Font server implementation overview

Dave Lemke

Network Computing Devices, Inc.
Copyright 0 1991 Network Computing Devices, Inc.

1. Introduction

The font server uses the same client/server model as X. The basic structure is that of the X Consor-
tium X11R5 X server, and those who know that code should find the os and difs (device independent font
server) layers familiar.

Definitions
* Renderer. Code that knows how to take font datain its raw format and convert it to the font server’'s
format.

» Font Path Element (FPE). An instance of arenderer, associated with a specific font source, (ie adirec-
tory of PCF bitmaps).

The difs layer interprets the requests, and handles the renderer independent work. Thisincludes error
checking of requests, and the top level font database. 1t also contains various utility functionality such as
caching and byte swapping.

The os layer sets up the communications channel, reads requests and sends the raw data of replies
and events. It also handles font server configuration issues, controlled by command line arguments and a
configuration file.

The renderer layer contains all font-specific code, and is responsible for rendering afont (which may
mean just reading a bitmap from disk, or may include scaling of outline data), computing a fonts properties
and header information.

2. Startup

At startup, the font server handles any command line arguments, initializes any OS-specific data, and
then sets up the communications. Variousinternal databases are then initialized (extensions, the font
catalogue, €etc).

The config file, an ordered list of font sources, cache size hints, default resolutions, and security
information, isthen read in. Each of these source names could be a directory name, the name of another
font server, or some other string that a particular renderer can recognize.

The default font catalogue is then built up by taking each of the font source names and comparing it
with the names arenderer recognizes. The one that matches this name will become attached to this source.
A renderer will *‘understand’’ anameif it can parse the datain that directory, or recognize that it isavalid
font server address, or recognizes a special string. Thus a collection of valid font path elementsis built up.
Each FPE has a set of functions to support opening afont and accessing its data.

Font information is accessed via method functions in the Font. When afont isfirst loaded, the
header information and properties are loaded/computed. The font also initializes its function pointersto do
the proper work. When specific metrics or bitmaps are required, they are access viathe font’ s functions. A
disk-based bitmap font will probably want to load all datawhen first accessed. A scaled font or FS font
may want to do more selective caching. In both cases, the renderer can use the utility functions to keep
track of thisdata. Changing values of bitmap formats could result in the font having multiple copies of data
in different formats, which the renderer may use the utility functions to manage.

3. Per client processing

Each entity attaching to the server isaclient. Each client hasits own authorization and resolution
information, and its own view of the font database. A font open to one client may not be open to another,
though the font server may have it loaded.

After initialization, new clients can attach to the font server and have their requests processed. For
each request that is searching for afont (OpenBitmapFont) or listing font names (ListFonts, List-
FontswithXInfo), the pattern is given to each FPE.

OpenBitmapFont will take the supplied name and passit to each FPE. The FPE will return one of
three things: Success, and the font object; BadFont, because it doesn’t know the font; or BadFont and an
alias name, when it has an aias for the font. If Success isreturned, the server goes on to create an ID (or
find an existing one) and return areply. If BadFont is returned, it goes on to the next FPE. If it reaches
the end without finding afont, an error is returned to the client. If an aliasisreturned, the search resetsto
the first FPE and starts again, using the alias as the new font name. This allows aliases to work across
different FPEs, without any ordering restrictions.

When each FPE receives afont name to open, it searchesfor the font’s existence. If it can’t find, or
can only find an alias, it returns BadFont and any alias. If it finds the font, it checks the authorization and
license status of the font to that of the client. If it passes, it then creates a new font object, and reads and/or
computes at least the font’ s header information and properties. (It may aso want to produce the bitmaps
and extents, but that choice is left to the renderer.)

When afont’s information is accessed, the interpreter routine looks up the font 1D to find the font
object, and then uses the font’ s access functions to get the data. These functions will return the datain the
format expected by the client.

4. Client shutdown

When aclient disconnects, all its referencesto any fontsit still has opened are removed. If no other
clients reference these fonts, they may be freed, though the server may choose to cache them.

5. Server reset and cleanup

A server may be reset to flush the caches, re-read the configuration file, and anew list of FPEsto be
built, viaan OS-specific outside action. In UNIX, thiswill be handled viasignals; in VMS it could be han-
dled viaan async trap or event flag.

6. Server offloading

In order to deal with numerous clients without major performance degradation, the server must be
ableto cloneitself, or provide the client with a substitute server viathe alternate server mechanism. Since
both strategies have their uses, both will be supported. For a server that has plenty of host memory or CPU,
but insufficient sockets, cloning may be a good choice. For a host with limited memory, assigning an alter-
nate server on a different host may be a good choice. The server will make this decision based on
configuration options.

7. Font server data structures

The Client handles per-client information and interpreter status.

typedef struct _Cdient {

int i ndex;

poi nter osPrivate;

int nod i ent Excepti on;
int (**request Vector) ();
poi nter request Buf f er;

int cl i ent Gone;

int sequence;

Bool swapped;

| ong | ast _request _tine;
voi d (*pSwapRepl yFunc) ();

Aut hCont ext Ptr aut h;

char *cat al ogues;
int num cat al ogues;
Mask event mask;

fsResol ution *resol utions;
int num resol utions;
} ClientRec, *ClientPtr;

The Font contains basic font information, including header information and properties.

typedef struct _font {
int refcount;
f sHeader header;

f sBi t mapFor mat format;

int (*get_glyphs)();

int (*get _metrics)();
int (*get _extents)();
int (*get _bitmaps) ();
int (*unl oad_font) ();

Font Pat hEl enent Pt r

int *client_ids;
Bool restricted_font;
} Font Rec *Font Ptr;

f pe;

The ClientFont is awrapper on top of Font, handling client specific font information.

typedef struct _clientfont {

FontPtr font;
int clientindex;
} Client Font Rec, *d i ent Font Rec;

The AuthContext contains authorization information.

typedef struct _authcontext {
char *aut hnane;
char *aut hdat a;
FSI D aci d;

} Aut hCont ext Rec * Aut hCont ext Pt r;

8. Font Path Element functions

These functions are associated with each renderer, and handle all aspects of font access. Font data
accessis controlled via another set of functions described later. These functions are intended to support
the R5 X server aswell asthe font server. Asaresult, some design decisions were made to support both
models. When the difs layer needsto accessafont, it uses these functions.

t ypedef unsi gned | ong Mask;

t ypedef unsi gned char *poi nter;

typedef struct _Font Pat hEl enent {

int name_| engt h;
char *nane;
int type;
int ref count;
poi nter private;
} Font Pat hEl enent Rec, *Font Pat hEl enent Ptr;

The FPE's reference count isincremented when it is added to the current list of FPES and when it
opensafont. Itisdecremented when it isno longer in the current list and when it closesafont. All refer-
ence changes are handled by the difs layer. The count isrequired to support font catal ogue changes that
may occur while the fontserver has fonts open, and keeps FPEs from being lost.

typedef struct FontNanes {
int nnanes;

int size;
int *length;
char **nanes;
} Font NanesRec, *Font NanmesPtr;
typedef struct {
Bool (*nanme_check) ();
int (*init_fpe)();
int (*reset_fpe)();
int (*free_fpe)();
int (*open_font)();
int (*close_font)();
int (*list_fonts)();
int (*start_list_fonts_with_info)();
int (*list_next_font_with_info)();
int (*wakeup_fpe)();
int (*client_died);
Font NamesPt r render er _nanes;

} FPEFuncti ons;

int init_fpe_type(Bool (nane_func)(),
int (init_func)(), int (free_func)(),
nt (open_func)(), int (close_func)(),
nt (list_func)(),

int (reset_func),

nt (start_Ifwi _func)(), int (next_Ilfw _func)(),

i
i
i
int (wakeup_func)(),

int (client_died_func)()
)

Thisis called by the renderer when it isinitialized at the beginning of time, and sets up an FPEFunctions

entry for the renderer.
The FPEFunctions have the following parameters:

Bool name_check(char *nane);

If name is something the renderer recognizes as avalid font source name, it return True, otherwise False.
ie, if name isadirectory name, or is prefixed by the renderer’ s prefix, and the directory contains font data

the renderer can interpret, it would return True.

int init_fpe(FontPat hEl ement Ptr fpe);

Does any initialization work for the renderer. The namein fpe will be one whose prefix matches the list
returned when the renderer was initialized.

int reset _f pe(Font Pat hEl enent Ptr f pe);

Tellsfpe to reset any internal state about what fontsit has available. Thiswill typically be called because
the font server’s FPE search list has been changed. The fpe should reset any cached state of available fonts
(ie, re-read fonts.dir) when

int free_f pe(Font Pat hEl enent Ptr fpe);

Frees any renderer-specific data and closes any files or sockets.

int open_font(pointer client, FontPathEl enentPtr fpe, Mask fl ags,
char *fontname, int nanel ength,
fsBi t mapFor mat fornmat _hint, fsBitnmapFornmat Mask format_nask,
XID fontid, FontPtr *ppfont, char **alias);

Opens the font. The bits marked by format_maskin format_hint are used where applicable. The resulting
FontPtr is returned in ppfont. The client is optional state information for use with blocking renderers. If
the fontname

resolvesto an dlias, it is returned in alias with a FontNameAlias error. Thistellsthe calling code to start
searching again, using alias asthe font name. The renderer is expected to fill in any information specified
by the flags.

Possible flags values are:

#defi ne Font Loadl nfo 0x0001 /* font header info */

#defi ne Font LoadPr ops 0x0002 /* font properties */

#def i ne Font LoadMetrics 0x0004 /* font extents */

#defi ne Font LoadBi t maps 0x0008 /* glyph bitmaps */

#defi ne Font LoadAl | 0x000f

#defi ne Font OpenSync 0x0010 /* force synchronous | oading */

Once afont has been opened, the server may place it and the pattern it matched into a name cache, to avoid
lengthy searching if the font is reopened. If the renderer does not wish the font to be in this cache (for
licensing reasons), it should set the font’ srestricted_access flag.

int cl ose_font(FontPtr pfont);

Frees up al the data associated with the font.

int list_fonts(pointer client, FontPathEl ementPtr fpe,
char *pattern, int pattern_length, int naxnanes,
Font NanesPtr *paths);

Returnsin paths up to maxnames font names the fpe recognizes as matching the given pattern.

int start_list_fonts_with_info(pointer client,
Font Pat hEl ement Ptr fpe, char *pattern, int pattern_|length,
int maxnanes, pointer fpe_data);

Initiates aListFontsWithXInfo. Typically, adisk-based renderer will do the equivalent of ListFonts to
gather all the font names matching the pattern. A font server renderer will send the request. fpe _data

provides a handle for any FPE-private data that needs to be passed in later vialist_next_font_with_info(),
eg, the list of font names for a disk-based renderer.

int list_next_font_wi th_info(pointer client, FontPathEl ementPtr fpe,
char **nane, int *nanelen, FontlnfoPtr &pinfo,
int &umfonts, pointer fpe_data);

Returns the next font’sinformation. The renderer should keep any state it requiresin the fpe_data field.
num_fonts contains the number of replies remaining.

These two routines are split for because of the way both disk-based renderers and font server renderers han-
diethisrequest. Thefirst function initiates the action, the second is used to gather the results. For adisk-
based renderer, alist of font names matching the pattern isfirst built up when start_list_fonts with_info()
is caled, and the results are gathered with each call to list_next_font_with_info. Inafont server renderer,
the first function sends the ListFontswithX|nfo request, and the second processes the replies.

int wakeup_f pe(Font Pat hEl ement Ptr fpe, unsigned | ong *nask)

Optional function which can be used for blocking renderers. Typical usageisfor afont server renderer,
whereit is called when areply isreceived, allowing the data to be read and the client to be signaled and
unblocked.

int client_died(pointer client, FontPathEl ementPtr fpe)

Thisfunction is called when aclient dies in the middle of ablocked request, alowing the renderer to clean
up.

9. Font specific functions

These functions are contained in each Font. For many renderers, every font will use the same functions,
but some renderers may wish to use different interfaces for different fonts.

typedef struct {
I NT16 | eft B16,
ri ght B16;
I NT16 wi dt h B16;
I NT16 ascent B16,
descent BL16;
CARD16 attri butes B16;

} f sChar | nf o;
typedef struct {
CARDS | ow,
hi gh;
} f sChar 2b;
typedef struct {
f sChar 2b m n_char,
max_char;
} f sRange;
int get _extents(pointer client,

FontPtr pfont, Mask flags, int numranges, fsRange *ranges,
int *numextents, fsCharlnfo **extents);

Possible flags:

LoadAl | /* ignore the ranges and get everything */
Fi ni shRange /* magic for range conpletion as specified by protocol */

Builds up the requested array of extents. The extent data (which the renderer allocates) is returned, as well
as the number of extents. closure contains any blocking state information.

int get _bi t maps(pointer client,
FontPtr pfont, fsBitmapFormat format, Msk fl ags,
int numranges, fsRange *ranges,
unsi gned | ong *size, unsigned | ong *num gl yphs,
unsi gned long **of fsets, pointer *glyph_data);

Possible flags:

LoadAl |
Fi ni shRange /* magic for range conpl etion as specified by protocol */

Builds up the requested array of bitmaps. The glyph and offset data (which the renderer allocates) is
returned, as well as the number of glyphs. The closure contains any blocking state information. This func-
tion will build up the bitmap datain the format specified by format so that the interpreter can return it
without any additional modification. This should minimize data massaging, since outline renderers will
hopefully be able to produce the bitmaps in the proper format.

voi d unl oad_f ont (Font Ptr pfont)

The render will free any allocated data. Note that the FPE function close_font() will also be called, and
should handle any FPE data allocated for the font.

int get _gl yphs()
int get _netrics()

These two functions are used by the X server for loading glyphs and metrics. They expect theresultsin a
considerably different form. The get_bitmaps() and get_extents() routines both allow for better cache con-
trol by the renderer.

10. Font directoriesand aliases

Existing bitmap renderers already have their own concept of font organization. Inthe X sample
server, the files fonts.dir and fonts.alias are used to list the known fonts. fonts.dir maps file namesto font
names, while fonts.alias maps font names to other font names.

These concepts will also be needed by other forms of fonts which the sample X server does not
currently use, but the font server will, like Bitstream outlines.

11. Handling scalable fonts
For those renderers that support scalable fonts, several issues must be addressed:
* NameParsing. An XLFD name must be parsed to determine the requested resolutions and/or sizes.

» Property scaling. Many of the standard font properties have values that depend on scaling (eg,
RESOLUTION_X. POINT_SIZE)

» Default values. If resolution information is wildcarded, the proper default resolution should be sup-
plied.

Name Parsing

The font name pattern supplied to OpenBitmapFont or ListFonts may require some parsing to be
recognized as a scalable font known to the renderer. The PIXEL_SIZE, POINT_SIZE,
RESOLUTION_X, RESOLUTION_Y and AVERAGE_WIDTH all need to determined from the font
name pattern. The master font must then be found, and scaled appropriately. Any unspecified values that
cannot be determined should be replaced by the proper defaults. For size fields, thisis whatever the
configuration specifies. For resolution fields, these should be taken from the client’ sresolution list, if set,
or from the server’ s configuration.

Property scaling
Part of scaling afont is scaling its properties. Many scalable fonts will have a very large number of
scalable properties. One way to deal with theseisfor the **master’’ outline to keep track of the property

names, and supply new values for each instance of the font. If the property names are stored as Atoms,
memory usage is kept to a minimum.

Using defaults

Using default values as substitutions for missing values was covered above. These defaultswill also
be useful in handling ListFonts requests. Returning a scalable font with an instance using the default
values will provide the most user-friendly environment.

12. Access control

The font server will also support large grain security. It will have both alimit of the number of users,
and on the hosts which it will support.

Limiting the number of usersis as much a server loading issue as a security issue. The limitation will
be typically be set via configuration options or OS limitations. To change it, use:

voi d AccessSet ConnectionLimt(int limt)

A limit of Owill set it to acompiled constant based on OS resources (eg, number of file descriptors).

Client-host based access control can be used to supplement licensing, and support font server load
balancing by restricting access. Aswith licensing, thisis OS-specific code. To manipulate these functions,
use:

typedef struct _host_address {

int type;

poi nter address;

struct _host_address *next;
} Host Addr ess;

t ypedef Host Address *Host Li st ;

int AddHost (Host Li st |ist, HostAddress *address)
int RenpoveHost (Host Li st |ist, HostAddress *address)
Bool Val i dHost (Host Li st |ist, HostAddress *address)

AddHost() adds ahost to the list. RemoveHost() removesit, and ValidHost() checksto seeif its on the
list. Inall functions, the address haswill ignore any value in the next field.

Network addresses are used here to avoid issues with host name aliases. The caller fillsin the desired
type, and an address of that form isreturned. Thisis highly OS-specific, but values for the type and
address fields could include:

#define HOST_AF_I NET 1
struct in_addr *addr ess;
#defi ne HOST_AF_DECnet 2

struct dn_addr *address;

The server will use aglobal host list, but having the list as an argument will allow licensing schemesto
have their own host lists.

13. Licensing

Licensing is atricky issue, which each renderer will support in adifferent way. The sample font
server will attempt to provide some guidelines, and present a possible implementation of some simple
licensing schemes.

Host Addresslicensing

Thisissimplistic licensing based on the client’s host. With this form of licensing, afont may be accessible
to some host but not others. To get the current client’s host, the following is used:

voi d Get Host Addr ess(Host Addr ess *addr ess) ;

A renderer can also use the host access functions to keep alist of the licensed hosts, and ValidHost() to
check aclient.

Simultaneous use license

Thislicensing allows for alimited number of copies of the font to be open at once. Since this should
be a simple per-font counter, no support should be required outside of the renderer.

14. DIFS contents
This contains the protocol dispatcher, interpreter and reply encoding routines.

Theinterpreter is table driven off the request code. The dispatcher gets a request from the os layer
from WaitFor Something(), and uses the regquest code to determine which function to call. eg, a CloseFont
request would call ProcCloseFont().

Each request’ s routine handles any applicable error checking, and then does as much work as it can.
For font related requests, this means converting the request to the proper arguments for the renderers.

If any replies are generated, the reply datais gathered into the bytestream format, and sent via os
write functions to the client.

If the byte order of the client and server differ, the above is modified by having the dispatcher call an
intermediate function which re-orders the request to the proper byte order. Replies go through similar
swapping.

Client blocking

To minimize delay caused by font server request, clients can be blocked while they wait for datato

be produced. Thisis primarily intended for FPEs using aremote font server, but can be used anywhere

where the font server can pause to handle other client requests while data needed to satisfy another is pro-
duced (possibly via multiple processes).

Bool ClientSleep(CientPtr client, Bool (*function)(), pointer closure)

Putsaclient to 'sleep’. This meansthe client will no longer be considered while the server is dispatching
requests. function will be called when the client is signaled, with the client and closure asits arguments.

-10-

Bool ClientSignal (ClientPtr client)

This should be called when the client is ready to do more work. At this point, the function given to
ClientSleep() will be called.

void dientWkeup(CQientPtr client)

Puts the client back to its normal state processing requests.

Bool dientlsAsleep(CientPtr client)

Can be used to check if aclient isasleep. Thisis useful for handling client termination, so that any requests
the client is waiting upon can be properply cleaned up.
Sample Usage

For handling afont server renderer request for OpenBitmapFont the renderer will send the request
to the remote font server, and the call ClientSleep(). The font server will then continue processing requests
from other clients, while the one making the request is blocked. When the reply returns, the renderer will
notice when itswakeup_fpe() functionis called. At this point the font server renderer will read and pro-
cessthereply. ClientSignal() will be called, and the closure function will be called. It will request the data
from the renderer, compl eting the request, and call ClientWakeup() to return the client to normal status.

This layer also contains the resource database, which associates fonts with 1Ds, extension interface
functions and the server initiaization and reset control.

15. OScontents

Thislayer contains OS specific routines for configuration, command line parsing, client/server com-
munications, and various OS-dependent utilities such as memory management and error handling.

ReadRequestFromClient() returns afull request to the dispatcher. WaitFor Something() is where
the server spendsitsidlie time, waiting for any action from a client or processing any work left from a
blocked client.

When aclient attempts to connect, the server will call

int Checkd ient Authorization(ClientPtr client, AuthPtr client_auth,
int *accept, int *index, int *size, char **authdata)

to seeif the server is set to allow the client to connect. It may use licensing or configuration information to
determine if the client can connect.

When then connection is established, the server will use the

typedef struct _alt_server {

char subset ;
char nanel en;
char *nane;
} Al ternat eServer Rec, *AlternateServerPtr;

int ListAlternateServers(AlternateServerPtr *servers)

to return any alternate server information it may have.
When the client limit is reached, the font server may attempt to copy itself, by calling

-11-

int doneMself()

This function will (if the configuartion options allow) start a new font server process. Thisisdonein such a
way that no pending connections should be lost, and that the original server will accept no new connections.
Once the original server has no more clients, it will exit.

Catal ogue manipulation

Catal ogues are configuration dependent, and hence sent by OS-dependent methods. In order for the
difs layer to get them, it uses

int Li st Cat al ogues(char *pattern, int pattern_length,
int maxnanes, char **catal ogues, int *|en)

which returnsthe list of al catalogues it supports which match the pattern. This function will be used by
the catalogue manipulation requests, as well as by renderers when they give their ListFonts results.

int ValidateCatal ogues(int nunmber, char *catal ogues)

Can be used to validate a list of catalogues, returning Trueif the list is acceptable.

16. Utility functions
Client data functions

These provide access to the current client’s resolution and authorization data. Thisform of interface
is supplied rather than passing it to al renderersin the FPE functions because the data may be complex
and/or uninteresting to all renderers.

Aut hCont ext Pt r Get d i ent Aut hori zation()

Returns the authorization data for the current client.

f sResol ution *CGetClientResol utions(int *numresol utions)

Returnsthe list of resolutions that the current client has set.

Caching functions

These are functions that simplify caching of renderer data. These are for use by renderersthat take
significant resources to produce data. The data must be re-creatable -- the cache is not meant for genera
storage. The data may also be moved by the cache, so it should only be accessed by CachelD.

typedef void (*CacheFree)();
t ypedef unsigned | ong Cachel D
t ypedef unsi gned | ong Cache;

Cache Cachelnit(int renderer_id)

Initializes a cache object for the renderer. the returned ID should be passed to CacheStoreM emory() when
adding an object to the cache.

-12 -

voi d CacheStats(Cache cid, unsigned |long *numentries
unsi gned | ong *max_storage, unsigned |ong *current_storage
unsi gned | ong *num | ookups, unsigned long *hit_ratio)

Returns statistics on the cache. Useful if the renderer wants some hints about whether to place an object in
the cache. If the cacheis nearly full, and the priority low, it may want to take different action.

Cachel D CacheSt oreMenory(Cache cacheid, pointer data, unsigned |ong size
CacheFree free_func)

The renderer hands the cache some chunk of contiguous memory, which the cache timestamps and stores.
When it needs to remove them, it callsthe free_func, which must take responsibility for properly freeing
thedata. size isprimarily ahint to the cache, so that cache limits can be properly calculated. A return
value of zero means the store failed, probably because the given size was over the cache limit. If the given
dataistoo large for the current cache, it will attempt to free old data to make room. Thereturned ID isa
unique value that refers both to the object and the cachein which it was placed.

poi nter CacheFet chMenory(Cachel D ci d, Bool update)
Returns the memory attached to theid. If update is set, the timestamp is updated. (some accesses may

wish to be’silent’, which allows some control over the freeing scheduling.) If thecidisinvalid, NULL is
returned.

int CacheFr eeMenory(Cachel D cid, Bool notify)

Allows the cache to flush the data. If notify is set, the CacheFree function passed in when the data was
cached will also be called.

voi d Menor yFreed(Cachel D cid, pointer data, int reason)

Callback function from the cache to the renderer notifying it that its data has been flushed. Thisfunction
then has the responsibility to free that data. reason may be one of:

CacheReset /* all cache freed because of server reset */
CacheEnt ryFr eed /* explicit request via free_menory() */
CacheEntryd d /* cache hit limt, and nmenory being freed because its old */

and is supplied so that the renderer may choose how to deal with the free request. (It will probably be
ignored by most, but some may want to keep the memory around by bypassing the cache, or re-inserting it.)
Note that the cache will consider the data gone, so it must be re-inserted to keep it aive.

voi d CacheSi npl eFree(Cachel D cid, pointer data, int reason)

Just callsfree() on thedata. Simple CacheFree defined here to prevent it being redefined in each renderer.

Typical usage of the cache is for the renderer to store a Cachel D rather than a pointer to the cacheable
data. Therenderer isresponsible for both allocating and freeing the data, as well as keeping track of just
what it is. When the renderer needs the cached data, it will request it from the cache. If it fails, it must
rebuild it.

A possible configuration parameter is the size of the cache. when the cacheisfilled (with the calcula-
tion based on the given size), it sweeps the cache and frees old data. The amount of memory actually freed
may wish to be tunable: some systems may want to keep the cache as full as possible, others may want to

-13-

free some percentage such that sweeps occur less frequently.

Cache statistics may want to be available for administrators. They could be dumped to afile when a
signal isreceived. (SNMP seems like a perfect match, but apparently the technology isn’t there yet.

Cached data could also be compressed, if the memory/CPU tradeoffs make it worthwhile.

ISSUE: Isatime-based freeing schedule sufficient? Should priorities or size also be taken into
account? [No. Anything that the renderer thinks should have a higher priority should probably not be
placed into the cache. |

Byte swapping
Functions for swapping a 4-byte quantity, a 2-byte quantity and inverting a byte.

voi d Bi t Orderlnvert (pointer buffer, unsigned | ong num byt es)
voi d TwoByt eSwap(poi nter buffer, unsigned | ong numshorts)
voi d Four Byt eSwap(poi nter buffer, unsigned | ong num.| ongs)

Bitmap padding
Functions taking a desired extents and a bitmap that will return the bitmap properly padded.

int RepadBi t map(poi nter src, pointer dst, fsFormat src_format,
fsFormat dst_format, int width, int height)

Takesabitmap in src_format and convertsit to onein dst_format.
Atoms

Existing bitmap-based renderers use atoms to store strings for property information. Rather than
duplicate this code in each renderer, it livesin the util directory.

Atoms will be especially useful for property information, to prevent many copies of the same strings
from being saved. Using atoms for comparison when modifying properties after scaling is al'so more
efficient. Since atoms will will exist until the server isreset, they may want to be used sparingly for pro-
perty values to avoid extraneous string data.

t ypedef unsigned | ong At om

At om MakeAt on(char *string, unsigned int |ength, Bool create)

Returns the atom associated with string. If create istrue, a new atom will be created.

char * NaneFor At om(At om at om)

Returns the string associated with atom.

17. Server request details

This section describes in-depth the action of each protocol request. In all cases, the request isfirst
error checked for simple length or value errors, with the server immediately returning an error if oneis
encountered.

-14 -

17.1. Connection

When anew client attempts to connect, the server first checksitsinitial authorization information to
seeif the server iswilling to talk to it. Thiswill be handled in some OS-specific form using CheckClien-
tAuthorization(). If it passesthistest, and the server has sufficient to resourcesto talk to it, the server
sends accepts the connection and returns its connection block. 1f the connection fails, the server returnsthe
proper status and alist of any alternate serversit may know of (gathered from ListAlter nateServers().)

17.2. ListExtension

Returnsthelist of extensions the server knows about. Any extensionswill be initialized when the
server isfirst started.

17.3. QueryExtension

Returns the information about the requested extension, which was set when the extension was initial-
ized.
17.4. ListCatalogues

Returns the catalogues the server recognizes (the results of ListCatalogues().)

17.5. SetCatalogues
Sets the requesting client’ s catal ogues after verifying them with the supported catalogues.

17.6. GetCatalogues
Returns the reguesting client’ s catalogues.

17.7. CreateAC

Creates a new authorization context and fillsit in. Thelist of authorization protocolsis then checked
by the server with CheckClientAuthorization(). If any are accepted, the AC is placed in the resource
database and Success is returned with the name of the accepted protocol. If more than oneis accepted,
Continue is returned with each of the accepted protocols, until the last one which has status Success Other-
wise Denied is returned.

17.8. FreeAC

Looks up the AC in the resource database, and freesit if it findsit. Otherwise an Access error is
returned.

17.9. SetAuthorization

Looks up the AC in the resource database, and set the client’ s AuthContextPtr to itsvalue if it is
found. Otherwiseit sends an Access error.

17.10. SetResolution
Sets the requesting client’ s resolution list to the supplied list.

17.11. GetResolution
Returns the reguesting client’slist of resolutions.

17.12. ListFonts

Iterates over each open FPE, calling the FPE’slist_fonts() routine passing it the pattern. When all
FPE’ s have been processed, the list that has been built up isreturned. Note that the same FontNamesPtr is
sent to each FPE in turn, so that one list is built up. An FPE may restrict the fontsit returns based on the
client’s catalogue.

-15-

17.13. ListFontsWithXInfo

Iterates over each FPE, calling itsstart_list_fonts with_info() function to prime the FPE’ s renderer.
It then callsthe FPE's list_next_font_with_info(), sending each font’s data to the client until no more fonts
remain. When all FPES have been processed, the final reply with a zero-length name is then sent to mark
the end of the replies. An FPE may restrict the fonts it returns based on the client’ s catalogue. Note: an
issue exists with font aliases which may require this to change, since an FPE may contain an alias pointing
to another FPE, and cannot therefore return the font’ sinfo.

17.14. OpenBitmapFont

The pattern isfirst searched for in the font server’ s name cache. If it doesn’t find it, the server iterates
over each FPE, calling its open_font function with the supplied pattern. Thiswill return one of the follow-
ing values:

» an Access error, which means the renderer has the font but the client does not have access to it because
of some form of licensing restriction

» aFont error and aNULL alias parameter, which will cause the next FPE to betried

» aFont error but anon-NULL alias, which will cause the search to start over with the first FPE using
alias asthe new font pattern

» Success, in which case avalid font has been found.

If the end of the FPE list is reached without having found the font, an error is returned to the client.
If an Access error was encountered, it is returned, otherwise aFont error isreturned. If avalid fontis
found, its reference count will be incremented and it will be checked to seeif the client has already opened
it before. If so, the previous ID will be returned. Otherwise the font will be placed in the resource data-
base.

The renderer will fill in the font’s header and property information, and may also choose to load or
create the font’s metrics or glyphs. If the glyphs are built, they will use any supplied format hint.

Whenever anew font is successfuly opened, the font and its name pattern will be placed in a name
cache. This cache exists to minimize the amount of work spent searching for afont. 1t will be flushed
when the font catalogue is modified. Client’swith private font catalogues will require private name caches.

17.15. QueryXInfo
Thefontid islooked up in the resource database, and the font’s header and property info is returned.

17.16. QueryXExtents8 QueryXExtentsl6

Thefontid islooked up in the resource database. The supplied list of characters (interpreted accord-
ing to request type) is then trandlated into alist of ranges. The font’s get_extents() function is then called.
It builds the requested list of extents, and returns them along with the number of extents. The results are
properly swapped and sent to the client.

17.17. QueryXBitmaps8 QueryXBitmapsl6

Thefontid islooked up in the resource database. The supplied list of characters (interpreted accord-
ing to request type) is then trandated into alist of ranges. The font’s get_bitmaps() function is called, and
the renderer will build up the requested bitmaps, using the specified format, and returns the bitmaps, the
number of glyphs and the offsets. The offsets are properly swapped and the offsets and bitmaps are sent to
the clients.

17.18. CloseFont

The font’ s reference count is decremented. If this was the last reference, the font’ s unload_font()
function is called to free the renderer’ s data, and the font’s FPE close_font() functionis called to free up
any FPE specific data.

-16 -

18. Configuration
The configuration mechanism is a simple keyword-value pair, separated by an’'=".
Configuration types:

cardinal non-negative number

boolean "[Yyles', "[Yy]" "on", "1", "[Nn]o", "[Nn]", "off", "0"
resolution cardinal ,cardinal

list of foo 1 or more of foo, separated by commas

Hereisan incomplete list of the supported keywords:
in thefirst column, a comment character

catalogue (list of string)
Ordered list of font path element names.

alternate-servers (list of string)
List of alternate serversfor this FS.

client-limit (cardinal)
Number of clients this FS will support before refusing
service.

clone-self (boolean)
Whether this FS should attempt to cloneitself or
use delegates when it reachs the client-limit.

default-point-size (cardinal)
The default pointsize (in decipoints) for fonts that
don’t specify.

default-resolutions (list of resolutions)
Resolutions the server supports by default.
Thisinformation may be used as a hint for pre-rendering.

error-file (string)
Filename of the error file. All warningsand errors
will belogged here.

port (cardinal)
The TCP port on which the server will listen for connections.

use-syslog (boolean)
Whether syslog(3) isto be used for errors.

Each renderer may also want private configuration options. The names should be prefixed by the
renderer name, ie pcf-, atm-.

Examples:

allow a”amegabyte of memory to be reserved for cache data
cache-size = 1000000

-17 -

catalogue = pcf:/usr/lib/X 11/fonts/misc,speedo:/ust/lib/fonts/speedo

