Inter-Client Communication Conventions Manual
Version 2.0
X Consortium Standard

X Version 11, Release 6.9/7.0

David Rosenthal
Sun Microsystems, Inc.

Version 2 edited by Stuart Wiarks
SunSoft, Inc.

X Window System is a trademark of The Open Group

Copyright © 1988, 1991, 1993, 1994 X Consortium

Permission is hereby granted, free of charge, ygarson obtaining a cgof this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The abee mpyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PRVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1987, 1988, 1989, 1993, 1994 Sun Microsystems, Inc.

Permission to use, cgpmodify, and distribute this documentation forygpurpose and without fee is hereby granted,
provided that the alve cpyright notice and this permission notice appear in all copies. Sun Microsystems makes no
representations about the suitability foy aarpose of the information in this document. This documentation is pro-
vided as is without express or implied warranty.

vi

Preface to Version 2.0

The goal of the ICCCM Version 2.0 effort was to add fe&cilities, to fix problems with earlier
drafts, and to impne readability and understandabilityhile maintaining compatibility with the
earlier versions. Thiglocument is the product ofie two years of discussion among the mem-
bers of the X Consortiumiwmtalk working group. The following people deserihanks for
their contributions:

Gabe Beged-Do Bill Janssen
Chan Benson Vania Joloboff
Jordan Bravn PhilKarlton
Larry Cable Kaleb Keithley
Ellis Cohen Mark Manasse
Donna Cowerse RalphMor
Brian Cripe Todd Newman
Susan Dahlber Bob Scheifler
Peter Daifuku Keith Taylor
Andrew deBlois JimVanGilder
Clive Feather Mile Wexer
Stephen Gildea Michael Yee

Christian Jacobi

It has been a privilege for me to work with this fine group of people.

Stuart W Marks
December 1993

Vii

Preface to Version 1.1

David Rosenthal hadverall architectural responsibility for the agmtions defined in this docu-
ment; he wrote most of the text and edited the document, buvédegment has been a commu-

nal efort. Thedetails were thrashed out in meetings at the January 1988 MIT X Conference and
at the 1988 Summer Usenix conference, and through months (gabytes) of argument on the
wmtalk mail alias. Thanks are due teeeyone who contributed, and especially to the following

people.
For the Selection section:

Jerry Farrell

Phil Karlton

Loretta Guarino Reid
Mark Manasse

Bob Scheifler

For the Cut-Buffer section:

Andrew Palay

For the Windav and Session Manager sections:

Todd Brunhof
Ellis Cohen

Jim Fulton
Hania Gajavska
Jordan Hubbard
Kerry Kimbrough
Audrey Ishizaki

For the Device Color Characterization section:
Keith Packard

Matt Landau
Mark Manasse
Bob Scheifler
Ralphswick

Mik Wexier

Glenn Widener

In addition, thanks are due to those who contributed to the public review:

Gary Combs
Errol Crary
Nang/ Cyprych
John Diamant
Clive Feather
Burns Fisher
Richard Greco
Tim Greenwod
Kee Hinckley
Brian Holt
John Interrante

viii

John Irwin
Vania Joloboff
JohrLaporta
Ken Lee
StuaMlarks
Alan Mimms
Colas Nahaboo
MarkPdrick
Steve Rtschke
Brad Reed
John Thomas

1. Introduction

It was an explicit design goal of X Version 11 to specify mechanism, noypéiika esult, a

client that comerses with the server using the protocol defined bXtiiéndow System Protocol
Version 11may operate correctly in isolation but may not coexist properly with others sharing the
same server.

Being a good citizen in the X Version 11 worlddlves adhering to caentions that geern
inter-client communications in the following areas:

* Selection mechanism

e Cut buffers

* Window manager

e Session manager

* Manipulation of shared resources
» Device color characterization

This document proposes suitable wanions without attempting to enforceygparticular user
interface. D permit clients written in different languages to communicate, thes@mions are
expressed solely in terms of protocol operations, not in terms of their associated Xlib interfaces,
which are probably more familiaiThe binding of these operations to the Xlib interface for C and
to the equident interfaces for other languages is the subject of other documents.

1.1. Ewlution of the Corventions

In the interests of timely acceptance, liher-Client Communication Conventions Manual
(ICCCM) covers only a minimal set of required aamtions. Theseornventions will be added to
and updated as appropriate, based on the experiences of the X Consortium.

As far as possible, these eentions are upwardly compatible with those in the February 25,

1988, draft that was distributed with the X Version 11, Release 2, of theasaftinsome areas,
semantic problems were dis@ped with those corentions, and, thus, complete upward compati-
bility could not be assured. These areas are noted in the text and are summarized in Appendix A.

In the course of deloping these corentions, a number of minor changes to the protocol were
identified as desirable. Thelso are identified in the text, are summarized in Appendix B, and

are offered as input to a future protocol revision process. If and when a protocol revision incorpo-
rating these changes is undertaken, it is anticipated that the ICCCM will need to be revised.
Because it is difficult to ensure that clients and servers are upgraded simultareientdyusing

the revised carentions should examine the minor protocol revision number and be prepared to
use the older caentions when communicating with an older server.

It is expected that these revisions will ensure that clients using thentions appropriate to pro-
tocol minor revisiom will interoperate correctly with those that use theventions appropriate
to protocol minor revision + 1 if the server supports both.

1.2. Atoms

Many of the cowentions use atomsTo assist the readgthe following sections attempt to
amplify the description of atoms that is provided in the protocol specification.

1.2.1. WhatAre Atoms?

At the conceptual lel, atoms are unique names that clients can use to communicate information
to each otherThey can be thought of as a bundle of octet® kkéring but without an encoding
being specified. The elements are not necessarily ASCII characters, and no case folding

happensg.

The protocol designers felt that passing these sequences of bytes back and forth across the wire
would be too costly Further they thought it important thatvents as the appear on the wire va

a fixed gze (in fact, 32 bytes) and that because sovaete contain atoms, a fixed-size represen-
tation for them was needed.

To dlow a fixed-size representation, a protocol requéstiefnAtom) was provided to register a
byte sequence with the servehich returns a 32-bit value (with the top three bits zero) that maps
to the byte sequence. Thevénse operator is alswalable (GetAtomName).

1.2.2. Pedefined Atoms
The protocol specifies a number of atoms as being predefined:

Predefined atoms are not strictly necessary and may not be useful in all environ-
ments, but thewill eliminate manylnternAtom requests in most applications.

Note that thg are predefined only in the sense of having numeric values, not in the
sense of having required semantics.

Predefined atoms are an implementation trickstddathe cost of interning marof the atoms
that are expected to be used during the startup phase of all applications. The results of the
InternAtom requests, which require a handshake, can be assapniedi .

Language interfaces should probably cache the atom-name mappings and get them only when
required. TheCLX interface, for instance, makes no distinction between predefined atoms and
other atoms; all atoms are viewed as symbols at theanterfHavever, a QX implementation

will typically keep a symbol or atom cache and will typically initialize this cache with the prede-
fined atoms.

1.2.3. NamingConventions

The built-in atoms are composed of uppercase ASCII characters with the logical words separated
by an underscore character (), for example, WM_ICOAMHB. The protocol specification rec-
ommends that atoms used fonpté vendor-specific reasons should begin with an underscore.

To prevent conflicts among genizations, additional prefixes should be chosen (for example,
_DEC_WM_DECORATION_GEOMETRY).

The names were chosen in this fashion toemtéasy to use them in a natural way within LISP.
Keyword constructors alle the programmer to specify the atoms as LISP atoms. If the atoms
were not all uppercase, special quotingventions would hee © be wsed.

1.2.4. Semantics

The core protocol imposes no semantics on atoms excepyasahesed in FONTPROP struc-
tures. fer further information on FONTPROP semantics, seé&thegical Font Description
Conventions

1.2.5. NameSpaces

The protocol defines six distinct spaces in which atoms are interpretgcgalicular atom may
or may not hee ©me valid interpretation with respect to each of these name spaces.

1 The comment in the protocol specification foternAtom that ISO Latin-1 encoding should
be used is in the nature of a gention; the server treats the string as a byte sequence.

Space Briefly Examples

Property name Name WM_HINTSWM_NAME, RGB_BEST_MAPR...
Property type Type WM_HINTS,CURSOR, RGB_COLOR_MAR..
Selection name Selection PRIMAR, SECONDARY, CLIPBOARD
Selection taget Target FILE_NAME, POSTSCRIPTPIXMAP, ...

Font property QUAD_WIDTH, POINT_SIZE, ..
ClientMessagetype WM_SAVE_YOURSELF DEC_SAVE EDITS,..

1.2.6. DiscriminatedNames

Sometimes a protocol requires an arbitrary number of similar objects that need unique names
(usually because the objects are created dynamisallyat names cannot bevamted in

advance). For example, a colormap-generating program might use the selection mechanism to
offer colormaps for each screen and so needs a selection name for each screen. Such names are
called “discriminated nameésand are discriminated by some entityis entity can be:

A screen
An X resource (a winde, a lormap, a visual, etc.)
A client

If it is only necessary to generate a fixed set of names for each value of the discriminating entity,
then the discriminated names are formed by suffixing an ordinary name according to the value of
the entity.

If nameis a descriptie portion for the named is a decimal number with no leading zeroes,»xand
is a hexadecimal number with exactly 8 digits, and using uppercase letters, then such discrimi-
nated names shall e the form:

Name Discriminated by Form Example
screen number nameSd WM_COMMS_S2
X resource name Rx GROUP_LEADER_R1234ABCD

To discriminate a name by client, use an X resource ID created by that client. This resource can
be of ary type.

Sometimes it is simply necessary to generate a unique set of names (for example, for the proper-
ties on a windw used by a MULTIPLE selection). These names showe e form:

Ud (e.g., UO Ul U2 U3.)

if the names stand totally alone, and the form:
name Ud (e.g., FOO_UO BAR_UO FOO_U1l BAR_U1)).

if they come in sets (here there areotgets, named “FOOand “BAR’’). The stand-alone O

form should be used only if it is clear that the module using it has complete cartrifieorele-

vant namespace or has the aetiooperation of all other entities that might also use these names.
(Naming properties on a windeccreated specifically for a particular selection is such a use; nam-
ing properties on the root windds dmost certainly not.)

In a particularly difficult case, it might be necessary to combine both forms of discrimination. If
this happens, the U form should come after the other form, thus:

FOO_R12345678_U23

Rationale

Existing protocols will not be changed to use these namingeaotions, because
doing so will cause too much disruption. Heee it is expected that future proto-
cols — both standard and yaie — will use these cementions.

2. Peer-to-Peer Communication by Means of Selections

Selections are the primary mechanism that X Version 11 defines for the exchange of information
between clients, for example, by cutting and pasting between winddotethat there can be an
arbitrary number of selections (each named by an atom) and thatrehglobal to the server.

Section 2.6 discusses the choice of an atom. Each selection is owned by a client and is attached
to a windav.

Selections communicate between an owner and a requé&b®owner has the data representing
the value of its selection, and the requestor vesdl. A requestor wishing to obtain the value of
a lection provides the following:

* The name of the selection

e The name of a property

e A window

» The atom representing the data type required

* Optionally, some parameters for the request

If the selection is currently owned, the owner reeean &ent and is expected to do the follow-
ing:

« Corvert the contents of the selection to the requested data type

» Place this data in the named property on the named window

* Send the requestor amant to let it knav the property isailable

Clients are strongly encouraged to use this mechanism. In partoisfdaying text in a perma-

nent windev without providing the ability to select and e@rt it into a string is definitely con-
sidered antisocial.

Note that all data transferred between an owner and a requestor must usually go by means of the
server in an X Version 11 emonment. Aclient cannot assume that another client can open the

same files orven communicate directly The other client may be talking to the server by means

of a completely different networking mechanism (feample, onelient might be DECnet and

the other TCP/IP). Thus, passing indirect references to data (such as, file names, host names, and
port numbers) is permitted only if both clients specifically agree.

2.1. Acquiring Selection Ownership

A client wishing to acquire ownership of a particular selection shouldseaBelectionOwner,
which is defined as follows:

| SetSelectionOwner

selection ATOM
owner. WINDOW or None
L time: TIMESTAMP or CurrentTime

The client should set the specified selection to the atom that represents the selection, set the speci-
fied owner to some windothat the client created, and set the specified time to some time

between the current last-change time of the selection concerned and the current server time. This
time value usually will be obtained from the timestamp of tleatethat triggers the acquisition of

the selection. Clients should not set the time valuéuentTime , because if thedo 2, they

have o way of finding when thegained ownership of the selection. Clients must use a window

they created so that requestors can rowents to the owner of the selectién.

Convention

Clients attempting to acquire a selection must set the time value $&tBelection-
Owner request to the timestamp of theset triggering the acquisition attempt, not

to CurrentTime . A zero-length append to a property is a way to obtain a timestamp
for this purpose; the timestamp is in the corresponBirgertyNotify event.

If the time in theSetSelectionOwnerrequest is in the future reledi © the serves airrent time
or is in the past relatt o the last time the specified selection changed handSet&elec-
tionOwner request appears to the client to succeed, but ownership is not actually transferred.

Because clients cannot name other clients dirdb#yspecified owner wineois used to refer to
the owning client in the replies BetSelectionOwner, in SelectionRequesand Selection-
Clear events, and possibly as a place to put properties describing the selection in quBstion.
discover the owner of a particular selection, a client showdke GetSelectionOwner which is
defined as follows:

| GetSelectionOwner
selection ATOM

L owner: WINDOW or None

Corvention

Clients are expected to provide some visible confirmation of seleatioarship. ©
male this feedback reliable, a client must perform a sequenedhkkfollowing:

SetSelectionOwner(selection=PRIMXRowner=Windav, time=timestamp)
owner = GetSelectionOwner(selection=PRIMARY)
if (owner != Window) Failure

If the SetSelectionOwnerrequest succeeds (not merely appears to succeed), the client that issues
it is recorded by the server as being the owner of the selection for the time period starting at the

2 At present, no part of the protocol requires requestors to sents ¢o the owner of a selec-
tion. Thisrestriction is imposed to prepare for possible future extensions.

specified time.

2.2. Responsibilitiesof the Selection Owner

When a requestor wants the value of a selection, the owneraeaé&electionRequesevent,
which is defined as follows:

SelectionRequest

owner. WINDOW

selection ATOM

target: ATOM

property. ATOM or None
requestor WINDOW

time: TIMESTAMP or CurrentTime

The specified owner and selection will be the values that were specifiedSatBelection-
Owner request. Thewner should compare the timestamp with the period it has owned the
selection and, if the time is outside, refuse $lséectionRequesby sending the requestor win-
dow a SelectionNotify event with the property set thlone (by means of &endEventrequest
with an empty eent mask).

More advanced selection owners are free to maintain a history of the value of the selection and to
respond to requests for the value of the selection during perigdewhed it een though they
do not own it n.

If the specified property islone, the requestor is an obsolete client. Owners are encouraged to
support these clients by using the specified target atom as the property name to be used for the
reply.

Otherwise, the owner should use the target to decide the form into which the selection should be
corverted. Someargets may be defined such that requestors can pass parameters along with the
request. Thewner will find these parameters in the property named in the selection request.

The type, format, and contents of this property are dependent upon the definition afeheltar

the target is not defined toveaparameters, the owner should ignore the property if it is present.

If the selection cannot be oganted into a form based on the target (and parameters, if any), the
owner should refuse th8electionRequestas previously described.

If the specified property is ndtone, the owner should place the data resulting fronvedimg
the selection into the specified property on the requestor wied should set the property’s
type to some appropriate value, which need not be the same as the specified target.

Corvention

All properties used to reply t8electionRequestvents must be placed on the
requestor winde.

In either case, if the data comprising the selection cannot be stored on the requestoi(femdo
example, because the server cannot provide sufficient memory), the owner must refededhe
tionRequest, as peviously described. See also section 2.5.

If the property is successfully stored, the owner should acknowledge the succes&isiaoiy
sending the requestor wingda SelectionNotify event (by means of &endEventrequest with
an empty mask) SelectionNotify is defined as follows:

SelectionNotify

requestor WINDOW
selectiontarget: ATOM

property. ATOM or None

time: TIMESTAMP or CurrentTime

The owner should set the specified selection, target, time, and property arguments to the values
receved in the SelectionRequesevent. (Notethat setting the property argumentNone indi-
cates that the coarsion requested could not be made.)

Convention

The selection, target, time, and property arguments iSéhectionNotify event
should be set to the values reediin the SelectionRequesevent.

If the owner receies nore than onéelectionRequesevent with the same requestaeelection,
target, and timestamp it must respond to them in the same order in wlyiehetieerecaied.

Rationale

It is possible for a requestor toveanultiple outstanding requests that use the same
requestor winde, slection, target, and timestamp, and that differ only in the prop-
erty. If this occurs, and one of the emrsion requests fails, the resultigglection-
Notify event will have its property argument set done. This may mak it impos-
sible for the requestor to determine whichwe@sion request had failed, unless the
requests are responded to in order.

The data stored in the property muatrgually be deletedA corvention is needed to assign the
responsibility for doing so.

Convention

Selection requestors are responsible for deleting properties whose naynmesdie
in SelectionNotify events (see section 2.4) or in properties with type MULTIPLE.

A selection owner will often need confirmation that the data comprising the selection has actually
been transferred. (For example, if the operation has side effects on thesomteanal data

structures, these should notégikace until the requestor has indicated that it has successfully
receved the data.) Owners should express interegtrispertyNotify events for the specified
requestor winde and wait until the property in thBelectionNotify event has been deleted

before assuming that the selection data has been transfearatie MULTIPLE request, if the
different conersions require separate confirmation, the selection owner can also watch for the
deletion of the individual properties named in the property irSiétlectionNotify event.

When some other client acquires a selection, the previous owneressz8electionClearevent,
which is defined as follows:

SelectionClear

owner. WINDOW
selection ATOM
time: TIMESTAMP

The timestamp argument is the time at which the ownership changed hands, and the owner argu-
ment is the windw the previous owner specified in BetSelectionOwnerrequest.

If an owner loses ownership while it has a transfer in progress (that is, beforevitsseotfica-
tion that the requestor has regsi dl the data), it must continue to service the ongoing transfer
until it is complete.

If the selection value completely changes, but the owner happens to be the same client (for exam-
ple, selecting a totally different piece of text in the sateen as before), then the client should
reacquire the selection ownership as if it were not the gwresiding a nev timestamp. If the

selection value is modified, but can still reasonably be viewed as the same selecté’dltﬂ)ject,

owner should tai& no ation.

2.3. Gwving Up Selection Ownership

Clients may either ge Y slection ownership voluntarily or lose it forcibly as the result of some
other client$ ctions.

2.3.1. \bluntarily Giving Up Selection Ownership

To relinquish ownership of a selection voluntgradydient should gecute aSetSelectionOwner
request for that selection atom, with owner specified@se and the time specified as the time-
stamp that was used to acquire the selection.

Alternatively, the client may destyothe windav used as the owner value of tBetSelection-
Owner request, or the client may terminate. In both cases, the ownership of the selection
involved will revert to None.

2.3.2. forcibly Giving Up Selection Ownership

If a client gives up avnership of a selection or if some other cliexeceites aSetSelection-
Owner for it and thus reassigns it forciblpe previous owner will recet aSelectionClear
event. For the definition of &electionClearevent, see section 2.2.

The timestamp is the time the selection changed hands. The specified owner is thethhabhdo
was Pecified by the current owner in i&etSelectionOwnerrequest.

2.4. Requestinga Selection

A client that wishes to obtain the value of a selection in a particular form (the requestor) issues a
ConvertSelection request, which is defined as follows:

3 The division between thesedwases is a matter of judgment on the part of the softwaede
oper.

ConvertSelection

selectiontarget: ATOM

property. ATOM or None
requestor WINDOW

time: TIMESTAMP or CurrentTime

The selection argument specifies the particular selectiived, and the target argument speci-

fies the required form of the informatioRor information about the choice of suitable atoms to

use, see section 2.6. The requestor should set the requestor argument tavahehidereated;

the owner will place the reply property there. The requestor should set the time argument to the
timestamp on thevent that triggered the request for the selectialn®. Notehat clients should

not specifyCurrentTime .

Convention

Clients should not us€urrentTime for the time argument of @onvertSelection
request. Insteadhey should use the timestamp of theeet that caused the request
to be made.

The requestor should set the property argument to the name of a property that the owner can use
to report the value of the selection. Requestors should ensure that the named property does not
exist on the windw before issuing th€onvertSelection request The exception to this rule is

when the requestor intends to pass parameters with the request (see below).

Rationale

It is necessary for requestors to delete the property before issuing the request so that
the target can later be extended tetprameters without introducing an incompati-
bility. Also note that the requestor of a selection need nat Km® client that owns

the selection nor the windoon which the selection was acquired.

Some targets may be defined such that requestors can pass parameters along with the request. If
the requestor wishes to provide parameters to a requsgssghitidd be placed in the specified

property on the requestor winaidoefore the requestor issues fBenvertSelection request, and

this property should be named in the request.

Some targets may be defined so that parameters are optional. If no parameters are to be supplied
with the request of such a target, the requestor must ensure that the property does not exist before
issuing theConvertSelection request.

The protocol allows the property field to be seNtne, in which case the owner is supposed to
choose a property name. Howeg it is difficult for the owner to mak this choice safely.

4 This requirement is mein version 2.0, and, in general, existing clients do not conform to this
requirement. @ prevent these clients from breaking, no existing targets should be extended to take
parameters until sufficient time has passed for clients to be updated. Note that the MULTIPLE tar-
get was defined to takparameters in version 1.0 and its definition is not changing. There is thus no
conformance problem with MULTIPLE.

Corventions

1. Requestorshould not uséone for the property argument of@onvertSelec-
tion request.

2. OwnergeceivingConvertSelection requests with a property argument of
None are talking to an obsolete client. Waould choose the target atom as
the property name to be used for the reply.

The result of theConvertSelection request is that &electionNotify event will be receved. For
the definition of aSelectionNotify event, see section 2.2.

The requestomselection, time, and target arguments will be the same as those GorertSe-
lection request.

If the property argument idone, the conersion has been refused. This can mean either that
there is no owner for the selection, that the owner does not support Yessammimplied by the
target, or that the server did novhaifficient space to accommodate the data.

If the property argument is ndtone, then that property will exist on the requestor windd@he
value of the selection can be retréd from this property by using th@etProperty request,
which is defined as follows:

GetProperty

window. WINDOW

property. ATOM

type: ATOM or AnyPropertyType
long-offsetlong-length CARD32
delete BOOL

type: ATOM or None
format: {0, 8, 16, 32}
bytes-after: CARD32
value: LISTOfINT8 or LISTofINT16 or LISTOfINT32

When usingGetProperty to retrieve the value of a selection, the property argument should be set

to the corresponding value in tlselectionNotify event. Becauséhe requestor has no way of

knowing beforehand what type the selection owner will use, the type argument should be set to
AnyPropertyType. Seveal GetProperty requests may be needed to rewidl the data in the
selection; each should set the long-offset argument to the amount of datedreodar, and the

size argument to some reasonable buffer size (see section 2.5). If the returned value of bytes-after
is zero, the whole property has been transferred.

Once all the data in the selection has been vetti@gvhich may require getting the values of sev-
eral properties — see section 2.7), the requestor should delete the propertgatettwnNotify
request by using &etProperty request with the delete argument seftoe. As previously dis-
cussed, the owner has no way of knowing when the data has been transferred to the requestor
unless the property is rewesl.

10

Convention

The requestor must delete the property named iséhectionNotify once all the
data has been retvied. Therequestor should woke dther DeleteProperty or Get-
Property (delete==True) after it has successfully rettbdl| the data in the selec-
tion. For further information, see section 2.5.

2.5. Large Data Transfers
Selections can get large, which poses poblems:

Transferring large amounts of data to the server is exgensi

All servers will hae limits on the amount of data that can be stored in properties. Exceed-
ing this limit will result in anAlloc error on theChangeProperty request that the selection
owner uses to store the data.

The problem of limited server resources is addressed by the followingntioms:

Corventions

1. Selectiorowners should transfer the data describing a large selectionvgelati
to the maximum-request-size yheceved in the connection handshake) using
the INCR property mechanism (see section 2.7.2).

2. Ay client usingSetSelectionOwnerto acquire selection ownership should
arrange to procesalloc errors in property change requesksr clients using
Xlib, this involves using thexSetErrorHandler function to awerride the
default handler.

3. Aselection owner must confirm that Atloc error occurred while storing the
properties for a selection before replying with a confirnthedectionNotify
event.

4. Whenstoring large amounts of data (relatio maximum-request-size), clients
should use a sequence@hangeProperty(mode==Append) requests for rea-
sonable quantities of data. Thigids locking servers up and limits the waste
of data anAlloc error would cause.

5. If an Alloc error occurs during the storing of the selection data, all properties
stored for this selection should be deleted andCiwavertSelection request
should be refused (see section 2.2).

6. To avoid locking servers up for inordinate lengths of time, requestors retrieving
large quantities of data from a property should perform a seri@gtdfrop-
erty requests, each asking for a reasonable amount of data.

Advice to Implementors

Single-threaded servers shoulddakre to &oid locking up during large data trans-
fers.

2.6. Useof Selection Atoms

Defining a nev atom consumes resources in the server that are not released until the server reini-
tializes. Thusreducing the need for newly minted atoms is an important goal for the use of the
selection atoms.

11

2.6.1. SelectiolAtoms

There can be an arbitrary number of selections, each named by anTatonmform with the
inter-client conentions, howeer, dients need deal with only these three selections:

. PRIMARY

+ SECONDARY

. CLIPBOARD

Other selections may be used freely fovgig communication among related groups of clients.

2.6.1.1. ThePRIMARYY Selection

The selection named by the atom PRIMAR used for all commands that &knly a single
argument and is the principal means of communication between clients that use the selection
mechanism.

2.6.1.2. TheSECONDARY Selection
The selection named by the atom SECONNARused:

* Asthe second argument to commands takingdnguments (for example, “exchange pri-
mary and secondary selections”)

» As ameans of obtaining data when there is a primary selection and the user does not want to
disturb it

2.6.1.3. TheCLIPBOARD Selection

The selection named by the atom CLIPBOARD is used to hold data that is being transferred
between clients, that is, data that usually is being cut and then pasted or copied and then pasted.
Whenever a dient wants to transfer data to the clipboard:

* It should assert ownership of the CLIPBOARD.

» Ifitsucceeds in acquiring ownership, it should be prepared to respond to a request for the
contents of the CLIPBOARD in the usual way (retaining the data to be able to return it).
The request may be generated by the clipboard client described belo

» Ifitfails to acquire ownership, a cutting client should not actually perform the cut or provide
feedback that would suggest that it has actually transferred data to the clipboard.

The owner should repeat this process whenthe data to be transferred would change.

Clients wanting to paste data from the clipboard should request the contents of the CLIPBOARD
selection in the usual way.

Except while a client is actually deleting or copying data, the owner of the CLIPBOARD selec-
tion may be a single, special client implemented for the purpose. This client maintains the con-
tent of the clipboard up-to-date and responds to requests for data from the clipboard as follows:

* Itshould assert ownership of the CLIPBOARD selection and reasseyttinathe clip-
board data changes.

» Ifitloses the selection (because another client has samdatefor the clipboard), it
should:

- Obtain the contents of the selection from ther me/ner by using the timestamp in the
SelectionClearevent.

- Attempt to reassert ownership of the CLIPBOARD selection by using the same time-
stamp.

12

- Restart the process using a newly acquired timestamp if this attaibsptThistime-
stamp should be obtained by asking the current owner of the CLIPBOARD selection
to corvert it to a TIMESTAMP |If this coversion is refused or if the same timestamp
is receved twice, the clipboard client should acquire a fresh timestamp in the usual
way (for example by a zero-length append to a property).

» Itshould respond to requests for the CLIPBOARD contents in the usual way.

A special CLIPBOARD client is not necessarihe protocol used by the cutting client and the
pasting client is the same whether the CLIPBOARD client is running or not. The reasons for run-
ning the special client include:

e Stability - If the cutting client were to crash or terminate, the clipboard value would still be
available.

* Feedback — The clipboard client can display the contents of the clipboard.

e Simplicity — A client deleting data does notveato retain it for so long, thus reducing the
chance of race conditions causing problems.

The reasons not to run the clipboard client include:

» Performance - Data is transferred only if it is actually required (that is, when some client
actually wants the data).

* Flexibility — The clipboard data may beadable as more than one target.

2.6.2. Target Atoms

The atom that a requestor supplies as the targeCohaertSelection request determines the

form of the data supplied. The set of such atoms is extensible, but a generally accepted base set
of target atoms is needed. As a starting point for this, the following table contains thosgehat ha
been suggested so far.

Atom Type DataReceved
ADOBE_PORABLE_DOCUMENT_FORMAT

STRING [1]
APPLE_PICT APPLE_PICT [2]
BACKGROUND PIXEL A list of pixel values
BITMAP BITMAP A list of bitmap IDs
CHARACTER_POSITION SEN The start and end of the selection in bytes
CLASS TEXT (see section 4.1.2.5)
CLIENT_WINDOW WINDOW Any top-level window owned by the selection

owner

COLORMAP COLORMAP A list of colormap IDs
COLUMN_NUMBER SAN The start and end column numbers
COMPOUND_TEXT COMPOUND_TEXT Compound &xt
DELETE NULL (see section 2.6.3.1)
DRAWABLE DRAWABLE A list of drawable IDs
ENCAPSULATED_POSTSCRIPT

STRING [3], Appendix H
ENCAPSULATED_POSTSCRIPT_INTERCHANGE

STRING [3], Appendix H

13

Atom Type DataReceved

FILE_ NAME TEXT The full path name of a file
FOREGROUND PIXEL A list of pixel values

HOST_NAME TEXT (see section 4.1.2.9)

INSERT_PROPERY NULL (see section 2.6.3.3)
INSERT_SELECTION NULL (see section 2.6.3.2)

LENGTH INTEGER The number of bytes in the selectfon
LINE_NUMBER SRAN The start and end line numbers

LIST LENGTH INTEGER The number of disjoint parts of the selection
MODULE TEXT The name of the selected procedure
MULTIPLE ATOM_PAIR (see the discussion that follows)

NAME TEXT (see section 4.1.2.1)

ODIF TEXT ISO Office Document Interchange Format
OWNER_OS TEXT The operating system of the owner client
PIXMAP PIXMAP ’ A list of pixmap IDs

POSTSCRIPT STRING [3]

PROCEDURE TEXT The name of the selected procedure
PROCESS INTEGERTEXT The process ID of the owner

STRING STRING ISO Latin-1 (+TAB+NEWLINE) text
TARGETS AOM A list of valid target atoms

TASK INTEGER, TEXT The task ID of the owner

TEXT TEXT The text in the ownes’choice of encoding
TIMESTAMP INTEGER The timestamp used to acquire the selection
USER TEXT The name of the user running the owner
References:

[1] AdobeSystems, Incorporatedortable Document Format Reference ManuBkading,

MA, Addison-Weslg, ISBN 0-201-62628-4.

[2] Apple ComputeyIncorporated.Inside Macintosh, Volume Chapter 4, “Color Quick-
Draw,” Color Picture Brmat. ISBN0-201-17719-6.

[3] AdobeSystems, Incorporated?ostScript Languge Reference ManualReading, MA,
Addison-Weslg, ISBN 0-201-18127-4.

It is expected that this table will gmover time.
Selection owners are required to support the followirgetar Allother targets are optional.

5 Earlier versions of this document erroneously specified thatmion of the PIXMAP target
returns a property of type DRMABLE instead of PIXMAP Implementors should bevare of this
and may want to support the DRABLE type as well to ally for compatibility with older

clients.

6 The targets ENCAPSULATED_POSTSCRIPT and ENCAPSU-
LATED_POSTSCRIPT_INTERCHANGE are eggdient to the targets _ADOBE_EPS and
_ADOBE_EPSI (respedctily) that appear in the selection targets regisiiiye _ ADOBE_ targets
are deprecated, but clients are encouraged to continue to support them for backward compatibility.

" This definition is ambiguous, as the selection may beetta into ay of seveal targets that
may return differing amounts of data. The requestor has no way of knowing which,df threse
targets corresponds to the result of LENGTH. Clients are advised that no guarantees can be made
about the result of a ceersion to LENGTH,; its use is thus deprecated.

14

» TARGETS - The owner should return a list of atoms that represent the targets for which an
attempt to covert the current selection will succeed (barring unforseeable problems such as
Alloc errors). Thidist should include all the required atoms.

* MULTIPLE - The MULTIPLE target atom is valid only when a property is specified on the
ConvertSelection request. Ithe property argument in ttgelectionRequesevent is None
and the target is MULTIPLE, it should be refused.

When a selection owner reees a SelectionRequedtarget==MULTIPLE) request, the

contents of the property named in the request will be a list of atom pairs: the first atom nam-
ing a target and the second naming a prop&tyng is not valid here). The effect should be

as if the owner had resedd a £quence ofelectionRequesevents (one for each atom pair)
except that:

- The owner should reply with 8electionNotify only when all the requested a@n
sions hae keen performed.

- If the owner fails to comert the target named by an atom in the MULTIPLE property,
it should replace that atom in the property witbne.

Corvention

The entries in a MULTIPLE property must be processed in the ordeggpear
in the property For further information, see section 2.6.3.

The requestor should delete each individual property when it has copied the data from that
corversion, and the property specified in the MULTIPLE request when it has copied all the
data.

The requests are otherwise to be processed indepenadadtirg/ should succeed or fail
independently The MULTIPLE target is an optimization that reduces the amount of proto-
col traffic between the owner and the requestor; it is not a transaction mechBaism.
example, a client may issue a MULTIPLE request witb targets: a data target and the
DELETE taget. TheDELETE target will still be processeden if the cowersion of the

data target fails.

« TIMESTAMP - To avoid some race conditions, it is important that requestors be able to dis-
cover the timestamp the owner used to acquwaership. Untiland unless the protocol is
changed so that @GetSelectionOwnerrequest returns the timestamp used to acquire owner-
ship, selection owners must supportwe@sion to TIMESTAMP returning the timestamp
they used to obtain the selection.

2.6.3. Selectiormargets with Side Effects

Some targets (for example, DELETE)Vhade efects. D render these targets unambiguous, the
entries in a MULTIPLE property must be processed in the order thesgpear in the property.

In general, targets with side effects will return no information, that ig wviilereturn a zero

length property of type NULL. (Type NULL means the resultrdérnAtom on the string

“NULL", not the value zero.) In all cases, the requested side effect must be performed before the
corversion is accepted. If the requested side effect cannot be performed, the corresponding con-
version request must be refused.

15

Corventions

1. Targets with side effects should return no information (that ig,sthauld hae
a zero-length property of type NULL).

2. Theside effect of a target must be performed before theecsion is
accepted.

3. If the side effect of a target cannot be performed, the correspondivegsion
request must be refused.

Problem

The need to delay responding to thenvertSelection request until a further coar-
sion has succeeded poses problems for the Intrinsics interface that need to be
addressed.

These side-effect targets are used to implement operations such as “exchange PRHAR
SECONDAFY selections.

2.6.3.1. DELETE

When the owner of a selection raasi a equest to corert it to DELETE, it should delete the
corresponding selection (whaee doing so means for its internal data structures) and return a
zero-length property of type NULL if the deletion was successful.

2.6.3.2. INSER_SELECTION

When the owner of a selection reesi a equest to corert it to INSERT_SELECTION, the

property named will be of typeT®M_PAIR. Thefirst atom will name a selection, and the sec-

ond will name a tayet. Theowner should use the selection mechanism te@bthe named

selection into the named target and should insert it at the location of the selection for which it got
the INSERT_SELECTION request (whegedoing so means for its internal data structures).

2.6.3.3. INSER_PROPERTY

When the owner of a selection reasia equest to corert it to INSERT_PROPERT,Yt should
insert the property named in the request at the location of the selection for which it got the
INSERT_SELECTION request (whatx doing so means for its internal data structures).

2.7. Useof Selection Properties

The names of the properties used in selection data transfer are chosen by the réheess®
of None property fields inConvertSelection requests (which request the selection owner to
choose a name) is not permitted by these@uions.

The selection ownerabys chooses the type of the property in the selection data traSsfae
types hae pecial semantics assigned by wention, and these are reviewed in the following sec-
tions.

In all cases, a request for e@rsion to a target should return either a property of one of the types
listed in the previous table for that target or a property of type INCR and then a property of one of
the listed types.

Certain selection properties may contain resource IDs. The selection owner should ensure that
the resource is not destroyed and that its contents are not changed until after the selection transfer
is complete. Requestors that rely on the existence or on the proper contents of a resource must

16

operate on the resource (for example, by copying the contents of a pixmap) before deleting the
selection property.

The selection owner will return a list of zero or more items of the type indicated by the property
type. Ingeneral, the number of items in the list will correspond to the number of disjoint parts of
the selection. Some targets (for example, side-effect targets) will be of length zero iwegpecti
the number of disjoint selection parts. In the case of fixed-size items, the requestor may deter-
mine the number of items by the property size. Selection property types are listed in the table
below. For variable-length items such as text, the separators are also listed.

Type Atom Format Separator
APPLE_PICT 8 Self-sizing
ATOM 32 Fixed-size
ATOM_PAIR 32 Fixed-size
BITMAP 32 Fixed-size
C_STRING 8 Zero
COLORMAP 32 Fixed-size
COMPOUND_TEXT 8 Zero
DRAWABLE 32 Fixed-size
INCR 32 Fixed-size
INTEGER 32 Fixed-size
PIXEL 32 Fixed-size
PIXMAP 32 Fixed-size
SFRAN 32 Fixed-size
STRING 8 Zero
WINDOW 32 Fixed-size

It is expected that this table will groover time.

2.7.1. TEXT Properties

In general, the encoding for the characters in a text string property is specified by its type. Itis
highly desirable for there to be a simplejanible mapping between string property types and

ary character set names embedded within font namesyifoamn naming standard adopted by the
Consortium.

The atom TEXT is a polymorphic tget. Requestingorversion into TEXT will cowert into
whatever encoding is cowenient for the ownerThe encoding chosen will be indicated by the
type of the property returned. TEXT is not defined as a type; it wiérriee the returned type
from a selection comrsion request.

If the requestor wants the owner to return the contents of the selection in a specific encoding, it
should request cesrsion into the name of that encoding.

In the table in section 2.6.2, the word TEXT (in the Type column) is used to indicate one of the
registered encoding names. The type would not actually be TIEX®uld be STRING or some
other AAOM naming the encoding chosen by the owner.

STRING as a type or a target specifies the ISO Latin-1 character set plus the control characters
TAB (octal 11) and NEWLINE (octal 12). The spacing interpretation of TAB is context depen-
dent. OtheASCII control characters are explicitly not included in STRING at the present time.

COMPOUND_TEXT as a type or a target specifies the Compoextdnferchange format; see
the Compound &x Encoding

17

There are some text objects where the source or intendedsiber case may be, does novha

specific character set for the text, but instead merely requires a zero-terminated sequence of bytes
with no other restriction; no element of the selection mechanism may assumey thgearalue

is forbidden or that gntwo dffering sequences are egdent® For these objects, the type

C_STRING should be used.

Rationale

An example of the need for C_STRING is to transmit the names of fileg; opan

ating systems do not interpret filenames as having a character set. For example, the
same character string uses a different sequence of bytes in ASCIlI and EBCDIC, and
SO most operating systems see these as different filenames and offer no way to treat
them as the same. Thus no character-set based property type is suitable.

Type STRING, COMPOUND_TEXTand C_STRING properties will consist of a list of elements
separated by null characters; other encodings will need to specify an appropriate list format.

2.7.2. INCRProperties

Requestors may reeei a poperty of type INCRin response to grtarget that results in selec-

tion data. This indicates that the owner will send the actual data incremefitadiyontents of

the INCR property will be an integavhich represents a lower bound on the number of bytes of
data in the selection. The requestor and the selection owner transfer the data in the selection in
the following manner.

The selection requestor starts the transfer process by deleting the (type==INCR) property forming
the reply to the selection.

The selection owner then:

» Appends the data in suitable-size chunks to the same property on the sameasieo
selection reply with a type corresponding to the actual type of therted selection. The
size should be less than the maximum-request-size in the connection handshake.

* Waits between each append faPmpertyNotify (state==Deleted)vent that shows that the
requestor has read the data. The reason for doing this is to limit the consumption of space in
the server.

* Waits (after the entire data has been transferred to the server) BrapertyNo-
tify (state==Deleted)vent that shows that the data has been read by the requestor and then
writes zero-length data to the property.

The selection requestor:
* Waits for theSelectionNotify event.
« Loops:
- Retrieving data usingsetProperty with the delete argumefit ue.
- Waiting for aPropertyNotify with the state argumemewValue.
* Waits until the property named by tReopertyNotify event is zero-length.

8 Note that this is different from STRING, where midyte values are forbidden, and from
COMPOUND_TEXT where, for example, inserting the sequence 27, 40, 66 (designate ASCII into
GL) at the start does not alter the meaning.

% These properties were called INCREMENTAL in an earlier draft. The protocol for using them
has changed, and so the name has changeditbcnfusion.

18

» Deletes the zero-length property.

The type of the comerted selection is the type of the first partial propefitye remaining partial
properties must va the same type.

2.7.3. DRANABLE Properties

Requestors may resei roperties of type PIXMAFBITMAP, DRAWABLE, or WINDOW,
which contain an appropriate ID. While information about thesealas is &ailable from the
server by means of theetGeometry request, the following items are not:

* Foreground pixel
» Background pixel
* Colormap ID

In general, requestors ca@nting into targets whose returned type in the table in section 2.6.2 is
one of the DRMWABLE types should expect to ot also into the following targets (using the
MULTIPLE mechanism):

. FOREGROUND returns a PIXEL value.
. BACKGROUND returns a PIXEL value.
* COLORMARP returns a colormap ID.

2.7.4. SRAN Properties

Properties with type SPAN contain a list of cardinal-pairs with the length of the cardinals deter-
mined by the format. The first specifies the starting position, and the second specifies the ending
position plus one. The base is zero. Ifithee the same, the span is zero-length and is before the
specified position. The units are implied by the target atom, such as LINE_NUMBER or CHAR-
ACTER_POSITION.

2.8. ManagerSelections

Certain clients, often called managersgetak esponsibility for managing shared resources. A
client that manages a shared resource shoutdarakership of an appropriate selection, named
using the coventions described in sections 1.2.3 and 1.A&lient that manages multiple
shared resources (or groups of resources) showddatership of a selection for each one.

The manager may support eersion of various targets for that selection. Managers are encour-
aged to use this technique as the primary means by which clients interact with the managed
resource. Not¢hat the cowentions for interacting with the wingdomanager predate this section;
as a result maninteractions with the windo manager use other techniques.

Before a manager takes ownership of a manager selection, it should Gs3etectionOwner

request to check whether the selection is already owned by another client, and, where appropriate,
it should ask the user if thewagnanager should replace the old one. If so, it may thendak-

ership of the selection. Managers should acquire the selection using anhedded expressly

for this purpose. Managers must conform to the rules for selection owners described in sections
2.1 and 2.2, and tlgamust also support the required targets listed in section 2.6.2.

If a manager loses ownership of a manager selection, this means thatameger is taking

over its responsibilities. The old manager must release all resources it has managed and must
then destrp the windav that owned the selectiorzor example, a winde manager losing own-
ership of WM_S2 must deselect frdBubstructureRedirect on the root winde of screen 2

before destroying the windothat owned WM_S2.

19

When the n& manager notices that the wind@wning the selection has been destroyed, it

knows that it can successfully proceed to control the resource it is planning to manage. If the old
manager does not destrihe windav within a reasonable time, themenanager should check

with the user before destroying the wimdiself or killing the old manager.

If a manager wants to\g up, on its own, management of a shared resource controlled by a selec-
tion, it must do so by releasing the resources it is managing and then by destroying the window
that owns the selection. It should not first disown the selection, since this introduces a race condi-
tion.

Clients who are interested in knowing when the owner of a manager selection is no longer man-
aging the corresponding shared resource should selestriaritureNotify on the windav own-

ing the selection so thiean be notified when the windds destroyed. Clientsare warned that

after doing aGetSelectionOwnerand selecting foStructureNotify , they should do aGetSe-
lectionOwner again to ensure that the owner did not change after initially getting the selection
owner and before selecting f&tructureNotify .

Immediately after a manager successfully acquires ownership of a manager selection, it should
announce its aval by sending aClientMessageevent. Thisevent should be sent using the
SendEventprotocol request with the following arguments:

Argument Value
destination: the root windwoof screen 0, or the root windoof the appropriate screen
if the manager is managing a screen-specific resource
propagte: False
event-mask: StructureNotify
event: ClientMessage
type: MANAGER
format: 32
data[0]:° timestamp
data[1]: manageselection atom
data[2]: thewindow owning the selection
data[3]: manageselection-specific data
data[4]: manageselection-specific data

Clients that wish to kne@ when a specific manager has started should seleStrfioctureNotify
on the appropriate root windoand should watch for the appropriate MASER Client-
Message

3. Peer-to-Peer Communication by Means of Cut Buffers

The cut buffer mechanism is much simpler but much less powerful than the selection mechanism.
The selection mechanism is aetin that it provides a link between the owner and requestor

clients. Thecut buffer mechanism is pagsian ovner places data in a cut buffer from which a
requestor retriges the data at some later time.

The cut buffers consist of eight properties on the root of screen zero, named by the predefined
atoms CUT_BUFFERO to CUT WB-FER7. Theseroperties must, at presentybaype
STRING and format 8A client that uses the cut buffer mechanism must initially ensure that all

10\We wse the notation data[n] to indicate tHeelement of the LISTofINT8, LISTofINT16, or
LISTofINT32 in the data field of th€lientMessage according to the format field. The list is
indexed from zero.

20

eight properties exist by usinghangeProperty requests to append zero-length data to each.

A client that stores data in the cut buffers (an owner) first must rotate the ring of buffers by plus 1
by usingRotatePropertiesrequests to rename each buffer; that is, CUT_BUFFERO to
CUT_BUFFER1, CUT_BUFFER1 to CUT_BUFFERZ2,,.and CUT_BUFFER?7 to

CUT_BUFFERO. Itthen must store the data into CUT_BUFFERO by usi@pangeProperty

request in mod®eplace

A client that obtains data from the cut buffers should uSetroperty request to retriee the
contents of CUT_BUFFERO.

In response to a specific user request, a client may rotate the cut buffers by minus 1 by using
RotatePropertiesrequests to rename each buffer; that is, CUT_BUFFER7 to CUT_BUFFERS,
CUT_BUFFERG6 to CUT_BUFFERS,..,and CUT_BUFFERO to CUT_BUFFER?7.

Data should be stored to the cut buffers and the ring rotated only when requested by explicit user
action. Userslepend on their mental model of cut buffer operation and need to be able to identify
operations that transfer data to and fro.

4. Client-to-Window-Manager Communication

To permit windav managers to perform their role of mediating the competing demands for

resources such as screen space, the clients being managed must adhere to vertthims@md
must expect the windomanagers to do léwnise. Thes&ornventions are ceered here from the

client’s point of view.

In general, these cuentions are somewhat comgland will undoubtedly change aswevin-
dow management paradigms areveleped. Thusthere is a strong biasviard defining only
those comentions that are essential and that apply generally to all wimsEnagement
paradigms. Clientdesigned to run with a particular windananager can easily define \ate
protocols to add to these a@ntions, but the must be avare that their users may decide to run
some other winde manager no matter omuch the designers of the yaie protocol are con-
vinced that thg haveseen the “one true lightdf user interfaces.

It is a principle of these ceantions that a general client should neithenkmor care which win-
dow manager is running pmdeed, if one is running at all. The gentions do not support all
client functions without a wind® manager running; for example, the concept of Iconic is not
directly supported by clients. If no windkananager is running, the concept of Iconic does not
apply A goal of the cowentions is to mad it possible to kill and restart windomanagers with-
out loss of functionality.

Each windav manager will implement a particular windananagement policy; the choice of an
appropriate winde management policfor the uses drcumstances is not one for an individual
client to male kut will be made by the user or the usey/stem administratorThis does not
exclude the possibility of writing clients that use avgiie protocol to restrict themselves to oper-
ating only under a specific windomanager Rather it merely ensures that no claim of general
utility is made for such programs.

For example, the claim is often made: “The client I'm writing is important, and it needs to be on
top” Perhaps it is important when it is being run in earnest, and it should then be run under the
control of a winder manager that recognizes “importdnindows through some pete proto-

col and ensures that thare on top. Howeer, imagine, for example, that the “importdntlient

is being debgged. Then, ensurirthat it is alvays on top is no longer the appropriate window
management pol¢ and it should be run under a windeananager that allows other windows (for
example, the debugger) to appear on top.

21

4.1. Client’s Actions

In general, the object of the X Version 11 design is that clients should, as far as possible, do
exactly what thg would do in the absence of a windmanagerexcept for the following:

» Hinting to the windav manager about the resourcesytiuld like to dotain

» Cooperating with the winde manager by accepting the resourcey tire allocated een if
they are not those requested

» Being prepared for resource allocations to changeydirae

4.1.1. Creating a Top-Level Window

A client’s top-level windowis a windav whose oerride-redirect attribute ifalse. It must either
be a child of a root windg or it must hae keen a child of a root windoimmediately prior to
having been reparented by the windmanager If the client reparents the wingdaway from
the root, the windw is no longer a top-keel window; but it can become a top#twindow agan
if the client reparents it back to the root.

A client usually would expect to create its topdevindows as children of one or more of the
root windows by using some boilerplateditie following:

win = XCreateSimpleWindow(dp DefaultRootWindow(dpy), xsh.x, xsh.y,
xsh.width, xsh.height, bviod, bg);

If a particular one of the root windows was required, haweét could use something lékthe fol-
lowing:

win = XCreateSimpleWindow(dp RootWindow(dy, screen), xsh.x, xsh.y,
xsh.width, xsh.height, bviod, bg);

Ideally, it should be possible toverride the choice of a root windoand allav clients (including
window managers) to treat a nonroot windas a geudo-root. Thisvould allow, for example,

the testing of winde managers and the use of application-specific winodh@anagers to control

the subwindows owned by the members of a related suite of clients. Doing so properly requires
an extension, the design of which is under study.

From the cliens point of view, the windav manager will rgard its top-lerel window as keing in
one of three states:

. Normal
. Iconic
. Withdrawn

Newly created windows start in the Withdrawn stafeansitions between states happen when the
top-level window is mapped and unmapped and when the wind@nager recges certain mes-
sages. br further details, see sections 4.1.2.4 and 4.1.4.

4.1.2. ClientProperties

Once the client has one or more topelevindows, it should place properties on those windows
to inform the windav manager of the behavior that the client desii@$ndonr managers will
assume values thdind comvenient for aly of these properties that are not supplied; clients that
depend on particular values must explicitly supply them. The wimdanager will not change
properties written by the client.

22

The windav manager will examine the contents of these properties when thewvindkes the
transition from the Withdrawn state and will monitor some properties for changes while the win-
dow is in the Iconic or Normal state. When the client changes one of these properties, it must use
Replacemode to werwrite the entire property with medata; the windew manager will retain no
memory of the old value of the proper#ll fields of the property must be set to suitable values

in a singleReplacemode ChangeProperty request. Thignsures that the full contents of the
property will be mailable to a nev window manager if the existing one crashes, if it is shut down

and restarted, or if the session needs to be shut down and restarted by the session manager.

Convention

Clients writing or rewriting winde manager properties must ensure that the entire
content of each property remains valid at all times.

Some of these properties may contain the IDs of resources, such as windows or pixmaps. Clients
should ensure that these resources exist for at least as long as the aringliich the property
resides.

If these properties are longer than expected, clients should ignore the remainder of the property.
Extending these properties is reserved to the X Consortiuvatgextensions to them are forbid-
den. Pwate additional communication between clients and wind@nagers should takdace

using separate properties. The only exception to this rule is the WOTOGROLS property,

which may be of arbitrary length and which may contain atoms representiaig priotocols

(see section 4.1.2.7).

The next sections describe each of the properties the clients need to set, in tyrare Shenma-
rized in the table in section 4.4.

4.1.2.1. WM_NAME Property

The WM_NAME property is an uninterpreted string that the client wants the wimagmager to
display in association with the winddfor example, in a winde headline bar).

The encoding used for this string (and all other uninterpreted string properties) is implied by the
type of the propertyThe type atoms to be used for this purpose are described in section 2.7.1.

Window managers are expected to raan éfort to display this information. Simply ignoring
WM_NAME is not acceptable behavio€lients can assume that at least the first part of this
string is visible to the user and that if the information is not visible to theitisdiecause the
user has taken an explicit action to mékinvisible.

On the other hand, there is no guarantee that the user can see the WM_NAMBEatrifithe

window manager supports windoheadlines. Theiser may hae daced the headline off-screen

or have wvered it by other windas. WM_NAME should not be used for application-critical
information or to announce asynchronous changes of an applisatai®’ that require timely

user response. The expected uses are to permit the user to identify one of a number of instances
of the same client and to provide the user with noncritical state information.

Even windav managers that support headline bars will place some limit on the length of the
WM_NAME string that can be visible; brevity here will pay dividends.

4.1.2.2. WM_ICON_NAME Property

The WM_ICON_NAME property is an uninterpreted string that the client wants to be displayed
in association with the winaowhen it is iconified (for example, in an icon label). In other
respects, including the type, it is similar to WMAME. For obvious geometric reasons, fewer
characters will normally be visible in WM_ICON_NAME than WM_NAME.

23

Clients should not attempt to display this string in their icon pixmaps or windows; tager
should rely on the winde manager to do so.

4.1.2.3. WM_NORMAL_HINTS Property

The type of the WM_NORMAL_HINTS property is WM_SIZE_HINTS. Its contents are as fol-
lows:

Field Type Comments

flags CARD32 (see the next table)

pad 4*CARD32 For backwards compatibility
min_width INT32 If missing, assume base_width
min_height INT32 If missing, assume base_height
max_width INT32

max_height INT32

width_inc INT32

height_inc INT32

min_aspect (INT32,INT32)

max_aspect (INT32,INT32)

base_width INT32 If missing, assume min_width
base_height INT32 If missing, assume min_height
win_gravity INT32 If missing, assum&lorthWest

The WM_SIZE_HINTS.flags bit definitions are as follows:

Name \alue Field

USPosition 1 User-specified x, y

USSize 2 User-specified width, height
PPosition 4 Program-specified position

PSize 8 Program-specified size

PMinSize 16 Program-specifieghinimum size
PMaxSize 32 Program-specifieghaximum size
PResizelnc 64 Program-specifiesize increments
PAspect 128 Program-specifieiin and max aspect ratios
PBaseSize 256 Program-specifidohse size
PWinGravity 512 Program-specifiedindow gravity

To indicate that the size and position of the wimdahen a transition from the Withdrawn state
occurs) was specified by the ugbe client should set thHdSPositionand USSizeflags, which
allow a window manager to kne that the user specifically asked where the windwould be
placed or ha the windav should be sized and that further interaction is superfludosndicate
that it was specified by the client withoutarser irvolvement, the client should sBPosition

andPSize

The size specifiers refer to the width and height of the diemidow excluding borders.

The win_gravity may be grof the values specified for WINGRAVITY in the core protocol
except forUnmap: NorthWest (1), North (2), NorthEast (3), West (4), Center (5), East (6),
SouthWest(7), South (8), andSouthEast(9). It specifies hav and whether the client window

24

wants to be shifted to makoom for the windew manager frame.

If the win_gravity isStatic, the windav manager frame is positioned so that the inside border of
the client windev inside the frame is in the same position on the screen as it was when the client
requested the transition from Withdrawn state. Other values of win_gravity specify awvefedo
erence pointFor NorthWest, NorthEast, SouthWest, and SouthEastthe reference point is

the specified outer corner of the wimd{on the outside border edgejor North, South, East,

and West the reference point is the center of the specified outer edge of thewoditer For

Center the reference point is the center of the winddhe reference point of the wingaman-

ager frame is placed at the location on the screen where the reference point of the client window
was when the client requested the transition from Withdrawn state.

The min_width and min_height elements specify the minimum size that thewviraghobe for

the client to be useful. The max_width and max_height elements specify the maximum size. The
base_width and base_height elements in conjunction with width_inc and height_inc define an
arithmetic progression of preferred windwidths and heights for non-gaive integers and;j:

width = base width + (i x width_inc)

height= base height+ (j x height inc)

Window managers are encouraged to uaedj instead of width and height in reporting window
sizes to users. If a base size is not provided, the minimum size is to be used in its place and vice
versa.

The min_aspect and max_aspect fields are fractions with the numerator first and the denominator
second, and tlyedllow a dient to specify the range of aspect ratios it prefé¥dndonv managers

that honor aspect ratios shoulddahto account the base size in determining the preferred win-

dow size. Ifa base size is provided along with the aspect ratio fields, the base size should be sub-
tracted from the winde size prior to checking that the aspect ratio falls in range. If a base size is
not provided, nothing should be subtracted from the wirgipe. (Theminimum size is not to be

used in place of the base size for this purpose.)

4.1.2.4. WM_HINTSProperty

The WM_HINTS property (whose type is WM_HINTS) is used to communicate to the window
manager It corveys the information the winde manager needs other than the wiwvdgeometry,
which is aailable from the winduwr itself; the constraints on that geometrhich is aailable

from the WM_NORMAL_HINTS structure; and various strings, which need separate properties,
such as WM_NKME. Thecontents of the properties are as follows:

Field Type Comments

flags CARD32 (see the next table)

input CARD32 The clients input model
initial_state CARD32 The state when first mapped

icon_pixmap PIXMAP The pixmap for the icon image
icon_windav WINDOW The windav for the icon image

icon_x INT32 The icon location
icon_y INT32
icon_mask PIXMAP The mask for the icon shape

25

Field Type Comments

window_group WINDQVN The ID of the group leader window

The WM_HINTS.flags bit definitions are as follows:

Name \alue Field

InputHint 1 input

StateHint 2 initial_state
IconPixmapHint 4 icon_pixmap
IconWindowHint 8 icon_window
IconPositionHint 16 icon_x&icon_y
IconMaskHint 32 icon_mask
WindowGroupHint 64 windav_group
MessageHint 128 (thishit is obsolete)
UrgencyHint 256 ugency

Windowv managers are free to assumewvaniient values for all fields of the WM_HINTS property
if a window is mapped without one.

The input field is used to communicate to the wimaaanager the input focus model used by the
client (see section 4.1.7).

Clients with the Globally Actie and No Input models should set the input flagrébse. Clients
with the Passie and Locally Active models should set the input flag Toue.

From the cliens point of view, the windav manager will rgard the clients top-level window as
being in one of three states:

. Normal
. Iconic
. Withdrawn

The semantics of these states are described in section 4.1.4. Newly created windows start in the
Withdrawn state Transitions between states happen when a i@bséndow is mapped and
unmapped and when the wivdonanager recees certain messages.

The value of the initial_state field determines the state the client wishes to be in at the time the
top-level window is mapped from the Withdrawn state, as shown in the following table:

State Value Comments
NormalState 1 The windav is visible.
IconicState 3 The icon is visible.

The icon_pixmap field may specify a pixmap to be used as an icon. This pixmap should be:

* One of the sizes specified in the WM_ICON_SIZE property on the root if it exists (see sec-
tion 4.1.3.2).

« 1-bit deep. The winde manager will select, through the defaults database, suitable back-
ground (for the 0 bits) and foreground (for the 1 bits) colors. These defaults can, of course,

26

specify different colors for the icons of different clients.

The icon_mask specifies which pixels of the icon_pixmap should be used as the icon, allowing
for icons to appear nonrectangular.

The icon_windw field is the ID of a windw the client wants used as its icon. Most, but not all,
window managers will support icon winds. Thosehat do not are likely to va a ser inter-

face in which small windows that balelike icons are completely inappropriate. Clients should
not attempt to remedy the omission by working around it.

Clients that need more capabilities from the icons than a simple 2-color bitmap should use icon
windows. Ruledor clients that do are set out in section 4.1.9.

The (icon_x,icon_y) coordinate is a hint to the wwdoanager as to where it should position the
icon. Thepolicies of the windev manager control the positioning of icons, so clients should not
depend on attention being paid to this hint.

The window_group field lets the client specify that this wimdbelongs to a group of windows.
An example is a single client manipulating multiple children of the root windo

Corventions

1. Thewindow_group field should be set to the ID of the group leatiee win-
dow group leader may be a winddhat exists only for that purpose; a place-
holder group leader of this kind wouldveebe mapped either by the client or
by the windev manager.

2. Theproperties of the winde group leader are those for the group as a whole
(for example, the icon to be shown when the entire group is iconified).

Windowv managers may provide facilities for manipulating the group as a whole. Clients, at
present, hee o way to operate on the group as a whole.

The messages bit, if set in the flags field, indicates that the client is using an obsolete window
manager communication protocdlather than the WM_RBTOCOLS mechanism of section
4.1.2.7.

The UrgencyHint flag, if set in the flags field, indicates that the client deems the wicolo-

tents to be urgent, requiring the timely response of the Tiberwindav manager must make

some effort to dna the users atention to this winde while this flag is set. The wingoman-

ager must also monitor the state of this flag for the entire time thewviado the Normal or

Iconic state and must talgppropriate action when the state of the flag changes. The flag is other-
wise independent of the windasdate; in particularthe windav manager is not required to
deiconify the windw if the client sets the flag on an Iconic winddClients must provide some
means by which the user can causelngencyHint flag to be set to zero or the wirvddo be
withdravn. Theusers action can either mitigate the actual condition that made the window
urgent, or it can merely shutfahe alarm.

1 This obsolete protocol was described in the July 27, 1988, draft of the IC@@hdows
using it can also be detected because their WM_HINTS properties are 4 bytes longer than expected.
Window managers are free to support clients using the obsolete protocol in a backwards compati-
bility mode.

27

Rationale

This mechanism is useful for alarm dialog boxes or reminder windows, in cases
where mapping the wineois not enough (e.g., in the presence of multi-workspace
or virtual desktop winde managers), and where using areroide-redirect window

is too intrusve. For example, the windw manager may attract attention to an urgent
window by adding an indicator to its title bar or its icodWindonv managers may also
take additional action for a winde that is newly urgent, such as by flashing its icon
(if the windaw is iconic) or by raising it to the top of the stack.

4.1.2.5. WM_CLASSProperty

The WM_CLASS property (of type STRING without control characters) contamsdmsecu-

tive rull-terminated strings. These specify the Instance and Class names to be used by both the
client and the winde manager for looking up resources for the application or as identifying
information. Thisproperty must be present when the windeaves the Withdrawn state and

may be changed only while the windds in the Withdrawn stateWindowv managers may exam-

ine the property only when thatart up and when the winddeaves the Withdrawn state, but

there should be no need for a client to change its state dynamically.

The two grings, respectily, are:

» A string that names the particular instance of the application to which the client that owns
this windav belongs. Resourcdblat are specified by instance namernde ary resources
that are specified by class name. Instance names can be specified by the user in an operat-
ing-system specific manne®n POSIX-conformant systems, the following eentions are
used:

- If “—~name NAME’ is given on he command line, NAME is used as the instance
name.

- Otherwise, if the environment variable RESOURCE_NAME is set, its value will be
used as the instance name.

- Otherwise, the trailing part of the name used toke the program (argv[0] stripped
of ary directory names) is used as the instance name.

» A string that names the general class of applications to which the client that owns this win-
dow belongs. Resourcdhat are specified by class apply to all applications that ha
same class name. Class names are specified by the application Exéeples of com-
monly used class names include: “Emacs”, “XTerm”, “XClock”, “XLoad”, and so on.

Note that WM_CLASS strings are null-terminated and, thus, differ from the genevahtions
that STRING properties are null-separated. This inconsigiemecessary for backwards com-
patibility.

4.1.2.6. WM_TRANSIENT_FOR Property

The WM_TRANSIENT_FOR property (of type WINDOW) contains the ID of another tog-le
window. The implication is that this windois a pp-up on behalf of the named windcend

window managers may decide not to decorate transient windows or may treat them differently in
other vays. Inparticular window managers should present newly mapped WM_TRAN-
SIENT_FOR windows without requiring yamiser interaction,\en if mapping top-lgel windows
normally does require interaction. Dialogue boxes, for example, are an example of windows that
should hae WM_TRANSIENT_FOR set.

28

It is important not to confuse WM_TRANSIENT_FOR witheride-redirect. WM_TRAN-
SIENT_FOR should be used in those cases where the pointer is not grabbed while theisvindo
mapped (in other words, if other windows are allowed to beeaatiile the transient is up). If
other windows must be prented from processing input (for example, when implementing pop-
up menus), useverride-redirect and grab the pointer while the wiwwds mapped.

4.1.2.7. WM_PROTOCOLS Property

The WM_PROTOCOLS property (of type FOM) is a list of atoms. Each atom identifies a com-
munication protocol between the client and the wimdwmnager in which the client is willing to
participate. Atomgan identify both standard protocols and/aie protocols specific to individ-
ual windav managers.

All the protocols in which a client can volunteer togghart involve the windav manager sending
the client aClientMessageevent and the client taking appropriate actidfor details of the con-
tents of the eent, see section 4.2.8. In each case, the protocol transactions are initiated by the
window manager.

The WM_PROTOCOLS property is not required. If it is not present, the client does not want to
participate in apwindow manager protocols.

The X Consortium will maintain a registry of protocols woid collisions in the name space.
The following table lists the protocols thatvedeen defined to date.

Protocol Section Purpose

WM_TAKE_FOCUS 4.1.7 Assignment of input focus
WM_SAVE_YOURSELF AppendbdC Saveclient state request (deprecated)
WM_DELETE_WINDOW 4.2.8.1 Requedb delete top-heel window

It is expected that this table will guoover time.

4.1.2.8. WM_COLORMAP_WINDOWS Property

The WM_COLORMAP_WINDOWS property (of type WINDOW) on a topdevindow is a

list of the IDs of windows that may need colormaps installed that differ from the colormap of the
top-level window. The windav manager will watch this list of windows for changes in their col-
ormap attrilbites. Thdop-level window is dways (implicitly or explicitly) on the watch listFor

the details of this mechanism, see section 4.1.8.

4.1.2.9. WM_CLIENT_MACHINE Property

The client should set the WM_CLIENT_MACHINE property (of one of the TEXT types) to a
string that forms the name of the machine running the client as seen from the machine running the
server.

4.1.3. Window Manager Properties

The properties that were described in the previous section are those that the client is responsible
for maintaining on its top-lel windows. Thissection describes the properties that the window
manager places on cliestbp-level windows and on the root.

4.1.3.1. WM_STRATE Property

The windav manager will place a WM_S\TE property (of type WM_SATE) on each top-iel
client windawv that is not in the Withdrawn statdop-level windows in the Withdrawn state may

29

or may not hee the WM_STRATE property Once the top-leel window has been withdrawn, the
client may re-use it for another purpose. Clients that do so shouldedneoWM_STATE prop-
erty if it is still present.

Some clients (such aprop) will ask the user to clickwer a window on which the program is to
operate. ypically, the intent is for this to be a topvkt window. To find a top-leel window,

clients should search the winddierarcly beneath the selected location for a wiwdaith the
WM_STATE property This search must be recwmsiin order to ceer all window manager
reparenting possibilities. If no windowith a WM_STATE property is found, it is recommended
that programs use a mapped child-of-root wimdfcone is present beneath the selected location.

The contents of the WM_@&TE property are defined as follows:

Field Type Comments

stater CARD32 (see the next table)
icon WINDOW ID of icon window

The following table lists the WM_3T E.state values:

State \alue

WithdrawnState 0
NormalState 1
IconicState 3

Adding other fields to this property is reserved to the X Consortiadues for the state field
other than those defined in the abdable are reserved for use by the X Consortium.

The state field describes the wimdmanagers idea of the state the wingas in, which may not
match the cliens idea as expressed in the initial_state field of the WM_HINTS property (for
example, if the user has asked the windoanager to iconify the winag). If it is NormalState,

the windav manager beliges the client should be animating its windolf it i s IconicState, the
client should animate its icon windo In @ther state, clients should be prepared to handle expo-
sure @ents from either windw.

When the windw is withdrawn, the winde manager will either change the state fighdilue to
WithdrawnState or it will remove the WM_STATE property entirely.

The icon field should contain the winddD of the windav that the winder manager uses as the
icon for the windw on which this property is set. If no such winvdexists, the icon field should
be None. Note that this winde could be but is not necessarily the same winde he icon
window that the client may k& gecified in its WM_HINTS propertyThe WM_STRTE icon
may be a winde that the windw manager has supplied and that contains the di@uth
pixmap, or it may be an ancestor of the clieion windav.

4.1.3.2. WM_ICON_SIZE Property

A window manager that wishes to place constraints on the sizes of icon pixmaps and/or windows
should place a property called WM_ICON_SIZE on the root. The contents of this property are
listed in the following table.

30

Field Type Comments

min_width CARD32 The data for the icon size series
min_height CARD32
max_width CARD32
max_height CARD32
width_inc CARD32
height_inc CARD32

For more details see section 14.1.1Xiib — C Languae X hterface

4.1.4. ChangingWindow State

From the cliens point of view, the windav manager will rgard each of the clierg'top-level
windows as being in one of three states, whose semantics are as follows:

* NormalState — The clients top-level window is viewable.

* IconicState — The clients top-level window is iconic (whateger that means for this window
manager). Thelient can assume that its todbwindow is not viewable, its icon_window
(if any) will be viewvable and, failing that, its icon_pixmap (if any) or its WM_ICON_NAME
will be displayed.

* WithdrawnState — Neither the cliens top-level window nor its icon is visible.

In fact, the windev manager may implement states with semantics other than those described
above. For example, a winde manager might implement a concept of an “imagtistate in

which an infrequently used clieatvindow would be represented as a string in a menu. But this
state is invisible to the client, which would see itself merely as being in the Iconic state.

Newly created top-lel windows are in the Withdrawn state. Once the wimtlas been pro-
vided with suitable properties, the client is free to change its state as follows:

e Withdrawn —» Normal — The client should map the windaith WM_HINTS.initial_state
being NormalState.

e Withdrawn - Iconic — The client should map the windavith WM_HINTS.initial_state
beingIconicState.

* Normal - Iconic — The client should sendGlientMessageevent as described later in this
section.

* Normal —» Withdrawn — The client should unmap the windand follow it with a synthetic
UnmapNotify event as described later in this section.

e lconic - Normal — The client should map the windoThe contents of WM_HINTS.ini-
tial_state are irrel@nt in this case.

* Iconic - Withdrawn — The client should unmap the windand follow it with a synthetic
UnmapNotify event as described later in this section.

Only the client can effect a transition into or out of the Withdrawn state. Once asohgritow
has left the Withdrawn state, the windwill be mapped if it is in the Normal state and the win-
dow will be unmapped if it is in the Iconic state. Reparenting wind@nagers must unmap the
client’'s window when it is in the Iconic stateyen if an ancestor windar being unmapped ren-
ders the cliens window unviewable. Cowersely, if a reparenting winde manager renders the
client’s window unviewable by unmapping an ancesttire clients window is by dcefinition in the
Iconic state and must also be unmapped.

31

Advice to Implementors

Clients can select faBtructureNotify on their top-lgel windows to track transitions
between Normal and Iconic states. Receipt bfapNotify event will indicate a
transition to the Normal state, and receipt of AimapNotify event will indicate a
transition to the Iconic state.

When changing the state of the wimdtm Withdrawn, the client must (in addition to unmapping
the window) send a synthetignmapNotify event by using eSendEventrequest with the fol-
lowing arguments:

Argument Value
destination: Theoot
propagate: False
event-mask: SubstructureRedirect|SubstructureNotify)
event: anUnmapNotify with:
event: Theroot
window: Thewindow itself
from-configure: False

Rationale

The reason for requiring the client to send a synthdtimapNotify event is to

ensure that the winsdbomanager gets some notification of the clieiggsire to

change state yven though the winder may already be unmapped when the desire is
expressed.

Advice to Implementors

For compatibility with obsolete clients, windomanagers should trigger the transi-
tion to the Withdrawn state on the resmmapNotify rather than waiting for the syn-
thetic one. The should also trigger the transition if heeceve a gntheticUnmap-
Notify on a windev for which thg havenot yet recaied a real UnmapNotify .

When a client withdraws a windgthe windav manager will then update or rerethe

WM_STATE property as described in section 4.1.3.1. Clients that want to re-use a client window
(e.g., by mapping it again or reparenting it elsewhere) after withdrawing it must wait for the with-
drawal to be mmplete before proceeding. The preferred method for doing this is for clients to
wait for the windav manager to update or rer@the WM_STATE property*?

If the transition is from the Normal to the Iconic state, the client should s€lidraMessage
event to the root with:

. Window == the windav to be iconified
« Type®==the atom WM_CHANGE_SATE

12 Earlier versions of these ogentions prohibited clients from reading the WM ASE prop-
erty. Clients operating under the earlier gentions used the technique of trackiRgparentNo-
tify events to wait for the top-kel window to be eparented back to the root windoThis is still a
valid technique; howeer, it works only for reparenting windomanagers, and the WM_STE
technique is to be preferred.

13 The type field of theClientMessageevent (called the message_type field by Xlib) should not

32

* Format == 32
« Data[0] == IconicState

Rationale

The format of thisClientMessageevent does not match the format of
ClientMessagesn section 4.2.8. This is becauseytlaee sent by the window
manager to clients, and this message is sent by clients to themvimatwger.

Other values of data[0] are reserved for future extensions to thesmtons. Theparameters of
the SendEventrequest should be those described for the synthetmapNotify event.

Advice to Implementors

Clients can also select fifi sibilityChange events on their top-beel or icon win-
dows. The will then receve aVisibilityNotify (state==FullyObscuredyent when
the windav concerned becomes completely obscunesh ¢hough mapped (and thus,
perhaps a waste of time to update) andsibilityNotify (state!=FullyObscured)
event when it becomesven partly viewable.

Advice to Implementors

When a windw makes a transition from the Normal state to either the Iconic or the
Withdrawn state, clients should b&age that the winde manager may maktran-
sients for this windw inaccessible. Clientshould not rely on transient windows
being aailable to the user when the transient owner wingonot in the Normal

state. Whenithdrawing a windwy, dients are advised to withdsetransients for the
window.

4.1.5. Configuringthe Window

Clients can resize and reposition their togelevindows by using th€onfigureWindow
request. Thattributes of the winde that can be altered with this request are as follows:

* The [x,y] location of the window’ yoper left-outer corner

* The [width,height] of the inner region of the wind¢excluding borders)
* The border width of the window

* The windows position in the stack

The coordinate system in which the location is expressed is that of the root (irvesgdexty
reparenting that may i@ accurred). Thdoorder width to be used and win_gravity position hint

to be used are those most recently requested by the client. Client configure requests are inter-
preted by the winde manager in the same manner as the initial windeometry mapped from

the Withdrawn state, as described in section 4.1.2.3. Clients mustieethat there is no guar-
antee that the windomanager will allocate them the requested size or location and must be pre-
pared to deal with arsize and location. If the windemanager decides to respond t€anfig-
ureRequestrequest by:

* Not changing the size, location, border width, or stacking order of the wiail.

A client will receive a gnthetic ConfigureNotify event that describes the (unchanged)
geometry of the wind®. The (x,y) coordinates will be in the root coordinate system,

be confused with the code field of theest itself, which will hae the value 33 ClientMessage.

33

adjusted for the border width the client requested, irrespgedtany reparenting that has
taken place. The border_width will be the border width the client requested. The client will
not receie a eal ConfigureNotify event because no change has actually taken place.

* Moving or restacking the wina@owithout resizing it or changing its border width.

A client will receive a gnthetic ConfigureNotify event following the change that describes

the nev geometry of the winde. The event’s (X,y) coordinates will be in the root coordi-

nate system adjusted for the border width the client requested. The border_width will be the
border width the client requested. The client may not veceieal ConfigureNotify event

that describes this change because the windanager may he reparented the topyel

window. If the client does rece a eal e/ent, the syntheticvent will follow the real one.

» Resizing the winda or changing its border width (gerdless of whether the windowas
also mwed or restacked).

A client that has selected f@tructureNotify events will receve a eal ConfigureNotify

event. Notethat the coordinates in thigent are relatie o the parent, which may not be the
root if the windaev has been reparented. The coordinates will reflect the actual border width
of the windav (which the windev manager may he danged). Thdranslate-

Coordinates request can be used to gert the coordinates if required.

The general rule is that coordinates in I€ahfigureNotify events are in the parestyace; in
synthetic gents, thg are in the root space.

Advice to Implementors

Clients cannot distinguish between the case where avepalendow is resized and
moved from the case where the winidds resized but not meed, since a reaCon-
figureNotify event will be receved in both cases. Clients that are concerned with
keeping track of the absolute position of a topelevindow should keep a piece of
state indicating whether there certain of its position. Upon receipt of a r€ain-
figureNotify event on the top-leel window, the client should note that the position is
unknavn. Uponreceipt of a syntheti€onfigureNotify event, the client should note
the position as known, using the position in tieng If the client recedes aKey-
Press KeyRelease ButtonPress, ButtonRelease MotionNotify , EnterNotify , or
LeaveNotify event on the winder (or on aiy descendant), the client can deduce the
top-level window’s position from the difference between thedm-x, event-y) and
(root-x, root-y) coordinates in theseeats. Onlywhen the position is unknown does
the client need to use tfie anslateCoordinatesrequest to find the position of a top-
level window.

Clients should beveare that their borders may not be visibindonv managers are free to use
reparenting techniques to decorate cletwp-level windows with borders containing titles, con-
trols, and other details to maintain a consistent look-and-feel. Vitdihehey are likely to over-

ride the cliens a@tempts to set the border width and set it to zero. Clients, therefore, should not
depend on the topatel window's border being visible or use it to displayyaaritical informa-

tion. Othewindow managers will allav the top-leel windows border to be visible.

34

Convention

Clients should set the desired value of the border-width attribute Qoafig-
ureWindow requests towaid a race condition.

Clients that change their position in the stack mustzeeathat thg may have been reparented,
which means that windows that used to be siblings no longer are. Using a nonsibling as the sib-
ling parameter on &onfigureWindow request will cause an error.

Convention

Clients that use €onfigureWindow request to request a change in their position in
the stack should do so usiigpne in the sibling field.

Clients that must position themselves in the stack vel&isome windev that was originally a
sibling must do the€ConfigureWindow request (in case tii@re running under a nonreparenting
window manager), be prepared to deal with a resulting eano then follav with a synthetic
ConfigureRequestevant by irvoking a SendEventrequest with the following arguments:

Argument Value
destination: Theoot
propagate: False
event-mask: SubstructureRedirect|SubstructureNotify)
evant: a ConfigureRequest
with:
evant: Theroot
window: Thewindow itself

Other parameters from thi@onfigureWindow request

Window managers are in gircase free to position windows in the stack ay dee fit, and so
clients should not rely on receiving the stacking ordey tia@erequested. Clientshould ignore
the abwe-sibling field of both real and synthet@onfigureNotify events recered on their top-
level windows because this field may not contain useful information.

4.1.6. ChangingWindow Attributes

The attributes that may be supplied when a wingocreated may be changed by using the
ChangeWindowAttributes request. Thevindow attributes are listed in the following table:

Attrib ute Private to Client
Background pixmap Yes
Background pigl Yes
Border pixmap Yes
Border pixel Yes

Bit gravity Yes
Window gravity No
Backing-store hint Yes
Save-under hint No

Event mask No

35

Attrib ute Private to Client

Do-not-propagate mask Yes
Override-redirect flag No
Colormap es
Cursor ¥es

Most attributes are prite to the client and will ner be interfered with by the winde manager.
For the attributes that are not yade to the client:

» The windav manager is free toverride the windav gravity; a reparenting windo manager
may want to set the topvd window’s window gravity for its own purposes.

» Clients are free to set thevsaunder hint on their top-&l windows, but thg must be ware
that the hint may beverridden by the windw manager.

* Windows, in effect, hae per-client @ent masks, and so, clients may select for wieate
evants are covenient irrespectie d any events the windw manager is selecting foiThere
are someents for which only one client at a time may select, but the windanager
should not select for them onyaof the clients windows.

» Clients can set\@rride-redirect on top-lesl windows but are encouraged not to do so except
as described in sections 4.1.10 and 4.2.9.

4.1.7. InputFocus
There are four models of input handling:

* No Input — The client nger expects leyboard input. An example would béoad or another
output-only client.

» Passve Input — The client expecteiboard input but neer explicitly sets the input focus.

An example would be a simple client with no subwindows, which will accept ingrdi-
erRoot mode or when the windomanager sets the input focus to its togelevindow (in
click-to-type mode).

* Locally Active Input — The client expecteiboard input and explicitly sets the input focus,
but it only does so when one of its windows already has the focus. An example would be a
client with subwindows defining various data entry fields that uses Next ankdysedo
move the input focus between the fields. It does so when its t@viendow has acquired
the focus inPainterRoot mode or when the windomanager sets the input focus to its top-
level window (in click-to-type mode).

» Globally Active Input — The client expectsidoard input and explicitly sets the input focus,
even when it is in windows the client does netrm Anexample would be a client with a
scroll bar that wants to albusers to scroll the windowithout disturbing the input focus
evan if it is in some other windw. It wants to acquire the input focus when the user clicks in
the scrolled region but not when the user clicks in the scroll bar itself. Thus, it wants to pre-
vent the windev manager from setting the input focus ty @ its windows.

The four input models and the corresponding values of the input field and the presence or absence

of the WM_TAKE_FOCUS atom in the WM_RR OCOLS property are listed in the following
table:

36

Input Model Input Field WM_TAKE_FOCUS

No Input False Absent
Passive True Absent
Locally Active True Present
Globally Active False Present

Passive and Locally Active dients set the input field of WM_HINTS f&r ue, which indicates

that the require windev manager assistance in acquiring the input focus. No Input and Globally
Active dients set the input field tBalse, which requests that the windananager not set the

input focus to their top-lel window.

Clients that use 8etlnputFocusrequest must set the time field to the timestamp ofube e
that caused them to make attempt. This cannot beFacusin event because tlyedo not have
timestamps. Clienthay also acquire the focus without a correspondnterNotify . Note that
clients must not us€urrentTime in the time field.

Clients using the Globally Aaté model can only use SetinputFocusrequest to acquire the
input focus when thedo ot already hee it on receipt of one of the followingvents:

. ButtonPress

* ButtonRelease

* Passve-grabbedKeyPress

» Passive-grabbedKkeyRelease

In general, clients should/i@id using passie-grabbed ky events for this purpose, except when
they are unaoidable (as, for example, a selection tool that establishes agpgs on the kys
that cut, cop, or paste).

The method by which the user commands the wingianager to set the focus to a windis up
to the windev manager For example, clients cannot determine whethey thi# see the click
that transfers the focus.

Windows with the atom WM_TAKE_FOCUS in their WM_BGROCOLS property may reca a
ClientMessageevent from the windw manager (as described in section 4.2.8) with
WM_TAKE_FOCUS in its data[0] field and a valid timestamp (i.e.,@otrentTime) in its

data[1] field. If thg want the focus, theshould respond with &etinputFocusrequest with its
window field set to the windm of theirs that last had the input focus or to their default input win-
dow, and the time field set to the timestamp in the messkgefurther information, see section
4.2.7.

A client could receie WM_TAKE_FOCUS when opening from an icon or when the user has
clicked outside the topakel window in an aea that indicates to the windananager that it
should assign the focus (for example, clicking in the headline bar can be used to assign the focus).

The goal is to support windomanagers that want to assign the input focus to a teviendow

in such a way that the topvi# window either can assign it to one of its subwindows or can
decline the offer of the focug:or example, a clock or a text editor with no currently open frames
might not want to tad& focus @en though the winde manager generally belies that clients

should tak the input focus after being deiconified or raised.

Clients that set the input focus need to decide a value fontré-te field of theSetinputFocus
request. Thisletermines the behavior of the input focus if the wimtlte focus has been set to
becomes not vigable. Thevalue can be anof the following:

37

» Parent - In general, clients should use this value when assigning focus to one of their sub-
windows. Unmappindghe subwinda will cause focus to ket to the parent, which is prob-
ably what you want.

* PoainterRoot — Using this value with a click-to-type focus management pdéads to race
conditions because the winddecoming unvie/able may coincide with the winsoman-
ager deciding to me te focus elsewhere.

. None - Using this value causes problems if the windnanager reparents the wirvdces
most windev managers will, and then crashes. The input focus wiNbee, and there will
probably be no way to change it.

Note that neithePointerRoot nor None is really safe to use.

Convention

Clients that imoke aSetinputFocusrequest should set theveet-to argument to
Parent.

A corvention is also required for clients that want teegip the input focus. There is no safe
value set for them to set the input focus to; therefore, sheuld ignore input material.

Convention

Clients should not ge Y the input focus of their ownolition. They should ignore
input that thg receve instead.

4.1.8. Colormaps

The windav manager is responsible for installing and uninstalling colormaps on behalf of clients
with top-level windows that the wind® manager manages.

Clients provide the wind® manager with hints as to which colormaps to install and uninstall.
Clients must not install or uninstall colormaps themselves (except under the circumstances noted
below). Whena dient’s top-level window gets the colormap focus (as a result of wiateol-

ormap focus poligis implemented by the windomanager), the winde manager will ensure

that one or more of the clieattolormaps are installed.

Clients whose top-lesl windows and subwindows all use the same colormap should set its ID in
the colormap field of the topyd window’s dtributes. Thg should not set a WM_COL-
ORMAP_WINDOWS property on the topvd window. If they want to change the colormap,

they should change the topyd window’s wlormap attrilnte. Thewindow manager will track
changes to the windog/mlormap attribute and install colormaps as appropriate.

Clients that create windows can use the v&opyFromParent to inherit their parens’ col-
ormap. Whdow managers will ensure that the root windswwlormap field contains a colormap
that is suitable for clients to inherit. In particyldme colormap will provide distinguishable col-
ors for BlackPixel and WhitePixel.

Top-level windows that hae subwindows or gerride-redirect pop-up windows whose colormap
requirements differ from the topve window should hae a WM_COLORMAP_WINDOWS
property This property contains a list of IDs for windows whose colormaps the wingdmager
should attempt to va installed when, in the course of its individual colormap focusyatic
assigns the colormap focus to the togelevindow (see section 4.1.2.8). The list is ordered by
the importance to the client of having the colormaps installed. The win@dmager will track
changes to this property and will track changes to the colormap attribute of the windows in the

property.

38

If the relative importance of colormaps changes, the client should update the WM_COL-
ORMAP_WINDOWS property to reflect thewmerdering. Ifthe top-leel window does not
appear in the list, the windomanager will assume it to be of higher priority thay amdow in
the list.

WM_TRANSIENT_FOR windows can eitherveteir own WM_COLORMAP_WINDOWS
property or appear in the property of the wiwdbey are transient fqras gpropriate.

Rationale

An alternatve design was considered forwualients should hint to the wineloman-

ager about their colormap requirements. This alter@akisign specified a list of
colormaps instead of a list of winge. Thecurrent design, a list of windows, was
chosen for tw reasons. Firstt allows windav managers to find the visuals of the
colormaps, thus permitting visual-dependent colormap installation policies. Second,
it allows windav managers to select fafi sibilityChange events on the windows
concerned and to ensure that colormaps are only installed if the windows that need
them are visible. The alternegi design allows for neither of these policies.

Advice to Implementors

Clients should beveare of the min-installed-maps and max-installed-maps fields of
the connection setup information, and the effect that the minimum value has on the
“required list’ defined by the Protocol in the description of thetallColormap

request. Brieflythe min-installed-maps most recently installed maps are guaranteed
to be installed. This value is often one; clients needing multiple colormaps should
beware.

Whenever possible, clients should use the mechanisms describeé atab let the winda man-
ager handle colormap installation. Hoxee dients are permitted to perform colormap installa-
tion on their own while thehavethe pointer grabbedA client performing colormap installation
must notify the windev manager prior to the first installation. When the client has finished its
colormap installation, it must also notify the wimdmanager The client notifies the window
manager by issuing @endEventrequest with the following arguments:

Argument Value
destination: the root windwoof the screen on which the colormap is
being installed
propagate: False
event-mask: ColormapChange
event: a ClientMessagewith:
window: theroot windaw, as ebove
type: WM_COLORMAP_NQIFY
format: 32
data[O]: the timestamp of theent that caused the client to start
or stop installing colormaps
data[1]: 1 if the client is starting colormap installation, O if the
client is finished with colormap installation
data[2]: reser@d, must be zero
data[3]: reser@d, must be zero

39

data[4]: resergd, must be zero

This feature was introduced in version 2.0 of this document, and there will be a significant period
of time before all winde managers can be expected to implement this feature. Before using this
feature, clients must check the complianaellef the windav manager (using the mechanism
described in section 4.3) to verify that it supports this feature. This is necessaretd poé

ormap installation conflicts between clients and older winehanagers.

Windowv managers should refrain from installing colormaps while a client has requested control
of colormap installation. The wingomanager should continue to track the set of installed col-
ormaps so that it can reinstate its colormap focusypalien the client has finished colormap
installation.

This technique has race conditions that may result in the colormaps continuing to be installed
even dter a client has issued its notification messdga.example, the winde manager may

have issued soménstallColormap requests that are noteeuted until after the client'SendE-

vent andInstallColormap requests, thus uninstalling the clisntblormaps. Ifthis occurs while
the client still has the pointer grabbed and before the client has issued the “fimsbegsHge, the
client may reinstall the desired colormaps.

Advice to Implementors

Clients are expected to use this mechanism for things such as pop-up windows and
for animations that useverride-redirect windows.

If a client fails to issue the “finisheédhessage, the wingdomanager may be left in a
state where its colormap installation pglis suspended. \WWidow manager imple-
mentors may want to implement a feature that resets colormap installatignipolic
response to a command from the user.

4.1.9. Icons
A client can hint to the wind® manager about the desired appearance of its icon by setting:
e Astringin WM_ICON_NAME.

All clients should do this because it provides a fallback for winsh@anagers whose ideas
about icons differ widely from those of the client.

« A Pixmap into the icon_pixmap field of the WM_HINTS property and possibly another into
the icon_mask field.

The windav manager is expected to display the pixmap masked by the mask. The pixmap
should be one of the sizes found in the WM_ICON_SIZE property on the root. If this prop-
erty is not found, the windemanager is unlikely to display icon pixmapa/lindov man-

agers usually will clip or tile pixmaps that do not match WM_ICON_SIZE.

A window into the icon_winde field of the WM_HINTS property.

The windav manager is expected to map that wiwdehenerer the client is in the Iconic
state. Ingeneral, the size of the icon windshould be one of those specified in
WM_ICON_SIZE on the root, if itasts. Window managers are free to resize icon win-
dows.

In the Iconic state, the windomanager usually will ensure that:
e |Ifthe windows WM_HINTS.icon_windav is st, the windav it names is visible.

40

e Ifthe windows WM_HINTS.icon_windav is not set but the window'’s
WM_HINTS.icon_pixmap is set, the pixmap it names is visible.

e Otherwise, the windove' WM _ICON_NAME string is visible.
Clients should obseevthe following cowentions about their icon windows:

Corventions

1. Theicon windav should be arinputOutput child of the root.

Theicon windav should be one of the sizes specified in the WM_ICON_SIZE
property on the root.

3. Theicon windav should use the root visual and default colormap for the
screen in question.

Clientsshould not map their icon windows.
Clientsshould not unmap their icon windows.
Clientsshould not configure their icon windows.

N o ok

Clientsshould not setw@rride-redirect on their icon windows or select for
ResizeRedirectevents on them.

8. Clientsmust not depend on being able to reeanput events by means of their
icon windows.

9. Clientsmust not manipulate the borders of their icon windows.

10. Clientanust select foExposure events on their icon winde and repaint it
when requested.

Windowv managers will differ as to whether thsupport input gents to clients icon windows;
most will allov the client to receie me subset of theelys and buttons.

Windowv managers will ignore anWM_NAME, WM_ICON_NAME, WM_NORMAL_HINTS,
WM_HINTS, WM_CLASS, WM_TRANSIENT_FOR, WM_RBTOCOLS, WM_COL-
ORMAP_WINDOWS, WM_COMMAND, or WM_CLIENT_MACHINE properties thdind on
icon windows.

4.1.10. Bp-up Windows
Clients that wish to pop up a wingaan do one of three things:

1. They can create and map another normal togHeindow, which will get decorated and
managed as normal by the windmanager See the discussion of windogroups that fol-
lows.

2. If the windav will be visible for a relatiely short time and deserves a somewhat lighter
treatment, thypcan set the WM_TRANSIENT_FOR propertyhey can expect less deco-
ration but can set all the normal wirvdmanager properties on the widoAn example
would be a dialog box.

3. If the windav will be visible for a very short time and should not be decorated at all, the
client can setwerride-redirect on the winda In general, this should be done only if the
pointer is grabbed while the windas mapped. Thavindow manager will neer interfere
with these windows, which should be used with caution. An example of an appropriate use
iS a pop-up menu.

41

Advice to Implementors

The user will not be able to mg resize, restack, or transfer the input focus to
override-redirect windows, since the windananager is not managing them.

If it is necessary for a client to regeikeystrokes on anwerride-redirect win-
dow, dther the client must grab theyboard or the client must Y another
top-level window that is not gerride-redirect and that has selected the Locally
Active a Globally Active focus model. The client may set the focus to the
override-redirect winder when the other winde receves a

WM_TAKE_FOCUS message or one of thes listed in section 4.1.7 in the
description of the Globally Aate focus model.

Window managers are free to decide if WM_TRANSIENT_FOR windows should be iconified
when the winda they are transient for is. Clients displaying WM_TRANSIENT_FOR windows
that hae (or request to hee) the windav they are transient for iconified do not need to request
that the same operation be performed on the WM_TRANSIENT_FOR window; thewvinaio-
ager will change its state if that is the pglicwishes to enforce.

4.1.11. Window Groups

A set of top-level windows that should be treated from the uspoint of view as elated (gen
though thg may belong to a number of clients) should be linked together using the win-
dow_group field of the WM_HINTS structure.

One of the windows (that is, the one the others point to) will be the group leader and will carry
the group as opposed to the individual properti®sdonr managers may treat the group leader
differently from other windows in the grouf-or example, group leaders mayveathe full set of
decorations, and other group members mas laaestricted set.

It is not necessary that the clienbemap the group leader; it may be a windihat exists solely
as a placeholder.

It is up to the winde manager to determine the pglifor treating the windows in a group. At
present, there is no way for a client to request a group, as opposed to an individual, operation.

4.2. ClientResponses to Winde M anager Actions

The windav manager performs a number of operations on client resources, primarily on their top-
level windows. Clientsmust not try to fight this but may elect to reeeiotification of the win-
dow managers gperations.

4.2.1. Repaenting

Clients must bewaare that some winde managers will reparent their topvi windows so that a
window that was created as a child of the root will be displayed as a child of some window
belonging to the winde manager The effects that this reparenting willMeam the client are as
follows:

* The parent value returned byQueryTree request will no longer be the value supplied to
the CreateWindow request that created the reparented winddhere should be no need
for the client to bewsare of the identity of the windweto which the top-leel window has
been reparented. In particulardient that wishes to create further topdiewindows
should continue to use the root as the parent for thesevimelows.

* The server will interpret the (x,y) coordinates i€anfigureWindow request in the new
parents coordinate space. In fact, hasually will not be interpreted by the server because

42

a reparenting winde manager usually will hae intercepted these operations (see section
4.2.2). Clientshould use the root coordinate space for these requests (see section 4.1.5).

« ConfigureWindow requests that name a specific sibling windwoay fail because the win-
dow named, which used to be a sibling, no longer is after the reparenting operation (see sec-
tion 4.1.5).

e The (x,y) coordinates returned byGetGeometry request are in the paremtbordinate
space and are thus not directly useful after a reparent operation.

* A background oParentRelative will have unpredictable results.
e A cursor ofNone will have wnpredictable results.

Clients that want to be notified when yteee reparented can select tructureNotify events
on their top-leel window. They will receive aReparentNotify event if and when reparenting
takes place. When a client withdraws a togelevindow, the windav manager will reparent it
back to the root winde if the windav had been reparented elsewhere.

If the window manager reparents a clientiindow, the reparented windowill be placed in the
sase-set of the parent windo This means that the reparented winwdgill not be destroyed if

the windav manager terminates and will be remapped if it was unmapped. Note that this applies
to all client windows the wind@ manager reparents, including transient windows and client icon
windows.

4.2.2. Rediection of Operations

Clients must bewaare that some winde managers will arrange for some client requests to be
intercepted and redirected. Redirected requests areewited; thg result instead invents

being sent to the wingomanagerwhich may decide to do nothing, to alter the arguments, or to
perform the request on behalf of the client.

The possibility that a request may be redirected means that a client cannot assurgaddat an
rectable request is actually performed when the request is issued or is actually performed at all.
The requests that may be redirectedMepWindow , ConfigureWindow, and Circulate-

Window.

Advice to Implementors
The following is incorrect because tMapWindow request may be intercepted and
the PdyLine output made to an unmapped window:

MapWindov A
PolyLine A GC <point> <point>..

The client must wait for aExposeevent before drawing in the wineo'

This next example incorrectly assumes that@oafigureWindow request is actu-
ally executed with the arguments supplied:

ConfigureWinda width=N height=M
<output assuming winaois N by M>

The client should select f@tructureNotify on its windav and monitor the win-
dow’s gze by trackingConfigureNotify events.

¥ This is true ®en if the client set the backing-store attributeMways. The backing-store
attribute is a only a hint, and the server may stop maintaining backing store contentina¢.an

43

Clients must be especially careful when attempting to set the focus to awtivato
they havejust mapped. This sequence may result in an X protocol error:

MapWindov B
SetlnputFocus B

If the MapWindow request has been intercepted, the windall still be
unmapped, causing ti&etinputFocusrequest to generate the errdihe solution to
this problem is for clients to select fuisibilityChange on the winda and to delay
the issuance of th8etlnputFocusrequest until thghavereceved a Visibility-
Notify event indicating that the windwis visible.

This technique does not guarantee correct operation. The user veagdmfied the
window by the time theSetInputFocusrequest reaches the sern\titl causing an

error. Or the windav manager may decide to map the windato Iconic state, in
which case the windowill not be visible. This will delay the generation of the
VisibilityNotify event indefinitely Clients must be prepared to handle these cases.

A window with the wverride-redirect bit set is immune from redirection, but the bit should be set
on top-level windows only in cases where other windows should beepted from processing

input while the werride-redirect windw is mapped (see section 4.1.10) and while responding to
ResizeRequestvants (see section 4.2.9).

Clients that hee o non-Withdrawn top-leel windows and that map awveride-redirect top-

level window are taking @er total responsibility for the state of the system. It is their responsibil-
ity to:

* Prevent ary preexisting winder manager from interfering with their activities

» Restore the status quo exactly afterytbemap the winde so hat ary preexisting window
manager does not get confused

In effect, clientsof this kind are acting as temporary wimdmanagers. Doingo is strongly dis-
couraged because these clients will benana of the user interface policies the windmanager

is trying to maintain and because their user interface behavior is likely to conflict with that of less
demanding clients.

4.2.3. Window Move

If the windov manager mees a bp-level window without changing its size, the client will
receve a gnthetic ConfigureNotify event following the mee that describes the wdocation in
terms of the root coordinate space. Clients must not respond to beied hycettempting to
maove themselves to a better location.

Any real ConfigureNotify event on a top-leel window implies that the window’position on the
root may hae cthanged, een though the eent reports that the window/osition in its parent is
unchanged because the windmay hase been reparented. Note that the coordinates invbet e
will not, in this case, be directly useful.

The windav manager will send theseents by using é&sendEventrequest with the following
arguments:

44

Argument Value

destination: Thelient’s window
propagate: False
event-mask: StructureNotify

4.2.4. Window Resize

The client can elect to reeei motification of being resized by selecting BiructureNotify
events on its top-leel windows. Itwill receive aConfigureNotify event. Thesize information
in the event will be correct, but the location will be in the parent windahich may not be the
root).

The response of the client to being resized should be to accept the size it hasdoesrgo do

its best with it. Clients must not respond to being resized by attempting to resize themselves to a
better size. If the size is impossible to work with, clients are free to request to change to the
Iconic state.

4.2.5. Iconifyand Deiconify

A top-level window that is not Withdrawn will be in the Normal state if it is mapped and in the
Iconic state if it is unmapped. This will be truese if the windav has been reparented; the win-
dow manager will unmap the windoas well as its parent when switching to the Iconic state.

The client can elect to be notified of these state changes by selectBtgutiureNotify events
on the top-leel window. It will receive aUnmapNotify event when it goes Iconic andMap-
Notify event when it goes Normal.

4.2.6. ColormapChange

Clients that wish to be notified of their colormaps being installed or uninstalled should select for
ColormapNotify events on their top-kel windows and on anwindows thg havenamed in
WM_COLORMAP_WINDOWS properties on their tops#twindows. The will receive Col-
ormapNotify events with the ne field FALSE when the colormap for that windés installed or
uninstalled.

4.2.7. InputFocus

Clients can request notification thatyH®@vethe input focus by selecting féiocusChange
events on their top-keel windows; thg will receive Focusin and FocusOut events. Clientghat
need to set the input focus to one of their subwindows should not do so unjdss/tset
WM_TAKE_FOCUS in their WM_PRTOCOLS property and va done one of the following:

e Setthe input field of WM_HINTS tdr ue and actually hee the input focus in one of their
top-level windows

» Setthe input field of WM_HINTS té-alse and hae received a siitable &ent as described
in section 4.1.7

» Havereceved a WM_TAKE_FOCUS message as described in section 4.1.7

Clients should not warp the pointer in an attempt to transfer the focyshthéd set the focus
and leae the pointer aloneFor further information, see section 6.2.

Once a client satisfies these conditions, it may transfer the focus to another of its windows by
using theSetlnputFocusrequest, which is defined as follows:

45

| SetinputFocus

focus WINDOW or PainterRoot or None
revert-to: { Parent, PointerRoot, None}
L time: TIMESTAMP or CurrentTime

Corventions

1. Clientsthat use &etlnputFocusrequest must set the time argument to the
timestamp of thevent that caused them to nathe attempt. This cannot be a
Focusin event because thyedo rnot have imestamps. Clientsiay also acquire
the focus without a correspondiignterNotify event. Clientsmust not use
CurrentTime for the time argument.

2. Clientsthat use é&etlnputFocusrequest to set the focus to one of their win-
dows must set the vert-to field toParent.

4.2.8. ClientMessagé&vents
There is no way for clients to pant themselves being se@tientMessageevents.

Top-level windows with a WM_PRTOCOLS property may be seientMessageevents spe-
cific to the protocols named by the atoms in the property (see section 4.E®.&).protocols,
the ClientMessageevents hae the following:

* WM_PROTOCOLS as the type field

 Format 32

* The atom that names their protocol in the data[0] field

» Atimestamp in their data[1] field

The remaining fields of thevent, including the windw field, are determined by the protocol.
These gents will be sent by using 8endEventrequest with the following arguments:

Argument Value

destination: Thelient's window
propagate: False

event-mask: (Jempty

event: Asspecified by the protocol

4.2.8.1. Window Deletion

Clients, usually those with multiple topvi windows, whose server connection must sugne
deletion of some of their topye windows, should include the atom WM_DELETE_WINDOW
in the WM_PROTOCOLS property on each such windoThey will receive aClientMessage
event as described afse whose data[0] field is WM_DELETE_WIND@.

Clients receiving a WM_DELETE_WIND®@ message should belass if the user selected

“ delete window'from a hypothetical menu. Tyehould perform ay confirmation dialog with
the user and, if thhedecide to complete the deletion, should do the following:

« Either change the window/'date to Withdrawn (as described in section 4.1.4) or dedio
window.

46

» Destroy any internal state associated with the wiwdo

If the user aborts the deletion during the confirmation dialog, the client should ignore the mes-
sage.

Clients are permitted to interact with the user and ask, for example, whether a file associated with
the windav to be cleted should be ged or the windav deletion should be cancelled. Clients

are not required to desyréhe windav itself; the resource may be reused, but all associated state
(for example, backing store) should be released.

If the client aborts a desy@nd the user then selects DELETE WINDgain, the window
manager should start the WM_DELETE_WINDprotocol agin. Window managers should
not useDestroyWindow requests on a wingothat has WM_DELETE_WIND®Y in its
WM_PROTOCOLS property.

Clients that choose not to include WM_DELETE_WIN®Gn the WM_PROTOCOLS property
may be disconnected from the server if the user asks for one of thesdatipAtvel windows to
be deleted.

4.2.9. Rediecting Requests

Normal clients can use the redirection mechanism just as windmagers do by selecting for
SubstructureRedirect events on a parent wingoor ResizeRedirectevents on a windw itself.
However, a& most, one client per windocan select for thesevents, and a carention is needed
to avoid clashes.

Convention

Clients (including windw managers) should select fBubstructureRedirect and
ResizeRedirectevents only on windows that thieown.

In particular clients that need to taksome special action if tiyeare resized can select f®esize-
Redirect events on their top-hkel windows. The will receive aResizeRequesevent if the win-

dow manager resizes their windpand the resize will not actually takdace. Clientsare free to

malke what use thelike of the information that the windomanager wants to change their size,

but they must configure the windoto the width and height specified in theeset in a timely

fashion. D ensure that the resize will actually happen at this stage instead of being intercepted
and eecuted by the winde manager (and thus restarting the process), the client needs temporar-
ily to set werride-redirect on the winda

Cornvention
Clients receivingResizeRequestvents must respond by doing the following:

e Setting werride-redirect on the windo specified in the eent

« Configuring the windw specified in the went to the width and height specified
in the eent as soon as possible and before makiygo#timer geometry requests

» Clearing werride-redirect on the windwo specified in the eent

If a windov manager detects that a client is not obeying this@uion, it is free to taé whatever
measures it deems appropriate to deal with the client.

4.3. Communicationwith the Window Manager by Means of Selections

For each screen tlyemanage, winder managers will acquire ownership of a selection named
WM_Sn, wheren is the screen numheas ascribed in section 1.2.8Vindov managers should

47

comply with the cowentions for “Manager Selectioriglescribed in section 2.8. The intent is for
clients to be able to request a variety of information or services by issuivggsion requests on
this selection.Windov managers should support esion of the following target on their man-
ager selection:

Atom Type DataReceved

VERSION INTEGER Twointegers, which are the major and minor release
numbers (respeetly) of the ICCCM with which the
window manager compliesFor this version of the
ICCCM, the numbers are 2 and.

4.4. Summaryof Window Manager Property Types

The windav manager properties are summarized in the following table (see also section 14.1 of
Xlib = C Languae X hterfacs.

Name Type Format SeeSection
WM_CLASS STRING 8 41.2.5
WM_CLIENT_MACHINE TEXT 4.1.2.9
WM_COLORMAP_WINDONS WINDOW 32 41.2.8
WM_HINTS WM_HINTS 32 4.1.2.4
WM_ICON_NAME TEXT 4.1.2.2
WM_ICON_SIZE WM_ICON_SIZE 32 4.1.3.2
WM_NAME TEXT 4.1.2.1
WM_NORMAL_HINTS WM_SIZE_HINTS 32 41.2.3
WM_PROTOCOLS ATOM 32 41.2.7
WM_STATE WM_STATE 32 41.3.1
WM_TRANSIENT_FOR WINDQV 32 41.2.6

5. SessiorManagement and Additional Inter-Client Exchanges

This section contains some eentions for clients that participate in session managementX See
Session Margement Protocofor further details. Clients that do not support this protocol cannot
expect their windw state (e.g., WM_SATE, position, size, and stacking order) to be preserved
across sessions.

5.1. ClientSupport for Session Management

Each session participant will obtain a unique client identifier (client-ID) from the session man-
ager The client must identify one topdd window as he “client leadef’ This windav must be
created by the client. It may be inyastate, including the Withdrawn state. The client leader
window must hare a $31_CLIENT _ID property which contains the client-ID obtained from the
session management protocol. That property must:

15 As a special case, clients not wishing to implement a selection request may simply issue a
GetSelectionOwnerrequest on the appropriate Whh Selection. Ifthis selection is owned,
clients may assume that the wimdmanager complies with ICCCM version 2.0 or later.

48

 Beoftype STRING
» Beofformat8
» Contain the client-ID as a string of XPCS characters encoded using ISO 8859-1

All top-level, nontransient windows created by a client on the same display as the client leader
must hae a WM_CLIENT_LEADER property This property contains a winaddD that identi-

fies the client leader winéo The client leader winde must hae a WM_CLIENT _LEADER
property containing its own windolD (i.e., the client leader wingois pointing to itself). Tran-
sient windows need not¥xaa WM_CLIENT_LEADER property if the client leader can be
determined using the information in the WM_TRANSIENT_FOR propérhe
WM_CLIENT_LEADER property must:

* Be of type WINDOW
. Be of format 32
. Contain the windw ID of the client leader window

A client must withdrav all of its top-level windows on the same display before modifiying either
the WM_CLIENT_LEADER or the SM_CLIENT_ID property of its client leader windo

It is necessary that other clients be able to uniquely identify a wifalross sessions) among all
windows related to the same client-IBor example, a windew manager can require this unique

ID to restore geometry information from a previous session, or a workspace manager could use it
to restore information about which windows are in whicrkspace. Aclient may optionally

provide a WM_WINDOW _ROLE property to uniguely identify a wimdaithin the scope speci-

fied abae. The combination of SM_CLIENT _ID and WM_WINDOW_ROLE can be used by

other clients to uniquely identify a windacross sessions.

If the WM_WINDOW_ROLE property is not specified on a topelevindow, a dient that needs
to uniquely identify that winde will try to use instead the values of WM_CLASS and
WM_NAME. If a dient has multiple windows with identical WM_CLASS and WM_NAME
properties, then it should provide a WM_WINDOW _ROLE property.

The client must set the WM_WINDOW_ROLE property to a string that uniquely identifies that
window among all windows that & the same client leader wingo The property must:

« Beoftype STRING
» Beofformat8
e Contain a string restricted to the XPCS characters, encoded in ISO 8859-1

5.2. Window Manager Support for Session Management

A windowv manager supporting session management must register with the session manager and
obtain its own client-ID. The windo manager should sa axd restore information such as the
WM_STATE, the layout of windows on the screen, and their stacking ordereigyrdient win-

dow that has a valid SM_CLIENT _ID property (on itself, or on the wimdamed by
WM_CLIENT_LEADER) and that can be uniquely identified. Clients are allowed to change this
state during the first phase of the session checkpoint process. Thereforey mausgers

should request a second checkpoint phase arddgants’ state only during that phase.

5.3. Supportfor | CE Client Rendezvous

The Inter-Client Exchange protocol (ICE) defined as of X11R6 specifies a generic communica-
tion framevork, independent of the X seryéor data exchange between arbitrary clients. ICE
also defines a protocol forytwo ICE clients who also lwa X mnnections to the same X server

to locate (rendezvous with) each other.

49

This protocol, called the "ICE X Rendezvous" protocol, is defined in the ICE specification,
Appendix B, and uses the property ICE JARDCOLS plusClientMessageevents. Refeto that
specification for complete details.

6. Manipulation of Shared Resources

X Version 11 permits clients to manipulate a number of shared resources, for example, the input
focus, the pointeiend colormaps. Carentions are required so that clients share resources in an
orderly fashion.

6.1. Thelnput Focus

Clients that explicitly set the input focus must obeare of two modes:
* Locally actve node

* Globally active node

Cornventions

1. Locallyactive dients should set the input focus to one of their windows only
when it is already in one of their windows or wherytreczeve a
WM_TAKE_FOCUS message. Thehould set the input field of the
WM_HINTS structure tolr ue.

2. Globallyactive dients should set the input focus to one of their windows only
when thg receve a lutton e/ent and a pasge-grabbed ky event, or when
they receve a WM_TAKE_FOCUS message. Thehould set the input field
of the WM_HINTS structure t&alse.

3. Inaddition, clients should use the timestamp of tremtethat caused them to
attempt to set the input focus as the time field orSeténputFocusrequest,
not CurrentTime .

6.2. ThePoainter

In general, clients should not warp the poinMfindon managers, hower, may do so (for
example, to maintain thevwariant that the pointer is\ahys in the winda with the input focus).
Other windev managers may want to presertae illusion that the user is in sole control of the
pointer.

Corventions

1. Clientsshould not warp the pointer.

2. Clientsthat insist on warping the pointer should do so only with the src-win-
dow argument of theWarp Painter request set to one of their windows.

6.3. Grabs

A client’s @tempt to establish a button or eykgrab on a winda will fail if some other client has
already established a conflicting grab on the same windbe grabs, therefore, are shared
resources, and their use requiresventions.

In conformance with the principle that clients should behas far as possible, when a window
manager is running as thevould when it is not, a client that has the input focus may assume that
it can receie dl the available keys and buttons.

50

Convention

Windowv managers should ensure thatytipeovide some mechanism for their clients
to receve arents from all leys and all buttons, except fowents involving keys

whose keySyms are registered as being for wiwdnanagement functions (for
example, a hypothetical WIND@ KeySym).

In other words, winde managers must provide some mechanism by which a client caverecei
evants from e@ery key and button (rgardless of modifiers) unless and until the X Consortium reg-
isters some KySyms as being reserved for windmanagement functions. Currentho

KeySyms are registered for windananagement functions.

Even so, clients are advised to allthe key and button combinations used to elicit program
actions to be modified, because some wimd@nagers may choose not to obseiws corven-
tion or may not provide a ceenient method for the user to transmieets from some dys.

Corvention
Clients should establish button arel/kgabs only on windows that thewn.

In particular this covention means that a windomanager that wishes to establish a gra¥ o

the clients top-level window should either establish the grab on the root or reparent the window
and establish the grab on a proper ancestogome cases, a windomanager may want to con-
sume theeent receved, placing the winde in a gate where a subsequent sugbng will go to

the client. Examples are:

» Clicking in a windav to set focus with the click not being offered to the client
e Clicking in a buried windw to raise it, again, with the click not offered to the client

More typically a window manager should add to, rather than replace, the digatiantics for
key+button combinations by allowing theeat to be used by the client after the windmanager
is done with it. To ensure this, the winde manager should establish the grab on the parent by
using the following:

pointer/leyboard-mode == Synchronous

Then, the winder manager should release the grab by usingliwEvents request with the
following specified:

mode == ReplayPointer&board

In this way the client will recaie the e/ents as if thg had not been intercepted.

Obviously these cowventions place some constraints on possible user interface policies. There is
a trade-of here between freedom for wingtlonanagers to implement their user interface policies
and freedom for clients to implement theirs. The dilemma is resolved by:

« Allowing window managers to decide if and when a client will reeen event from any
given key a button

» Placing a requirement on the wind@ananager to provide some mechanism, perhaps a
“ Quote’ key, by which the user can send areet from ary key a button to the client

6.4. Colormaps

Section 4.1.8 prescribes a@ntions for clients to communicate with the wimdmanager about
their colormap needs. If your clients d@ectColor type applications, you should consult

51

section 14.3 oKlib — C Languae X hterfacefor corventions connected with sharing standard
colormaps. Thgshould look for and create the properties described there on the rootwoehdo
the appropriate screen.

The contents of the RGB_COLOR_MAP type property are as follows:

Field Type Comments

colormap COLORMAP ID of the colormap described
red_max CARD32 Values for pixel calculations
red_mult CARD32

green_max CARD32

green_mult CARD32

blue_max CARD32

blue_mult CARD32

base_piel CARD32

visual_id VISLALID Visual to which colormap belongs
kill_id CARD32 ID for destroying the resources

When deleting or replacing an RGB_COLOR_MARs not sufficient to delete the property; it is
important to free the associated colormap resources as well. If kill_id is greater than one, the
resources should be freed by issuingillClient request with kill_id as the gmment. Ifkill_id

is one, the resources should be freed by issuifagg@Colormap request with colormap as the
colormap agument. Ifkill_id is zero, no attempt should be made to free the resoufcekent

that creates an RGB_COLOR_MAP for which the colormap resource is created specifically for
this purpose should set kill_id to one (and can create more than one such standard colormap using
a dngle connection) A client that creates an RGB_COLOR_MAP for which the colormap
resource is shared in some way (for example, is the default colormap for the root window) should
create an arbitrary resource and use its resource ID for kill_id (and should create no other stan-
dard colormaps on the connection).

Corvention

If an RGB_COLOR_MAP property is too short to contain the visual_id field, it can
be assumed that the visual_id is the root visual of the appropriate screen. If an
RGB_COLOR_MAP property is too short to contain the kill_id field, a value of zero
can be assumed.

During the connection handshake, the server informs the client of the default colormap for each
screen. Thiss a colormap for the root visual, and clients can use it to wephe extent of col-
ormap sharing if theuse the root visual.

6.5. TheKeyboard Mapping

The X server contains a table (which is read3wtKeyboardMapping requests) that describes
the set of symbols appearing on the correspondegdde each kycode generated by the server.
This table does not affect the sergaperations in anway; it is simply a database used by
clients that attempt to understand tlegdodes thg receive. Nevetheless, it is a shared resource
and requires caentions.

It is possible for clients to modify this table by usinG@laangeKeyboardMapping request. In
general, clients should not do this. In particutlis is not the way in which clients should imple-
ment ley bndings or ley emapping. Theorversion between a sequence eltodes receed

52

from the server and a string in a particular encoding isvatpnmatter for each client (as it must
be in a world where applications may be using different encodings to support different languages
and fonts). See the Xlib reference manual foveding keyboard @ents to text.

The only valid reason for using@hangeKeyboardMapping request is when the symbols writ-
ten on the kys havechanged as, for example, when a Dvorak &rversion kit or a set of APL
keycaps has been installed. Of course, a client mag baake the change to theskcap on

trust.

The following illustrates a permissible interaction between a client and a user:

Client: “You just started me on a server without a Pawse Rlease choose &l o be he
Pause ley and press it nw.”
User: Pressethe Scroll Lock ky

Client: ‘A dding Pause to the symbols on the Scroll Logk Konfirm or Abort:
User: Confirms

Client: Usesa ChangeKeyboardMapping request to add Pause to theydode that already
contains Scroll Lock and issues this request, “Please paint Pause on the Scroll Lock

key.”
Corvention

Clients should not us€hangeKeyboardMapping requests.

If a client succeeds in changing the#xoard mapping table, all clients will reeeiMappingNo-
tify (request==leyboard) @ents. Therds no mechanism tovaid receiving thesewents.

Convention

Clients receivingMlappingNotify (request==Iyboard) &ents should update any
internal leycode translation tables there using.

6.6. TheModifier Mapping

X Version 11 supports 8 modifier bits of which 3 are preassigned to Shift, Lock, and Control.
Each maodifier bit is controlled by the state of a setegékand these sets are specified in a table
accessed bgetModifierMapping and SetModifierMapping requests. Thigable is a shared
resource and requires a@ntions.

A client that needs to use one of the preassigned modifiers should assume that the modifier table
has been set up correctly to control these modifiers. The Lock modifier should be interpreted as
Caps Lock or Shift Lock according as treygodes in its controlling set include XK_Caps_Lock

or XK_Shift_Lock.

Convention

Clients should determine the meaning of a modifier bit from #ySiims being used
to control it.

A client that needs to use an extra modifier (for example, META) should do the following:

* Scan the existing modifier mappings. If it finds a modifier that contaieycée whose set
of KeySyms includes XK_Meta L or XK_Meta_R, it should use that modifier bit.

» Ifthere is no existing modifier controlled by XK_Meta_L or XK_Meta_R, it should select
an unused modifier bit (one with an empty controlling set) and do the following:

53

- If there is a &ycode with XL_Meta_L in its set of é&/Syms, add thatdycode to the
set for the chosen modifier.

- If there is a &ycode with XL_Meta R in its set ofd¢ySyms, add thatdycode to the
set for the chosen modifier.

- If the controlling set is still emptinteract with the user to select one or margsko
be META.

. If there are no unused modifier bits, ask the user toaakectve action.
Corventions

1. Clientsneeding a modifier not currently in use should assgynddes carry-
ing suitable kySyms to an unused modifier bit.

2. Clientsassigning their own modifier bits should ask the user politely tovemo
his or her hands from thek in question if theirSetModifierMapping
request returns Busy status.

There is no good solution to the problem of reclaiming assignments togheripreassigned
modifiers when theare no longer being used.

Convention

The user must usenodmap or some other utility to deassign obsolete modifier
mappings by hand.

When a client succeeds in performin§etModifierMapping request, all clients will reces
MappingNotify (request==Maodifier)eents. Therds no mechanism for pventing these eents
from being recaied. A client that uses one of the nonpreassigned modifiers thategeoee of
these eents should do &etModifierMapping request to disar the nev mapping, and if the
maodifier it is using has been cleared, it should reinstall the modifier.

Note that aGrabServer request must be used to meake GetModifierMapping and SetModi-
fierMapping pair in these transactions atomic.

7. Device Color Characterization

The X protocol provides explicit Red, Green, and Blue (RGB) values, which are used to directly
drive a nonitor, and color names. RGB values provide a mechanism for accessing the full capa-
bilities of the display device, but at the expense of having the color yesrbsi the user remain
unknavable through the protocol. Color names were originally designed to provide access to a
device-independent color database by having the server vendor tune the definitions of the colors
in that textual database. Unfortunatehjs still does not provide the clientyaway of using an

existing device-independent cojaor for the client to get device-independent color information
back about colors that it has selected.

Furthermore, the client must be able to digcavhich set of colors are displayable by the device
(the device gamut), both to alacolors to be intelligently modified to fit within the device capa-
bilities (gamut compression) and to enable the user interface to display a representation of the
reachable color space to the user (gamut display).

Therefore, a system is needed that will provide full access to device-independent color spaces for
X clients. Thissystem should use a standard mechanism for naming the colors, be able to pro-
vide names for existing colors, and provide means by which unreachable colors can be modified

54

to fall within the device gamut.

We ae fortunate in this area tov@a £minal work, the 1931 CIE color standard, which is nearly
universally agreed upon as adequate for describing colors drdéces. Thisstandard uses a
tri-stimulus model called CIE XYZ in which each pexabie color is specified as a triplet of
numbers. Otheappropriate device-independent color models do exist, but most of them are
directly traceable back to this original work.

X device color characterization provides device-independent color spaces to X clients. It does
this by providing the barest possible amount of information to the client that allows the client to
construct a mapping between CIE XYZ and the regular X RGB color descriptions.

Device color characterization is defined by the name and contents wirtdow properties that,
togetherpermit cowverting between CIE XYZ space and linear RGB device space (such as stan-
dard CR's). LinearRGB devices require just twpieces of information to completely character-
ize them:

. A 3x3 matrix M and its iverseM ™, which corvert between XYZ and RGB intensity
(RGEntensity):
RGBntensityz M x XYZ

XYZ=M™ x RGBntensity
. A way of mapping between RGB intensity and RGB proto@le. XDCCCsupports
three mechanisms which will be outlined later.

If other device types areentually necessangdditional properties will be required to describe
them.

7.1. XYZ - RGB Corversion Matrices

Because of the limited dynamic range of both XYZ and RGB intertisége matrices will be
encoded using a fixed-point representation of a 32-bisteemhplement number scaled b¥/ 2
giving a range of16 0 16 - ¢, wheres = 272",

These matrices will be packed into an 18-element list of 32-bit values,-XYR&B matrix first,
in row major order and stored in the XDCCC_LINEAR_RGB_MATRICES properties (format =
32) on the root winde of each screen, using values appropriate for that screen.

This will be encoded as shown in the following table:
XDCCC_LINEAR_RGB_MATRICES property contents

Field Type Comments

Mo.o INT32 Interpretedhs a fixed-point numbefl6< x <16

Mo INT32
Mgz INT32
Mo INT32
M7 INT32
M™35 INT32

55

7.2. Intensity -~ RGB Value Corwversion

XDCCC provides tw representations for describing the wasion between RGB intensity and
the actual X protocol RGB values:

0 RGB value/RGB intensity iegl pairs
1 RGB intensity ramp

In both cases, the reiant data will be stored in the XDCCC_LINEAR_RGB_CORRECTION
properties on the root windoof each screen, using values appropriate for that screen, in what-
eve format provides adequate resolution. Each property can consist of multiple entries concate-
nated togetheif different visuals for the screen require differentvassion data. An entry with

a VisuallD of 0 specifies data for all visuals of the screen that are not otherwise explicitly listed.

The first representation is an array of RGB value/intensrgy pairs, with the RGB values in
strictly increasing orderWhen conerting, the client must linearly interpolate between adjacent
entries in the table to compute the desirelde. Thisallows the server to perform gamma cor-
rection itself and encode that fact in a short two-element correction table. The intensity will be
encoded as an unsigned number to be interpreted as a value between 0 andve)inthegpre-
cision of this value will depend on the format of the property in which it is stored (8, 16, or 32
bits). For 16-bit and 32-bit formats, the RGB value will simply be the value stored in the prop-
erty. When stored in 8-bit format, the RGB value can be computed from the value in the property
by:
Property Valuex 65535

255

Because the three electron guns in the device may not be exadlinaikponse characteristics,

it is necessary to allofor three separate tables, one each for red, green, and blue. Therefore,
each table will be preceded by the number of entries in that table, and the set of tables will be pre-
ceded by the number of tables. When three tables are providgayilhee in red, green, blue

order.

RGB a5 =

This will be encoded as shown in the following table:
XDCCC_LINEAR_RGB_CORRECTION Property Contents for Type 0 Correction

Field Type Comments

VisuallDO CARD Mossignificant portion of VisuallD

VisuallD1 CARD Existéf and only if the property format is 8

VisuallD2 CARD Existsf and only if the property format is 8

VisuallD3 CARD Least significant portion, exists if and only if the
property format is 8 or 16

type CARD 0 for this type of correction

count CARD Number of tables following (either 1 or 3)

length CARD Number of pairs — 1 following in this table

vaue CARD X Protocol RGB value

intensity CARD Interpret as a numberQintensity< 1

Total of length+1pairs of value/intensity values

lengthg CARD Number of pairs — 1 following in this table (if and
only if countis 3)

vaue CARD X Protocol RGB value

56

intensity CARD Interpret as a numberQintensity< 1
Total of lengthg+1pairs of value/intensity values

lengthb CARD Number of pairs — 1 following in this table (if and
only if countis 3)

vaue CARD X Protocol RGB value

intensity CARD Interpret as a numberQintensity< 1

Total of lengthb+1pairs of value/intensity values

The VisuallD is stored in 4, 2, or 1 pieces, depending on whether the property format is 8, 16, or
32, respectiely. The VisuallD is alvays stored most significant piece first. Note that the length
fields are stored as one less than the actual length, so 256 entries can be stored in format 8.

The second representation is a simple array of intensities for a linear subset cAlR&B The
expected size of this table is the bits-per-rgb-value of the screen, but it caplbagth. Thids
similar to the first mechanism, except that the RGB value numbers are implicitly defined by the
index in the array (indices start at 0):

Array Indexx 65535
R =
CBuatue Array Size-1

When corerting, the client may linearly interpolate between entries in this table. The intensity
vaues will be encoded just as in the first representation.

This will be encoded as shown in the following table:
XDCCC_LINEAR_RGB_CORRECTION Property Contents for Type 1 Correction

Field Type Comments

VisuallDO CARD Mossignificant portion of VisuallD

VisuallD1 CARD Existsf and only if the property format is 8

VisuallD2 CARD Existsf and only if the property format is 8

VisuallD3 CARD Least significant portion, exists if and only if the
property format is 8 or 16

type CARD 1 for this type of correction

count CARD Number of tables following (either 1 or 3)

length CARD Number of elements — 1 following in this table

intensity CARD Interpret as a numberQintensity< 1

Total of length+1intensity elements

lengthg CARD Number of elements — 1 following in this table (if
and only ifcountis 3)

intensity CARD Interpret as a numberintensity< 1

Total of lengthg+1lintensity elements

lengthb CARD Number of elements — 1 following in this table (if
and only ifcountis 3)

intensity CARD Interpret as a numberDintensity< 1

Total of lengthb+1intensity elements

8. Conclusion

This document provides the protocokdespecification of the minimal carentions needed to
ensure that X Version 11 clients can interoperate prap&His document specifies

57

interoperability comentions only for the X Version 11 protocol. Clients should Wera of other
protocols that should be used for better interoperation in thei¥oament. Thaeader is
referred taX Session Mangement Protocofor information on session management, anihter-
Client Exchang Protocol for information on general-purpose communication among clients.

8.1. TheX Registry

The X Consortium maintains a registry of certain X-related items, to aiaidirag conflicts and
in sharing of such items. Readers are encouraged to use the réffigglasses of items kept in
the registry that are relant to the ICCCM include property names, property types, selection
names, selection targets, WM_®ROCOLS protocolsClientMessagetypes, and application
classes. Requedtsregister items, or questions about registration, should be addressed to

xregistry@x.org
or to

The X.Og Group -- X11 Registry
c/o lenup Sung
Sun Microsystems, Inc.
4150 Network Circle, MS SJC07-201
Santa Clara, CA 95054
USA

Electronic mail will be acknowledged upon receipt. Pleasevalimto 4 weeks for a formal
response to registration and inquiries.

The registry is published as part of the X software distribution from the X Consortium. All regis-
tered items must ka the postal address of someone responsible for the item or a reference to a
document describing the item and the postal address of where to write to obtain the document.

58

Appendix A

A. Revision History

This appendix describes the revision history of this document and summarizes the incompatibili-
ties between this and earlier versions.

A.1. TheX11R2 Draft

The February 25, 1988, draft that was distributed as part of X Version 11, Release 2, was clearly
labeled as such, and nyaareas were explicitly labeled as liable to changevaibeless, in the
revision work done since then, wevhdeen very careful not to introduce gratuitous incompati-
bility. As far as possible, we @ tied to ensure that clients obeying theetions in the

X11R2 draft would still work.

A.2. TheJuly 27, 1988, Draft

The Consortium revig was based on a draft dated July 27, 1988. This draft includexdhke
areas in which incompatibilities with the X11R2 draft were necessary:

e The use of propertilone in ConvertSelection requests is no longer alled. Ownerghat
receve them are free to use the target atom as the property to respond with, which will work
in most cases.

» The protocol for INCREMENTAL type properties as selection replies has changed, and the
name has been changed to INCR. Selection requestors are free to implement the earlier pro-
tocol if they receve properties of type INCREMENTAL.

* The protocol for INDIRECT type properties as selection replies has changed, and the name
has been changed to MUIPLE. Selectiorrequestors are free to implement the earlier pro-
tocol if they receve groperties of type INDIRECT.

e The protocol for the special CLIPBOARD client has changed. The earlier protocol is subject
to race conditions and should not be used.

* The set of state values in WM_HINTS.initial_state has been reduced, but the values that are
still valid are unchangedwindon managers should treat the other values sensibly.

The methods an application uses to change the state of itvébpHiedow havechanged
but in such a way that cases that used to work will still work.

e The x, ywidth, and height fields kra keen remwaed from the WM_NORMAL_HINTS
property and replaced by pad fieldéalues set into these fields will be ignored. The posi-
tion and size of the windoshould be set by setting the appropriate wimattributes.

* A pair of base fields and a win_gravity field/édeen added to the WM_NORMAL_HINTS
property Windowv managers will assume values for these fields if the client sets a short

property.

A.3. ThePublic Review Drafts

The Consortium revig resulted in seeral incompatible changes. These changes were included
in drafts that were distributed for public rewieuring the first half of 1989.

The messages field of the WM_HINTS property was found to be unwieldy and difficult to
evdve. Ithas been replaced by the WM_®ROCOLS propertybut clients that use the

59

earlier mechanism can be detected becaugesthi¢he messages bit in the flags field of the
WM_HINTS property and windav managers can provide a backwards compatibility mode.

The mechanism described in the earlier draft by which clients installed their own subwindow
colormaps could not be made to work reliably and mandated some features of the look and
feel. Ithas been replaced by the WM_COLORMAP_WINDOWS propetlients that use

the earlier mechanism can be detected by the WM_COLORMAPS propargetten their
top-level window, but providing a reliable backwards compatibility mode is not possible.

The recommendations for windananager treatment of topvie window borders hae
been changed as those in the earlier draft produced problems with Visilstitg.e For non-
window manager clients, there is no incompatibility.

The pseudoroot facility in the earlier draft has been wedhoAlthoughit has been success-
fully implemented, it turns out to be inadequate to support the ugisaged. Arextension

will be required to support these uses fudfyd it was felt that the maximum freedom should
be left to the designers of thetension. Ingeneral, the previous mechanism was invisible to
clients and no incompatibility should result.

The addition of the WM_DELETE_WIND® protocol (which preents the danger that
multi-window clients may be terminated unexpectedly) has meant some changes in the
WM_SAVE_YOURSELF protocol, to ensure that thetwotocols are orthogonal. Clients
using the earlier protocol can be detected (see WNDTRIREOLS abee) and supported in a
backwards compatibility mode.

The cowentions in Section 14.3.1. oflib — C Languaye X hterfaceregarding properties of
type RGB_COLOR_MAP hea been changed, but clients that use the earlierecions
can be detected because their properties are 4 bytes sfdwse clients will work cor-
rectly if the server supports only a single Visual or ifthge only the Visual of the root.
These are the only cases in whichythuld hare worked, anyway.

A.4. Version 1.0, July 1989

The public revies resulted in a set of mostly editorial changes. The changes in version 1.0 that
introduced some degree of incompatibility with the earlier drafts are:

A new section (6.3) was addedasing the windev managers use of Grabs. The restric-
tions it imposes should affect only windonanagers.

The TARGETS selection target has been clarified, and it may be necessary for clients to add
some entries to their replies.

A selection owner using INCR transfer should no longer replace targets in a MULTIPLE
property with the atom INCR.

The contents of th€lientMessageevent sent by a client to iconify itself has been clarified,
but there should be no incompatibility because the earlier contents would not inviact ha
worked.

The border-width in syntheti€onfigureNotify events is nav specified, but this should not
cause apincompatibility.

Clients are nev asked to set a border-width on &@bnfigureWindow requests.

Window manager properties on icon windowsanwill be ignored, but there should be no
incompatibility because there was no specification thatlibebeyed previously.

The ordering of real and synthet@onfigureNotify events is nav specified, but apincom-
patibility should affect only winde managers.

60

* The semantics of WM_SAVE_YOURSELFJ®abkeen clarified and restricted to be a check-
point operation only Clients that were using it as part of a shutdown sequence may need to
be modified, especially if tiyavere interacting with the user during the shutdown.

* AKkill_id field has been added to RGB_COLOR_MAP properties. Clients using earlier con-
ventions can be detected by the size of their RGB_COLOR_MAP properties, and the cases
that would hae worked will still work.

A.5. Version 1.1

Version 1.1 was released with X11R5 in September 1991. In addition to some minor editorial
changes, there were asfeemantic changes since Version 1.0:

e The section on Device Color Characterization was added.
* The meaning of the NULL property type was clarified.
» Appropriate references to Compourekifwere added.

A.6. Public Review Draft, December 1993
The following changes ka een made in preparing the public revidraft for Version 2.0.

e [PO1] Addition of advice to clients onWwdo keep track of a top&l window’s absolute
position on the screen.

» [PO03] A technique for clients to detect when it is safe to reuse avelidown has been
added.

» [PO06] Section 4.1.8, on colormaps, has beemitten. Anew feature that allows clients to
install their own colormaps has also been added.

» [P08] The LENGTH target has been deprecated.
« [P11] The manager selections facility was added.

* [P17] The definition of the aspect ratio fields of the WM_NORMAL_HINTS property has
been changed to include the base size.

« [P19] StaticGravity has been added to the list of values allowed for the win_gravity field of
the WM_HINTS property The meaning of th€enterGravity value has been clarified.

* [P20] A means for clients to query the ICCCM complianegel kef the windav manager has
been added.

» [P22] The definition of the MULTIPLE selection target has been clarified.

» [P25] A definition of “top-lerel window” has been added. The WM_AIIE property has
been defined and exposed to clients.

* [P26] The definition of windwe states has been clarified and the wordirgam@ing window
state changes has been made more consistent.

» [P27] Clarified the rules gerning when windw managers are required to send synthetic
ConfigureNotify events.

» [P28] Added a recommended technique for setting the input focus to awasdoon as it
is mapped.

* [P29] The required lifetime of resource IDs named in wind@nager properties has been
specified.

» [P30] Advice for dealing withéystrokes and@rride-redirect windows has been added.

« [P31] A statement on the ownership of resources transferred through the selection mecha-
nism has been added.

61

[P32] The definition of the CLIENT_WIND® target has been clarified.

[P33] A rule about requiring the selection owner to reacquire the selection under certain cir-
cumstances has been added.

[P42] Added seeral new selection targets.

[P44] Ambiguous wording garding the withdraval of top-level windows has been
removed.

[P45] A facility for requestors to pass parameters during a selection request has been added.
[P49] A cowention on discrimated names has been added.

[P57] The C_STRING property type was added.

[P62] An ordering requirement on processing selection requests was added.

[P63] TheVisibleHint flag was added.

[P64] The session management section has been updated to align with thegien man-
agement protocol. The old session managemenentians hae been meed to Appendix
C.

References to the wer-forthcomingWindow and Session Maga Conventions Manual
have been remued.

Information on the X Registry and references to the session management and ICE docu-
ments hae been added.

Numerous editorial and typographical impements hge been made.

A.7. Version 2.0, April 1994

The following changes ka keen made in preparation for releasing the final edition of Version
2.0 with X11R6.

The PIXMAP selection target has been revised to return a property of type PIXMAP instead
of type DRANABLE.

The session management section has been revised slightly to correspond with the changes to
the X Sssion Mangement Protocal

Window managers are moprohibited from placingCurrentTime in the timestamp field of
WM_TAKE_FOCUS messages.

In the WM_HINTS propertythe VisibleHint flag has been renamedtsgencyHint. Its
semantics hae dso been defined more thoroughly.

Additional editorial and typographical changesenbeen made.

62

Appendix B

B. SuggestedProtocol Revisions

During the deelopment of these carntions, a number of inadequacieséseen discoered in
the core X11 protocol. Tlyeare summarized here as input to aprgual protocol revision design
process:

* There is no way for anyone to find out the last-change time of a selectiorGethe
SelectionOwnerrequest should be changed to return the last-change time as well as the
owner.

* There is no way for a client to find out which selection atoms are valid.

e There would be no need for WM_TAKE_FOCUS if thecusin event contained a time-
stamp and a previous-focus field. This coudidthe potential race condition. There is
space in thewent for this information; it should be added at the next protocol revision.

» There is arace condition in tiestallColormap request. ldoes not tai& a imestamp and
may be gecuted after the top-el colormap has been uninstalled. The next protocol revi-
sion should provide the timestamp in tistallColormap , UninstallColormap, List-
InstalledColormaps requests and in th€olormapNotify event. Thetimestamp should be
used in a similar way to the last-focus-change time for the input focus. The lack of times-
tamps in these packets is the reason for restricting colormap installation to theswiadeo
ager.

e The protocol needs to be changed to provide some way of identifying the Visual and the
Screen of a colormap.

* There should be some way to reclaim assignments to theoiiypreassigned modifiers
when thg are no longer needed. The manual method is unpleasantly low-tech.

63

Appendix C

C. ObsoleteSession Manager Coventions

This appendix contains obsolete gemtions for session management using X properties and
messages. Theorventions described here are deprecated and are described only for historical
interest. Br further information on session managementXs8ession Mangement Protocol.

C.1. Properties

The client communicates with the session manager by placongroperties (WM_COMMAND
and WM_CLIENT_MACHINE) on its top-kel window. If the client has a group of topvi
windows, these properties should be placed on the group leademwindo

The windav manager is responsible for placing a WMASE property on each top-el client
window for use by session managers and other clients that need to be able to identifgl top-le
client windows and their state.

C.1.1. WM_COMMAND Property

The WM_COMMAND property represents the command used to start or restart the client. By
updating this propertylients should ensure that itnadys reflects a command that will restart

them in their current state. The content and type of the property depend on the operating system
of the machine running the client. On POSIX-conformant systems using ISO Latin-1 characters
for their command lines, the property should:

 Beoftype STRING
* Contain a list of null-terminated strings
* Beinitialized from argv

Other systems will need to set appropriateventions for the type and contents of
WM_COMMAND properties.Windav and session managers should not assume that
STRING is the type of WM_COMMAND or that thevill be able to understand or display
its contents.

Note that WM_COMMAND strings are null-terminated and differ from the generakntans

that STRING properties are null-separated. This inconsigismecessary for backwards com-
patibility.

A client with multiple top-leel windows should ensure that exactly one of them has a
WM_COMMAND with nonzero length. Zero-length WM_COMMAND properties can be used
to reply to WM_SAVE_YOURSELF messages on other topHeindows but will otherwise be
ignored.

C.1.2. WM_CLIENT_MA CHINE Property
This property is described in section 4.1.2.9.

C.2. Termination

Because thecommunicate by means of unreliable network connections, clients must be prepared
for their connection to the server to be terminated atiare without varning. Thg cannot

depend on getting notification that termination is imminent or on being able to use the server to
negotiate with the user about theitd. for example, clients cannot depend on being able to put

64

up a dialog box.

Similarly, clients may terminate at grime without notice to the session managathen a client
terminates itself rather than being terminated by the session maheagaewed as having
resigned from the session in question, and it will not beedvi the session is rexed.

C.3. ClientResponses to Session Manager Actions

Clients may need to respond to session manager actions welys:
* Sawving their internal state

* Deleting a window

C.3.1. Saing Client State

Clients that want to be warned when the session manager feels yhsiidhlel sae their internal

state (for example, when termination impends) should include the atom WM_SAVE_YOURSELF
in the WM_PROTOCOLS property on their topael windows to participate in the
WM_SAVE_YOURSELF protocol. Thewill receive aClientMessageevent as described in

section 4.2.8 with the atom WM_SAVE_YOURSELF in its data[0] field.

Clients that recee WM_SAVE_YOURSELF should place themselves in a state from which they
can be restarted and should update WM_COMMAND to be a command that will restart them in
this state. The session manager will be waiting fBrapertyNotify event on WM_COM-

MAND as a confirmation that the client hasesits state. Therefore, WM_COMMAND should

be updated (perhaps with a zero-length appereh) i€its contents are correct. No interactions
with the user are permitted during this process.

Once it has recegd this confirmation, the session manager will feel free to terminate the client if
that is what the user asked.f@therwise, if the user asked for the session to be put to sleep, the
session manager will ensure that the client does novesary nouse or kyboard eents.

After receiving a WM_SAVE_YOURSELRaving its state, and updating WM_COMMAND, the
client should not change its state (in the sense of doing anything that would require a change to
WM_COMMAND) until it receves a nouse or kyboard @ent. Onceit does so, it can assume

that the danger isver. The session manager will ensure that thesets do not reach clients

until the danger isver or until the clients hee keen killed.

Irrespectve d how they are arranged in winde groups, clients with multiple topy¥el windows
should ensure the following:

* Only one of their top-leel windows has a nonzero-length WM_COMMAND property.
 Theyrespond to a WM_SAVE_YOURSELF message by:
- First, updating the nonzero-length WM_COMMAND propeityecessary

- Second, updating the WM_COMMAND property on the windor which they
receved the WM_SAVE YOURSELF message if it was not updated in the first step

Receiving WM_SAVE_YOURSELF on a windds, conceptuallya mommand to sz the entire
client state*®

16 This cowention has changed since earlier drafts because of the introduction of the protocol in
the next section. In the public revialraft, there was ambiguity as to whether
WM_SAVE_YOURSELF was a checkpoint or a shutdown facilltyis now unambiguously a
checkpoint facility; if a shutdown facility is judged to be necessasyparate WM_PRTOCOLS
protocol will be deeloped and registered with the X Consortium.

65

C.3.2. Window Deletion

Windows are deleted using the WM_DELETE_WINB®@rotocol, which is described in section
4.2.8.1.

C.4. Summaryof Session Manager Property Types
The session manager properties are listed in the following table:

Name Type Format SeeSection
WM_CLIENT_MACHINE TEXT 4.1.2.9
WM_COMMAND TEXT C.l1.1
WM_STATE WM_STATE K7 41.3.1

66

Table of Contents

Preface to Version 2.0 .

Preface to Version 1.1 .

1. Introduction . .
1.1. Evolution of the Comntlons .
1.2. Atoms . . .

1.2.1. What Are Atoms’?

1.2.2. Predefined Atoms

1.2.3. Naming Corentions .
1.2.4. Semantics .

1.2.5. Name Spaces. .
1.2.6. Discriminated Names .

2. Peer-to-Peer Communication by Means of Selectlons .

2.1. Acquiring Selection Ownership

2.2. Responsibilities of the Selection Ownet
2.3. Giving Up Selection Ownership .
2.3.1. Voluntarily Giving Up Selection Ownershlp
2.3.2. Forcibly Giving Up Selection Ownership.
2.4. Requesting a Selection . Coe
2.5. Large DatarBnsfers

2.6. Use of Selection Atoms .

2.6.1. Selection Atoms . .

2.6.1.1. The PRIMAR Selectlon .

2.6.1.2. The SECONDARSelection

2.6.1.3. The CLIPBOARD Selection

2.6.2. Target Atoms . . .

2.6.3. Selection Targets with Slde‘eE'fts

2.6.3.1. DELETE. . . .o

2.6.3.2. INSER_ SELECTION

2.6.3.3. INSERT_PROPHF .

2.7. Use of Selection Properties.

2.7.1. TEXT Properties.

2.7.2. INCR Properties . .

2.7.3. DRANVABLE Properties.

2.7.4. SPAN Properties.

2.8. Manager Selections .

3. Peer-to-Peer Communication by Means of CufeBsn‘
4. Client-to-Window-Manager Communication.
4.1. Clients Actions .

4.1.1. Creating a Top-ivel WlndON .

4.1.2. Client Properties. . .

4.1.2.1. WM_NAME Property. .
4.1.2.2. WM_ICON_NAME Property .
4.1.2.3. WM_NORMAL_HINTS Property.
4.1.2.4. WM_HINTS Property.

4.1.2.5. WM_CLASS Property . .o
4.1.2.6. WM_TRANSIENT_FOR Property .
4.1.2.7. WM_PRTOCOLS Property

N

ODOROMMNPDMMNNN

-

WPPOOAPOUONONNNR, PR

MEEOOERNPEPPPPPARABIWMMNRDNNRR

4.1.2.8. WM_COLORMAP_WINDOWS Property .
4.1.2.9. WM_CLIENT_MACHINE Property .
4.1.3. Windeov Manager Properties .

4.1.3.1. WM_SATE Property .

4.1.3.2. WM_ICON_SIZE Property.

4.1.4. Changing Winde State .

4.1.5. Configuring the Windo. .

4.1.6. Changing Winde Attributes

4.1.7. Input Becus . . .o

4.1.8. Colormaps.

4.1.9.Icons. . .

4.1.10. Pop-up Wlnd/ms

4.1.11. Windw Groups . . .
4.2. Client Responses to Wlnmldvlanager Actlons :
4.2.1. Reparenting

4.2.2. Redirection of Operatlons

4.2.3. Windev Move .

4.2.4. Windev Resize .

4.2.5. Iconify and Deiconify .

4.2.6. Colormap Change .

4.2.7. Input Bcus . . .

4.2.8. ClientMessage Ents

4.2.8.1. Windw Deletion

4.2.9. Redirecting Requests .

4.3. Communication with the WlnuloManager by Means of Selectlons
4.4. Summary of Winde Manager Propertyypes

5. Session Management and Additional Inter-Client Exchanges
5.1. Client Support for Session Management . .
5.2. Windav Manager Support for Session Management .
5.3. Support for ICE Client Rendexnys .

6. Manipulation of Shared Resources.

6.1. The Input Bcus

6.2. The Pointer .

6.3. Grabs .

6.4. Colormaps . .

6.5. The Keyboard Mapplng

6.6. The Modifier Mapping.

7. Device Color Characterization

7.1. XYZ ~ RGB Corersion Matrices.

7.2. Intensity~ RGB Value Cowersion .

8. Conclusion . .

8.1. The X Rgistry

A. Revision History . .

A.l. The X11R2 Draft . . .

A.2. The July 27, 1988, Dratft.

A.3. The Public Revi# Drafts .

A.4. Version 1.0, July 1989

A.5. Version 1.1 .

A.6. Public Reviws Draft, December 1993

A.7. Version 2.0, April 1994 .

mmm@mmeﬁ@mmmmmwmmgaamadb@s&&%ﬂ@m@wmmﬁmpﬁmagg@@wgwommmm

B. Suggested Protocol Reions .
C. Obsolete Session Manager €attions .
C.1. Properties
C.1.12. WM_COMMAND Property . .
C.1.2. WM_CLIENT_MACHINE Property.
C.2. Termination

C.3. Client Responses to Sessron Manager Actlons.

C.3.1. Saving Client State.
C.3.2. Windav Deletion .
C.4. Summary of Session Manager Propeyl}ye's

s HP®

