another client's window.Denial of service: repeated pointer warping prevents the user from using themouse normally.Defense for both of the above: if the querying client doesn't have the pointergrabbed, and the pointer is not in one of its windows, treat the request as ano-op.Theft: resource ID guessing (src-window, dst-window).Defense: send Window error.4.28 SetInputFocusTheft: a client can use this request to make one of its own windows have theinput focus (keyboard focus). The user may be unaware that keystrokes arenow going to a di�erent window.Denial of service: repeatedly setting input focus prevents normal use of thekeyboard.Defense for both of the above: only allow untrusted clients to SetInputFocus ifinput focus is currently held by another untrusted client.ISSUE: this will break clients using the Globally Active Input model describedin section 4.1.7 of the ICCCM.Theft: resource ID guessing (focus). 17



Defense: send Window error.4.29 GetInputFocusTheft: the reply may contain the ID of another client's window.Defense: return a focus window of None if a trusted client currently has theinput focus.4.30 QueryKeymapTheft: poll the keyboard with this to see which keys are being pressed.Defense: zero the returned bit vector if a trusted client currently has the inputfocus.4.31 Font RequestsSpeci�cally, OpenFont, QueryFont, ListFonts, ListFontsWithInfo, and Query-TextExtents.Theft: discover font name, glyph, and metric information about fonts that wereprovided by another client (by setting the font path). Whether it is theft toretrieve information about fonts from the server's initial font path depends onwhether or not you believe those fonts, by their existence in the initial font path,are intended to be globally accessible by all clients.Defense:Maintain two separate font paths, one for trusted clients and one for untrustedclients. They are both initialized to the default font path at server reset. Subse-quently, changes to one do not a�ect the other. Since untrusted clients will notsee font path elements added by trusted clients, they will not be able to accessany fonts provided by those font path elements.Theft: resource ID guessing (font) (QueryFont and QueryTextExtents only).Defense: send Font error.Denial of service: open fonts until the server runs out of memory (OpenFontonly).Defense: quotas.
18



4.32 CloseFontDestruction: close another client's font.Defense: send Font error.4.33 SetFontPathDenial of service: change the font path so that other clients cannot �nd theirfonts.Alteration: change the font path so that other clients get di�erent fonts thanthey expected.Defense for both of the above: separate font paths for trusted and untrustedclients, as described in the Font Requests section.ISSUE: the printing project considered per-client font paths and concluded thatit was very di�cult to do. We should look at this aspect of the print server designto see if we can reuse the same scheme. We should also try to reconstruct whatwas so di�cult about this; it doesn't seem that hard on the surface.4.34 GetFontPathTheft: retrieve font path elements that were set by other clients.Use knowledge from font path elements to mount other attacks, e.g., attack afont server found in the font path.Defense for both of the above: separate font paths for trusted and untrustedclients, as described in the Font Requests section.4.35 CreatePixmapTheft: resource ID guessing (drawable).Defense: send Drawable error.Denial of service: create pixmaps until the server runs out of memory.Defense: quotas.4.36 FreePixmapDestruction: destroy another client's pixmap.19



Defense: send Pixmap error.4.37 CreateGCTheft: resource ID guessing (drawable, tile, stipple, font, clip-mask).Defense: send Drawable, Pixmap, or Font error.Denial of service: create GCs until the server runs out of memory.Defense: quotas.4.38 CopyGCTheft: copy GC values of another client's GC.Alteration: copy GC values to another client's GC.Defense for both of the above: send GC error.4.39 ChangeGC, SetDashes, SetClipRectanglesAlteration: change values of another client's GC.Theft: resource ID guessing (gc, tile, stipple, font, clip-mask) (last four forChangeGC only).Defense for both of the above: send GC error.4.40 FreeGCDestruction: destroy another client's GC.Defense: send GC error.4.41 Drawing RequestsSpeci�cally, ClearArea, CopyArea, CopyPlane, PolyPoint, PolyLine, PolySeg-ment, PolyRectangle, PolyArc, FillPoly, PolyFillRectangle, PolyFillArc, PutIm-age, PolyText8, PolyText16, ImageText8, and ImageText16.Alteration: draw to another client's drawable.Theft: resource ID guessing: ClearArea - window; CopyArea, CopyPlane - src-drawable, dst-drawable, gc; all others - drawable, gc.20



Defense for both of the above: send appropriate error.ISSUE: The Motif preregister drag protocol requires clients to draw into win-dows of other clients for drag-over/under e�ects.Spoo�ng: draw to a window to make it resemble a window of another client.Defense: see MapWindow.4.42 GetImageTheft: get the image of another client's drawable.Theft: resource ID guessing (drawable).Defense: send Drawable error.Theft: get the image of your own window, which may contain pieces of otheroverlapping windows.Defense: censor returned images by blotting out areas that contain data fromtrusted windows.4.43 CreateColormapTheft: resource ID guessing (window).Defense: send Colormap error.Denial of service: create colormaps with this request until the server runs outof memory.Defense: quotas.4.44 FreeColormapDestruction: destroy another client's colormap.Defense: send Colormap error.4.45 CopyColormapAndFreeTheft: resource ID guessing (src-map).Defense: send Colormap error. However, default colormaps will be allowed.21



ISSUE: must untrusted applications be allowed to use standard colormaps?(Same issue for ListInstalledColormaps, Color Allocation Requests, FreeColors,StoreColors, StoreNamedColor, QueryColors, and LookupColor.)Denial of service: create colormaps with this request until the server runs outof memory.Defense: quotas.4.46 InstallColormap, UninstallColormapTheft: resource ID guessing.Defense: send Colormap error.Denial of service: (un)install any colormap, potentially preventing windows fromdisplaying correct colors.Defense: treat this request as a no-op. Section 4.1.8 of the ICCCM states that(un)installing colormaps is the responsibility of the window manager alone.ISSUE: the ICCCM also allows clients to do colormap installs if the client hasthe pointer grabbed. Do we need to allow that too?4.47 ListInstalledColormapsTheft: resource ID guessing (window).Defense: send Colormap error.Theft: discover the resource ID of another client's colormap from the reply.Defense: remove the returned colormap IDs; only let through default colormapsand colormaps of untrusted clients.4.48 Color Allocation RequestsSpeci�cally, AllocColor, AllocNamedColor, AllocColorCells, and AllocColor-Planes.Alteration/Denial of service: allocate colors in another client's colormap. It isdenial of service if the owning client's color allocations fail because there are nocells available. Otherwise it is just alteration.Theft: resource ID guessing (cmap).Defense for both of the above: send Colormap error. However, default colormaps22



will be allowed.4.49 FreeColorsTheft: resource ID guessing (cmap).Defense: send Colormap error. However, default colormaps will be allowed.4.50 StoreColors, StoreNamedColorAlteration: change the colors in another client's colormap.Theft: resource ID guessing (cmap).Defense for both of the above: send Colormap error. However, default colormapswill be allowed.4.51 QueryColors, LookupColorTheft: retrieve information about the colors in another client's colormap.Theft: resource ID guessing (cmap).Defense for both of the above: send Colormap error. However, default colormapswill be allowed.4.52 CreateCursor, CreateGlyphCursorTheft: resource ID guessing (source, mask or source-font, mask-font).Defense: send Pixmap or Font error. However, the default font will be allowed.Denial of service: create cursors until the server runs out of memory.Defense: quotas.4.53 FreeCursorDestruction: free another client's cursor.Defense: send Cursor error.
23



4.54 RecolorCursorAlteration: recolor another client's cursor.Theft: resource ID guessing (cursor).Defense for both of the above: send Cursor error.4.55 QueryBestSizeTheft: resource ID guessing (drawable).Defense: send Drawable error.4.56 ListExtensions, QueryExtensionDetermine the extensions supported by the server, and use the list to chooseextension-speci�c attacks to attempt.Defense: extensions will have a way to tell the server whether it is safe foruntrusted clients to use them. These requests will only return informationabout extensions that claim to be safe.4.57 Keyboard con�guration requestsSpeci�cally, ChangeKeyboardControl, ChangeKeyboardMapping, and SetMod-i�erMapping.Alteration: change the keyboard parameters that were established by anotherclient.Denial of service: with ChangeKeyboardControl, disable auto-repeat, key click,or the bell. With ChangeKeyboardMapping or SetModi�erMapping, change thekey mappings so that the keyboard is di�cult or impossible to use.Defense for both of the above: treat these requests as a no-op.4.58 Keyboard query requestsSpeci�cally, GetKeyboardControl, GetKeyboardMapping, and GetModi�erMap-ping.Theft: get keyboard information that was established by another client.24



Defense: This is a minor form of theft. We propose to do nothing about thisthreat.4.59 ChangePointerControl, SetPointerMappingAlteration: change the pointer parameters that were established by anotherclient.Denial of service: set the pointer parameters so that the pointer is di�cult orimpossible to use.Defense for both of the above: treat these requests as a no-op.4.60 GetPointerControl, GetPointerMappingTheft: get pointer parameters that were established by another client.Defense: This is a minor form of theft. We propose to do nothing about thisthreat.4.61 SetScreenSaverAlteration: change the screen saver parameters that were established by anotherclient.Denial of service: set the screen saver parameters so that the screen saver isalways on or always o�.Defense for both of the above: treat these requests as a no-op.4.62 GetScreenSaverTheft: get screen saver parameters that were established by another client.Defense: This is a minor form of theft. We propose to do nothing about thisthreat.4.63 ForceScreenSaverDenial of service: repeatedly activate the screen saver so that the user cannotsee the screen as it would look when the screen saver is o�.Denial of service: repeatedly reset the screen saver, preventing it from activating.25



Defense for both of the above: treat these requests as a no-op.4.64 ChangeHostMost servers already have some restrictions on which clients can use this request,so whether the following list applies is implementation dependent.Denial of service: remove a host from the list, preventing clients from connectingfrom that host.Add a host to the list. Clients from that host may then launch other attacks ofany type.Defense for both of the above: return Access error.4.65 ListHostsTheft: steal host identities and possibly even user identities that are allowed toconnect.Launch attacks of any type against the stolen host/user identities.Defense for both of the above: return only untrusted hosts.4.66 SetAccessControlMost servers already have some restrictions on which clients can use this request,so whether the following list applies is implementation dependent.Alteration: change the access control value established by some other client.Disable access control, allowing clients to connect who would normally not beable to connect. Those clients may then launch other attacks of any type.Defense for both of the above: return Access error.4.67 SetCloseDownModeDenial of service: set the close-down mode to RetainPermanent or RetainTem-porary, then disconnect. The server cannot reuse the resource-id-base of thedisconnected client, or the memory used by the retained resources, unless an-other client issues an appropriate KillClient to cancel the retainment. The serverhas a limited number of resource-id-bases, and when they are exhausted, it willbe unable to accept new client connections.26



Defense: treat this request as a no-op.4.68 KillClientDestruction/Denial of service: kill another currently connected client.Destruction: kill a client that has terminated with close-down mode of Retain-Temporary or RetainPermanent, destroying all its retained resources.Destruction: specify AllTemporary as the resource, destroying all resources ofclients that have terminated with close-down mode RetainTemporary.Defense for all of the above: return Value error.4.69 Clean RequestsOther than denial of service caused by 
ooding, these requests have no knownsecurity concerns: AllowEvents, UngrabPointer, UngrabButton, UngrabKey-board, UngrabKey, UngrabServer, NoOperation, and Bell.5 EventsThe only threat posed by events is theft. Selecting for events on another client'sresources is always theft. We restrict further analysis by assuming that theclient only selects for events on its own resources, then asking whether theevents provide information about other clients.5.1 KeymapNotifyTheft: the state of the keyboard can be seen when the client does not have theinput focus. This is possible because a KeymapNotify is sent to a window afterevery EnterNotify even if the window does not have input focus.Defense: zero the returned bit vector if a trusted client currently has the inputfocus.5.2 ExposeTheft: discover where other clients' windows overlap your own. For instance,map a full-screen window, lower it, then raise it. The resulting exposes tell youwhere other windows are. 27



Defense: about the only thing you could do here is force backing store to be usedon untrusted windows, but that would probably use too much server memory.We propose to do nothing about this threat.5.3 GraphicsExposureTheft: discover where other clients' windows overlap your own. For instance,use CopyArea to copy the entire window's area exactly on top of itself. Theresulting GraphicsExposures tell you where the window was obscured.Defense: see Expose above. We propose to do nothing about this threat.5.4 VisibilityNotifyTheft: this event provides crude positional information about other clients,though the receiver cannot tell which other clients.Defense: The information content of this event is very low. We propose to donothing about this threat.5.5 ReparentNotifyTheft: the parent windowmay belong to some other client (probably the windowmanager).Defense: If the parent window belongs to a trusted client, return the closestancestor window that belongs to an untrusted client, or if such a window doesnot exist, return the root window for the parent window.ISSUE: what is the application impact?5.6 Con�gureNotifyTheft: the above-sibling window may belong to some other client.Defense: return None for the above-sibling window if it belongs to a trustedclient.ISSUE: what is the application impact?5.7 Con�gureRequestTheft: the sibling window may belong to some other client.28



Defense: return None for the sibling window if it belongs to a trusted client.ISSUE: what is the application impact?5.8 SelectionClearTheft: the owner window may belong to some other client.Defense: return None for the owner window if it belongs to a trusted client.5.9 SelectionRequestTheft: the requestor window may belong to some other client.Defense: Blocking this event or censoring the window would prevent selectiontransfers from untrusted clients to trusted clients from working. We propose todo nothing in the server about this threat. The security manager may reducethe exposure of trusted window IDs by becoming the owner of all selections.5.10 MappingNotifyTheft: discover keyboard, pointer, or modi�er mapping information set by an-other client.Defense: Any tampering with this event will cause clients to have an inconsistentview of the keyboard or pointer button con�guration, which is likely to confusethe user. We propose to do nothing about this threat.6 ErrorsThere appear to be no threats related to procotol errors.7 Future WorkThe next steps are resolve the items marked ISSUE and to decide if the defensesproposed are reasonable. Discussion on the security@x.org mailing list, proto-typing, and/or starting the implementation should help answer these questions.
29



8 ReferencesBellcore, \Framework Generic Requirements for X Window System Security,"Technical Advisory FA-STS-001324, Issue 1, August 1992.Dardailler, Daniel, \Motif Drag And Drop Protocol," unpublished design notes.Kahn, Brian L., \Safe Use of X WINDOW SYSTEM protocol Across a Fire-wall", unpublished draft, The MITRE Corporation, 1995.Rosenthal, David S. H., \LINX - a Less INsecure X server," Sun Microsystems,29th April 1989.Rosenthal, David and Marks, Stuart W., \Inter-Client Communication Conven-tions Manual Version 2.0," ftp://ftp.x.org/pub/R6.1/xc/doc/hardcopy/ICCCM/icccm.PS.ZSchei
er, Robert W., \X Window System Protocol," ftp://ftp.x.org/pub/R6.1/xc/doc/hardcopy/XProtocol/proto.PS.ZTreese, G. Win�eld and Wolman, Alec, \X Through the Firewall, and OtherApplication Relays," Digital Equipment Corporation Cambridge Research Lab,Technical Report Series, CRL 93/10, May 3, 1993.

30


