X Toolkit Intrinsics — C Language Interface
X Window System
X Version 11, Release 6.9/7.0

First Revision - April, 1994

Joel McCormack

Digital Equipment Corporation
Western Software Laboratory

Paul Asente

Digital Equipment Corporation
Western Software Laboratory

Ralph R. Swick

Digital Equipment Corporation
External Research Group
MIT X Consortium

version 6 edited by Donna Coearse

X Consortium, Inc.

X Window System is a trademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, yparson obtaining a cgpof this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The abwe mpyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PRVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, cgpmodify and distribute this documentation forygaurpose and without fee is hereby granted,
provided that the alve cpyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity per-
taining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein fgmpanpose. lis provided “as is'without express or implied
warranty.

Acknowledgments

The design of the X11 Intrinsics was done primarily by Joel McCormack of Digital WSL. Major
contributions to the design and implementation also were done by Charles Hayree€hiwik

and Paul Asente of Digital WSL. Additional contributors to the design and/or implementation
were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)

Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)

Mary Larson (Digital UEG) Mark Manasse (Digital SRC)

Jim Gettys (Digital SRC) Leo Toggiari (Digital SDT)

Ralph Swick (Project Athena and Digital ERP) Mark Ackerman (Project Athena)
Ron Newman (Project Athena) Bob Scheifler (MIT LCS)

The contributors to the X10 toolkit also desemention. Althoughthe X11 Intrinsics present an
entirely different programming style, ghborrow heavily from the implicit and explicit concepts
in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smoley Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 toatki#imple widgets were by the at@as well as
by:

Ram Rao (Digital UEG)

Mary Larson (Digital UEG)

Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the X11 Intrinsics.

Thanks go to Al Mento of Digitad UEG Documentation Group for formatting and generally
improving this document and to John Ousterhout of BeyKeleextensiely reviewing early
drafts of it.

Finally, a ecial thanks to Mii& Chow, whose extense performance analysis of the X10 toolkit
provided the justification to redesign it entirely for X11.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

March 1988

Xi

The current design of the Intrinsics has benefited greatly from the inpwetdlsgedicated
reviewers in the membership of the X Consortium. In addition to those already mentioned, the
following individuals hae dedicated significant time to suggesting im@raents to the Intrin-

sics:

Steve Rtschlke (Stellar) C.Doug Blewett (AT&T)

Bob Miller (HP) David Schiferl (Tektronix)

Fred Taft (HP) Michael Squires (Sequent)

Marcel Meth (A&T) Jim Fulton (MIT)

Mike Collins (Digital) Kerry Kimbrough (Exas Instruments)
Scott McGregor (Digital) Phil Karlton (Digital)

Julian Payne (ESS) Jacques Davy (Bull)

Gabriel Beged-Dw (HP) Glennwidener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick

External Research Group
Digital Equipment Corporation
MIT Project Athena

June 1988
From Release 3 to Release 4jesal nav members joined the design tealVe geatly appreciate

the thoughtful comments, suggestions, lepgliscussions, and in some cases implementation
code contributed by each of the following:

Don Alecci (AT&T) Ellis Cohen (OSF)
Donna Cowerse (MIT) Clive Feather (IXI)
Nayeem Islam (Sun) Dana Laursen (HP)
Keith Packard (MIT) Chris Peterson (MIT)
Richard Probst (Sun) Larry Cable (Sun)

In Release 5, the effort to define the internationalization additions was headed by Bill McMahon
of Hewlett Packard and Frank Rojas of IBM. This has been an educational processyfof man

us, and Bill and Frang'tutelage has carried us througVania Jolobof of the OSF also con-

tributed to the internationalization additions. The implementation efforts of Bill, Gabe Beged-
Dov, and especially Donna Cuaarse for this release are also gratefully acknowledged.

Ralph R. Swick
December 1989

and
July 1991

Xii

The Release 6 Intrinsics is a result of the collabggadforts of participants in the X Consor-
tium’s intrinsics working group. A few individuals contributed substantial design proposals, par-
ticipated in length discussions, reviewed final specifications, and in most cases, were also
responsible for sections of the implementation. yldesere recognition and thanks for their
major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)

Ellis Cohen (OSF) Daniel Dardailler (OSF)
Vania Jolobof (OSF) KalelKeithley (X Consortium)
Courtng Loomis (HP) Douglas Rand (OSF)

Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and participated in a
significant subset of the process. The following people dedsawnks for their contributions:

Andy Bovingdon, Sam Chang, Chris Craig, George Erwin-Gypts&ith Edwards, Clie
FeatherStephen Gildea, Dan Helle®teve Humphrey, David Kaelbling, Jaime Lau, Rob Lem-

bree, Stuart Marks, Beth Mynatt, Tom Paquin, Chris Peterson, Kamesh Ramakrishna, Tom
Rodriguez, Jim VanGildewill Walker, and Mike WeXer.

| am especially grateful to tev of my wlleagues: Ralph Swick for expert editorial guidance, and
Kaleb Keithlegy for leadership in the implementation and the specification work.

Donna Comerse
X Consortium
April 1994

Xiii

About This Manual

X Toolkit Intrinsics — C Languge Interfaceis intended to be read by both application program-
mers who will use one or more of the mavidget sets built with the Intrinsics and by widget
programmers who will use the Intrinsics to build widgets for one of the widget sets. Not all the
information in this manual, hower, gpplies to both audiences. That is, because the application
programmer is likely to use only a number of the Intrinsics functions in writing an application and
because the widget programmer is likely to useynmaore, if not all, of the Intrinsics functions

in building a widget, an attempt has been made to highlight those areas of information that are
deemed to be of special interest for the application programhés assumed the widget pro-
grammer will hae © be familiar with all the information.) Therefore, all entries in the table of
contents that are printed lirold indicate the information that should be of special interest to an
application programmer.

It is also assumed that, as application programmers become more familiar with the concepts dis-
cussed in this manual, thwiill find it more comwenient to implement portions of their applica-

tions as special-purpose or custom widgets. It is possible, nonetheless, to use widgets without
knowing hav to build them.

Conventions Used in this Manual
This document uses the following eentions:

. Global symbols are printed ithis special bnt. These can be either function names, sym-
bols defined in include files, data types, or structure names. Arguments to functions, proce-
dures, or macros are printeditalics.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. Thefunction declaration itself follows, and each argument is specifically explained.
General discussion of the function, ifyas required, follows the arguments.

. To diminate ary ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifiesr, in the case of multiple arguments, the wepecify The explanations for all
arguments that are returned to you start with the wetminsor, in the case of multiple
arguments, the wonetturn.

Xiv

Chapter 1

Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user interface
construction within a network windosystem, specifically the X WinadoSystem. Thdntrinsics
and a widget set malup an X bolkit.

1.1. Intrinsics

The Intrinsics provide the base mechanism necessary to build a wide variety of interoperating
widget sets and applicationv@mnments. Théntrinsics are a layer on top of Xlib, the C Library
X Interface. Thg extend the fundamental abstractions provided by the X Wir8gstem while

still remaining independent of wiparticular user interface polior syle.

The Intrinsics use object-oriented programming techniques to supply a consistent architecture for
constructing and composing user interface components, known as widgets. This allows program-
mers to extend a widget set inmneays, either by deriving mewidgets from existing ones (sub-
classing) or by writing entirely mewidgets following the established a@ntions.

When the Intrinsics were first coneedl, the root of the object hierarctvas a widget class

named Core. In Release 4 of the Intrinsics, three nonwidget superclasses were agdédrabo
These superclasses are described in Chapter 12. The name of thewlasth@ooot of the

Intrinsics class hierarghis Object. Theremainder of this specification refers uniformlyniial-
getsandCoreas if they were the base class for all Intrinsics operations. The argument descrip-
tions for each Intrinsics procedure and Chapter 12 describe which operations are defined for the
nonwidget superclasses of Core. The reader may determine by context whether a specific refer-
ence towidgetactually means “widgetor ‘‘object”

1.2. Languages

The Intrinsics are intended to be used for programming purposes. Programmers writing wid-
gets will be using most of the facilities provided by the Intrinsics to construct user interface com-
ponents from the simple, such as buttons and scrollbars, to the complex, such as control panels
and property sheets. Application programmers will use a much smaller subset of the Intrinsics
procedures in combination with one or more sets of widgets to construct and present complete
user interfaces on an X displayhe Intrinsics programming interfaces primarily intended for
application use are designed to be callable from most procedural programming languages. There-
fore, most arguments are passed by reference rather thatuby Theanterfaces primarily

intended for widget programmers are expected to be used principally from the C language. In
these cases, the usual C programming@aions apply In this specification, the teralient

refers to ap module, widget, or application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the headeiXfll#8ntrinsic.h >
and <X11/StringDefs.h>, or their eqwalent, and thg may also include X11/Xatoms.h> and
<X11/Shell.r>. Inaddition, widget implementations should includéld/IntrinsicP.h > instead
of <X11/Intrinsic.h >.

The applications must also include the additional header files for each widget class/that the
to use (for example, X11/Xaw/Label.h> or <X11/Xaw/Scrollbar.h>). Ona RFOSIX-based sys-
tem, the Intrinsics object library file is namidolXt.a and is usually referenced as —IXt when
linking the application.

1.3. Pmocedures and Macros

All functions defined in this specification except those specifiedviorby be implemented as C
macros with aguments. Gipplications may us&fundef’ to remove a macro definition and

ensure that the actual function is referencedy suth macro will expand to a single expression
that has the same precedence as a function call and/ghsttes each of its arguments exactly
once, fully protected by parentheses, so that arbitrary expressions may be used as arguments.

The following symbols are macros that do notehfmnction equialents and that may expand
their arguments in a manner other than that describad:aktCheckSubclass XtNew,
XtNumber , XtOffsetOf, XtOffset, and XtSetArg.

1.4. Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is a combination
of an X windav and its associated input and display semantics and which is dynamically allo-
cated and contains state information. Some widgets display information (for example, text or
graphics), and others are merely containers for other widgets (for example, a menu box). Some
widgets are output-only and do not react to pointeregbdard input, and others change their dis-
play in response to input and camake functions that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and initialized and
which contains the operations allable on widgets of that class. Logicallywidget class is the
procedures and data associated with all widgets belonging to that class. These procedures and
data can be inherited by subclasses. Physj@lljdget class is a pointer to a structure. The
contents of this structure are constant for all widgets of the widget class but will vary from class
to class. (Here, “constantheans the class structure is initialized at compile time avet ne
changed, except for a one-time class initialization and in-place compilation of resource lists,
which takes place when the first widget of the class or subclass is crdamefiijther informa-

tion, see Section 2.5.

The distribution of the declarations and code forwa welget class among a public .h file for
application programmer use, ayate .h file for widget programmer use, and the implementation
.c file is described in Section 1.6. The predefined widget classes adhere to thesgorsn

A widget instance is composed ofaparts:
. A data structure which contains instance-specific values.
. A class structure which contains information that is applicable to all widgets of that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, or border widths) is cus-
tomizable by users.

This chapter discusses the base widget classes, Core, Composite, and Constraint, and ends with a
discussion of widget classing.

1.4.1. Coe Widgets

The Core widget class contains the definitions of fields common to all widgets. All widgets
classes are subclasses of the Core class, which is defined®@grédt€assPartand CorePart
structures.

1.4.1.1. CoeClassPart Structure
All widget classes contain the fields defined in @weClassPartstructure.

‘ typedef struct {

-

WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class _initialize;

XtWidgetClassProc class_part_initialize;

XtEnum class_inited;

XtInitProc initialize;

XtArgsProc initialize_hook;
XtRealizeProc realize;
XtActionList actions;

Cardinal num_actions;
XtResourcelList resources;
Cardinal num_resources;
XrmClass xrm_class;

Boolean compress_motion;
XtEnum compress xposure;
Boolean compress_entenea
Boolean visible_interest;
XtWidgetProc destry
XtwidgetProc resize;
XtExposeProcxgose;
XtSetValuesFunc setalues;
XtArgsFunc set_alues_hook;
XtAlmostProc set_alues_almost;
XtArgsProc get_alues_hook;
XtAcceptFocusProc accept_focus;
XtVersionType ‘ersion;

XtPointer callback_pvite;

String tm_table;
XtGeometryHandler query_geometry;
XtStringProc display_accelerator;
XtPointer extension;

} CoreClassPart;

See Section 1.6
See Chapter 9
See Section 1.6
See Section 1.6

See Section 1.6
See Section 1.6

See Section 2.5
See Section 2.5
See Section 2.6

See Chapter 10
See Chapter 10

See Chapter 9
See Chapter 9
Rudte to resource manager
See Section 7.9

Se&ection 7.9

See Section 7.9
See Section 7.10

SeeSection 2.8
See Chapter 6

Seé&ection 7.10

Se&ection 9.7
SeBection 9.7
Segection 9.7
Se8ection 9.7

See Section 7.3

Se&ection 1.6

Prvate to callbacks
See Chapter 10

See Chapter 6

See Chapter 10

Se&ection 1.6

All widget classes hee the Core class fields as their first component. The prototyyicadet-
Classand CoreWidgetClassare defined with only this set of fields.

typedef struct {
CoreClassPart core_class;
} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

Various routines can cast widget class pointers, as needed, to specific widget class types.
The single occurrences of the class record and pointer for creating instances of Core are
In IntrinsicP.h :

extern WidgetClassRec widgetClassRec;
#define coreClassRec widgetClassRec

In Intrinsic.h :

extern WidgetClass widgetClass, coreWidgetClass;

The opaque typew/idget and WidgetClassand the opaque variabledgetClassare defined

for generic actions on widgets. In order to m#ilese types opaque and ensure that the compiler
does not allev applications to access pate data, the Intrinsics use incomplete structure defini-
tions inIntrinsic.h :

typedef struct _WidgetClassRec *WidgetClass, *CoreWidgetClass;

1.4.1.2. CoePart Structure
All widget instances contain the fields defined in @wePart structure.

typedef struct _CorePart {

Widget self;

WidgetClass widget_class;
Widget parent;

Boolean being_destyed,;

XtCallbackList destrg_callbacks;

XtPointer constraints;
Position x;

Position y;

Dimension width;
Dimension height;
Dimension border_width;
Boolean managed,;
Boolean sensiE;
Boolean ancestor_sensij
XtTranslations accelerators;
Pixel border_pigl,
Pixmap border_pixmap;
WidgetList popup_list;
Cardinal num_popups;
String name;

Screen *screen;
Colormap colormap;
Window window;

Cardinal depth;

Pixel background_p#;

Described below
See Section 1.6
See Section 2.5
SeeSection 2.8
Se&ection 2.8
See Section 3.6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 3
See Section 7.7
See Section 7.7
See Chapter 10
SeeSection 2.6
See Section 2.6
See Chapter 5
See Chapter 5
See Chapter 9
See Section 2.6
See Section 2.6
SeeSection 2.6
See Section 2.6
SeeSection 2.6
See Section 2.6

Pixmap background_pixmap;

Boolean visible;

Boolean mapped_when_managed;
} CorePart;

See Section 7.10
See Chapter 3

All widget instances hae the Core fields as their first component. The prototypical Wpdget
is defined with only this set of fields.

typedef struct {
CorePart core;
} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.

In order to ma& these types opaque and ensure that the compiler does moggliications to
access pviate data, the Intrinsics use incomplete structure definitiohgtiimsic.h .

typedef struct _WidgetRec *Widget, *CoreWidget;

1.4.1.3. Coe Resources

The resource names, classes, and representation types specifiecbie@lassReaesource list

are

Name

Class Representation

XtNaccelerators
XtNbackground

XtNbackgroundPixmap

XtNborderColor
XtNborderPixmap
XtNcolormap
XtNdepth

XtCAccelerators XtRAcceleratorTable

XtCBackground XtRPixel
XtCPixmap XtRPixmap
XtCBorderColor XtRPixel
XtCPixmap XtRPixmap
XtCColormap XtRColormap
XtCDepth XtRInt

XtNmappedWhenManaged XtCMappedWhenManaged XtRBoolean

XtNscreen
XtNtranslations

XtRScreen
XtRranslationTable

XtCScreen
XtCTanslations

Additional resources are defined for all widgets viadhgctClassRecandrectObjClassRec
resource lists; see Sections 12.2 and 12.3 for details.

1.4.1.4. CoePart Default Values

The default values for the Core fields, which are filled in by the Intrinsics, from the resource lists,
and by the initialize procedures, are

Field Dehult Value

self Addresf the widget structure (may not be changed).
widget_class widget_clasargument taXtCreateWidget (may not be changed).
parent parentargument toXtCreateWidget (may not be changed).

being_destrged
destry_callbacks
constraints

X

y

width

height
border_width
managed
sensitve
ancestor_sensit
accelerators
border_pixel
border_pixmap
popup_list
num_popups
name

Rarent’'sbeing_destroyedalue.
NULL
NULL

False

True

logical AND of parent'sensitiveandancestor_sensitivealues.
NULL

XtDefaultForeground

XtUnspecifiedPixmap

NULL
0

nameargument taXtCreateWidget (may not be changed).

screen Paent'sscreentop-level widget gets screen from display specifier
(may not be changed).

colormap Rrent'scolormapvalue.

window NULL

depth Rrent'sdepth top-level widget gets root winde depth.
background_pixel XtDefaultBackground

background_pixmap XtUnspecifiedPixmap

visible True

mapped_when_man- True

aged

XtUnspecifiedPixmapis a symbolic constant guaranteed to be unequalteadia Pixmap id,
None, and ParentRelative.

1.4.2. CompositéNidgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3). Composite
widgets are intended to be containers for other widgets. The additional data used by composite
widgets are defined by t@ompositeClassPartand CompositePart structures.

1.4.2.1. CompositeClassit Structure
In addition to the Core class fields, widgets of the Composite clasdheafollowing class fields.

typedef struct {
XtGeometryHandler geometry _manager; See Chapter 6
XtwidgetProc change_managed,; See Chapter 3
XtwidgetProc insert_child,; See Chapter 3
XtWidgetProc delete_child; See Chapter 3
XtPointer etension; Se&ection 1.6

} CompositeClassPart;

The extension record defined fGompositeClassPartwith record_typeequal toNULLQ UARK
is CompositeClassExtensionRec

typedef struct {
XtPointer next_gtension; Se&ection 1.6.12
XrmQuark record_type; See Section 1.6.12
long \ersion; Seé&ection 1.6.12
Cardinal record_size; See Section 1.6.12
Boolean accepts_obijects; See Section 2.5.2
Boolean allovs_change_managed_set; Seetion 3.4.3

} CompositeClassExtensionRec, *CompositeClassExtension;

Composite classes¥mthe Composite class fields immediately following the Core class fields.

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;

} CompositeClassRec, *CompositeWidgetClass;

The single occurrences of the class record and pointer for creating instances of Composite are
In IntrinsicP.h :

extern CompositeClassRec compositeClassRec;

In Intrinsic.h :

extern WidgetClass compositeWidgetClass;

The opaque type€ompositeWidgetand CompositeWidgetClassand the opaque variable
compositeWidgetClassare defined for generic operations on widgets whose class is Composite
or a subclass of Composite. The symbolic constant fo€CtrapositeClassExtensiorversion
identifier isXtCompositeExtensionVersion(see Section 1.6.12)ntrinsic.h uses an incom-

plete structure definition to ensure that the compiler catches attempts to acebssata.

typedef struct _CompositeClassRec *CompositeWidgetClass;

1.4.2.2. CompositeBrt Structure

In addition to the Core instance fields, widgets of the Composite clasdbdollowing instance
fields defined in th€ompositePart structure.

typedef struct {
WidgetList children; See Chapter 3
Cardinal num_children; See Chapter 3
Cardinal num_slots; See Chapter 3
XtOrderProc insert_position; See Section 3.2

} CompositePart;

Composite widgets lva the Composite instance fields immediately following the Core instance
fields.

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access pviate data.

typedef struct _CompositeRec *CompositeWidget;

1.4.2.3. CompositdResources

The resource names, classes, and representation types that are specifiedmptsiteClass-
Recresource list are

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList

XtNinsertPosition XtClnsertPosition XtRFunction

XtNnumChildren XtCReadOnly XtRCardinal

1.4.2.4. CompositeBrt Default Values

The default values for the Composite fields, which are filled in from the Composite resource list
and by the Composite initialize procedure, are

Field Default Value
children NULL
num_children 0
num_slots 0

insert_position Interndlinction to insert at end

Thechildren, num_childrenandinsert_positiorfields are declared as resources; XtNinsertPosi-
tion is a settable resource, XtNchildren and XtNnumChildren may be read blyesnt but
should only be modified by the composite widget class procedures.

1.4.3. ConstraintWidgets

The Constraint widget class is a subclass of the Composite widget class (see Section 3.6). Con-
straint widgets maintain additional state data for each child; for example, client-defined con-
straints on the child’geometry The additional data used by constraint widgets are defined by the
ConstraintClassPart and ConstraintPart structures.

1.4.3.1. ConstraintClassBrt Structure

In addition to the Core and Composite class fields, widgets of the Constraint gladwtfal-
lowing class fields.

typedef struct {

XtResourcelList resources; See Chapter 9
Cardinal num_resources; See Chapter 9
Cardinal constraint_size; See Section 3.6
XtInitProc initialize; See Section 3.6
XtWidgetProc destrg SeeSection 3.6
XtSetValuesFunc setalues; Se&ection 9.7.2
XtPointer extension; Se&ection 1.6

} ConstraintClassPart;

The extension record defined fGonstraintClassPart with record_typeequal toNULLQ UARK
is ConstraintClassExtensionRec

typedef struct {
XtPointer next_gtension; Se&ection 1.6.12
XrmQuark record_type; See Section 1.6.12
long \ersion; Se&ection 1.6.12
Cardinal record_size; See Section 1.6.12
XtArgsProc get_alues_hook; SeBection 9.7.1

} ConstraintClassExtensionRec, *ConstraintClassExtension;

Constraint classes tathe Constraint class fields immediately following the Composite class
fields.

typedef struct _ConstraintClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint_class;

} ConstraintClassRec, *ConstraintWidgetClass;

The single occurrences of the class record and pointer for creating instances of Constraint are
In IntrinsicP.h :

extern ConstraintClassRec constraintClassRec;

In Intrinsic.h :

10

extern WidgetClass constraintwidgetClass;

The opaque type€onstraintWidget and ConstraintWidgetClass and the opaque variabt®n-
straintWidgetClass are defined for generic operations on widgets whose class is Constraint or a
subclass of Constraint. The symbolic constant forGbastraintClassExtensionversion identi-

fier is XtConstraintExtensionVersion (see Section 1.6.12)ntrinsic.h uses an incomplete
structure definition to ensure that the compiler catches attempts to aceatssdatia.

typedef struct _ConstraintClassRec *ConstraintWidgetClass;

1.4.3.2. ConstraintRart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint etabeha
following unused instance fields defined in ®enstraintPart structure

typedef struct {
int empty;
} ConstraintPart;

Constraint widgets & the Constraint instance fields immediately following the Composite
instance fields.

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access pviate data.

typedef struct _ConstraintRec *ConstraintWidget;

1.4.3.3. ConstraintResources

The constraintClassReccore_classandconstraint_class resourcdiglds are NULL, and the
num_resourceBelds are zero; no additional resources beyond those declared by the superclasses
are defined for Constraint.

11

1.5. Implementation-SpecificTypes

To increase the portability of widget and application source code between different system envi-
ronments, the Intrinsics defineveral types whose precise representation is explicitly dependent
upon, and chosen pgach individual implementation of the Intrinsics.

These implementation-defined types are

Boolean A datum that contains a zero or nonzeatue. Unlesexplicitly stated, clients
should not assume that the nonzero value is equal to the symbolicTvakie

Cardinal An unsigned integer datum with a minimum range of [0..2716-1].
Dimension An unsigned integer datum with a minimum range of [0..2716-1].
Position A signed integer datum with a minimum range of [-2715..2715-1].

XtPointer A datum large enough to contain the largest of a char*, int*, function postrtea-
ture pointeror long \alue. Apointer to ag type or function, or a long value may
be cowerted to anXtPointer and back again and the result will compare equal to
the original wlue. INANSI C environments it is expected théPointer will be
defined as void*.

XtArgVal A datum large enough to contain XtPointer, Cardinal , Dimension, or Posi-
tion value.

XtEnum An integer datum large enough to encode at least 128 distinct valoas, which
are the symbolic valuekr ue andFalse. The symbolic valueIRUE andFALSE
are also defined to be equalTioue and False, respectiely.

In addition to these specific types, the precise order of the fields within the structure declarations
for ary of the instance part recor@bjectPart, RectObjPart, CorePart, CompositePart,

ShellPart, WMShellPart, TopLevelShellPart, and ApplicationShellPart is implementation-
defined. Thesstructures may also @ alditional private fields internal to the implementation.

The ObjectPart, RectObjPart, and CorePart structures must be defined so that emember

with the same name appears at the same off$@bjactRec, RectObjRec, and CoreRec (Wid-
getReqg. Noother relations between the offsets of amo fields may be assumed.

1.6. Widget Classing

Thewidget_classield of a widget points to its widget class structure, which contains information
that is constant across all widgets of that class. As a consequence, widgets usually do not imple-
ment directly callable procedures; ratiteey implement procedures, called methods, that are
available through their widget class structure. These methodsvakeihby generic procedures

that ewelop common actions around the methods implemented by the widget class. Such proce-
dures are applicable to all widgets of that class and also to widgets whose classes are subclasses
of that class.

All widget classes are a subclass of Core and can be subclassed futh@assing reduces the
amount of code and declarations necessary t@asw widget class that is similar to an exist-

ing class.For example, you do not lva © describe gery resource your widget uses in AtRe-
sourcelist. Instead, you describe only the resources your widget has that its superclass does not.
Subclasses usually inherit nyaof their superclasses’ procedures (for example, the expose proce-
dure or geometry handler).

Subclassing, hower, can be taken too failf you create a subclass that inherits none of the pro-
cedures of its superclass, you should consider whether yeulasen the most appropriate
superclass.

12

To make good use of subclassing, widget declarations and naminggaitons are highly styl-
ized. Awidget consists of three files:

A public .h file, used by client widgets or applications.
A private .h file, used by widgets whose classes are subclasses of the widget class.
A .c file, which implements the widget.

1.6.1. Wdget Naming Corventions

The Intrinsics provide a vehicle by which programmers can creat&vitigets and ayanize a
collection of widgets into an applicatiofio ensure that applications need not deal with as many
styles of capitalization and spelling as the number of widget classes it uses, the following guide-
lines should be followed when writingweavidgets:

Use the X library naming ceentions that are applicablé-or example, a record compo-

nent name is all lowercase and uses underscores (_) for compound words (for example,
background_pixmap). ype and procedure names start with uppercase and use capitaliza-
tion for compound words (for examplérgList or XtSetValues).

A resource name is spelled identically to the field name except that compound names use
capitalization rather than underscofi let the compiler catch spelling errors, each

resource name shouldugaa ymbolic identifier prefixed with “XtN’. For example, the
background_pixmafeld has the corresponding identifier XtNbackgroundPixmap, which is
defined as the string “backgroundPixniapgviany predefined names are listed in
<X11/StringDefs.h>. Beforeyou irvent a n&v name, you should makaure there is not
already a name that you can use.

A resource class string starts with a capital letter and uses capitalization for compound
names (for example,“BorderWidtlh' Eachresource class string shouldvba gmbolic
identifier prefixed with “XtC’ (for example, XtCBorder\Wdth). Mary predefined classes
are listed in X11/StringDefs.h>.

A resource representation string is spelled identically to the type name (for example,
“TranslationTablé). Eachrepresentation string shouldvesa ymbolic identifier prefixed
with “XtR’’ (for example, XtRranslation@ble). Mary predefined representation types are
listed in <X11/StringDefs.h>.

New widget classes start with a capital and use uppercase for compotasl WBven a
new class name AbcXyz, you should deriseveaal names:

- Additional widget instance structure part name AbcXyzPart.

- Complete widget instance structure names AbcXyzRec and _AbcXyzRec.
- Widget instance structure pointer type name AbcXyzWidget.

- Additional class structure part name AbcXyzClassPart.

- Complete class structure names AbcXyzClassRec and _AbcXyzClassRec.
- Class structure pointer type name AbcXyzWidgetClass.

- Class structure variable abcXyzClassRec.

- Class structure pointer variable abcXyzWidgetClass.

Action proceduresvailable to translation specifications should fallthe same naming
cornventions as procedures. That is,\tistart with a capital letteiand compound names
use uppercase (for example, “Highligtehd “NotifyClient”).

13

The symbolic identifiers XtN..., XtC..., and XtR... may be implemented as macros, as global
symbols, or as a mixture of thedw The(implicit) type of the identifier isString. The pointer
value itself is not significant; clients must not assume that inequalitycoitiewntifiers implies
inequality of the resource name, class, or representation string. Clients should also note that
although global symbols permit savings in literal storage in some environmentasthantro-

duce the possibility of multiple definition conflicts when applications attempt to use indepen-
dently deeloped widgets simultaneously.

1.6.2. Wdget Subclassing in Public .h Files
The public .h file for a widget class is imported by clients and contains
. A reference to the public .h file for the superclass.

. Symbolic identifiers for the names and classes of tikerasources that this widget adds to
its superclass. The definitions shouldédna &ngle space between the definition name and
the value and no trailing space or comment in order to reduce the possibility of compiler
warnings from similar declarations in multiple classes.

. Type declarations for gmew resource data types defined by the class.

. The class record pointer variable used to create widget instances.

. The C type that corresponds to widget instances of this class.

. Entry points for ne class methods.

For example, the following is the public .h file for a possible implementation of a Label widget:

#ifndef LABEL_H
#define LABEL_H

/* New resources */

#define XtNjustify "justify"”

#define XtNforeground "foreground"
#define XtNlabel "label"

#define XtNfont "font"

#define XtNinternalWidth "internalwidth"
#define XtNinternalHeight "internalHeight"

/* Class record pointer */
extern WidgetClass labelWidgetClass;

[* C Widget type definition */
typedef struct _LabelRec *LabelWidget;
/* New class method entry points */
extern void LabelSe@Ext();
[* Widget w */
[* String text */

extern String LabelGe&xt();
/* Widget w */

#endif LABEL_H

14

The conditional inclusion of the text allows the application to include header files for different
widgets without being concerned thatytlalready may be included as a superclass of another
widget.

To accommodate operating systems with file name length restrictions, the name of the public .h
file is the first ten characters of the widget cldsa. example, the public .h file for the Constraint
widget class i€Constraint.h.

1.6.3. Widget Subclassing in Pwvate .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the widget and
contains

. A reference to the public .h file for the class.
. A reference to the prite .h file for the superclass.

. Symbolic identifiers for aynew resource representation types defined by the class. The
definitions should ha a #ngle space between the definition name and the value and no
trailing space or comment.

. A structure part definition for the wdields that the widget instance adds to its superclass’s
widget structure.

. The complete widget instance structure definition for this widget.

. A structure part definition for the wdields that this widget class adds to its superclass’s
constraint structure if the widget class is a subclass of Constraint.

. The complete constraint structure definition if the widget class is a subclass of Constraint.

. Type definitions for annew procedure types used by class methods declared in the widget
class part.

. A structure part definition for the wdields that this widget class adds to its superclass’s
widget class structure.

. The complete widget class structure definition for this widget.
. The complete widget class extension structure definition for this widgey, if an
. The symbolic constant identifying the class extension versiony.if an

. The name of the global class structure variable containing the generic class structure for
this class.

. An inherit constant for each weprocedure in the widget class part structure.
For example, the following is the pate .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H

#include <X11/Label.h>

/* New representation types used by the Label widget */
#define XtRJustify "Justify"

/* New fields for the Label widget record */

typedef struct {
/* Settable resources */

15

Pixel foreground;

XFontStruct *font;

String label, [* text to display */

XtJustify justify;

Dimension internal_width; [* # pixels horizontal border */
Dimension internal_height; [* # pixels vertical border */

/* Data derved from resources */
GC normal_GC;
GC gray_GC;
Pixmap gray_pixmap;
Position label_x;
Position label_y;
Dimension label_width;
Dimension label_height;
Cardinal label_len;
Boolean display_sensit;
} L abelPart;

/* Full instance record declaration */
typedef struct _LabelRec {
CorePart core;
LabelPart label;
} L abelRec;

/* Types for Label class methods */
typedef void (*LabelSe@dxtProc)();
/* Widget w */
[* String text */

typedef String (*LabelGe8xtProc)();
/* Widget w */

/* New fields for the Label widget class record */
typedef struct {
LabelSetE&xtProc set_text;
LabelGetExtProc get_text;
XtPointer extension;
} L abelClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec {
CoreClassPart core_class;
LabelClassPart label_class;
} L abelClassRec;

/* Class record variable */
extern LabelClassRec labelClassRec;

16

#define LabellnheritSeé€ki((LabelSet€xtProc) Xtinherit)
#define LabellnheritGeekt((LabelGetExtProc) Xtinherit)
#endif LABELP_H

To accommodate operating systems with file name length restrictions, the name ofatee.lpri
file is the first nine characters of the widget class followed by a capikrfexample, the prate
.h file for the Constraint widget class@®nstrainP.h.

1.6.4. Wdget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable, which con-
tains the following parts:

. Class information (for examplsuperclassclass_namewidget_sizeclass_initialize and
class_initedl.

. Data constants (for examplesourcesandnum_resourcesactionsandnum_actiongvisi-
ble_interestcompress_motigrcompress_exposurand versior).

. Widget operations (for examplijtialize, realize, destroy resize expose set_values
accept_focusand ary new perations specific to the widget).

Thesuperclasdield points to the superclass global class record, declared in the supergkiss pri
.h file. For direct subclasses of the generic core widgaperclasshould be initialized to the
address of thevidgetClassRecstructure. Theuperclass is used for class chaining operations
and for inheriting or ereloping a superclassgerations (see Sections 1.6.7, 1.6.9, and 1.6.10).

Theclass_naméield contains the text name for this class, which is used by the resource manager.
For example, the Label widget has the string “LabeMore than one widget class can share the
same text class name. This string must be permanently allocated prior to or durkegtiiere

of the class initialization procedure and must not be subsequently deallocated.

Thewidget_sizdield is the size of the corresponding widget instance structure (not the size of the
class structure).

Theversionfield indicates the toolkit implementation version number and is used for runtime
consisteng checking of the X Toolkit and widgets in an applicatidiidget writers must set it to
the implementation-defined symbolic valdé/ersion in the widget class structure initialization.
Those widget writers who belie that their widget binaries are compatible with other implemen-
tations of the Intrinsics can put the special vaftidersionDontCheck in theversionfield to
disable version checking for those widgets. If a widget needs to compile altemoale for dif-
ferent revisions of the Intrinsics interface definition, it may use the syKitBglecificationRe-
lease as ascribed in Chapter 13. Use XfVersion allows the Intrinsics implementation to rec-
ognize widget binaries that were compiled with older implementations.

Theexensionfield is for future upward compatibilityif the widget programmer adds fields to

class parts, all subclass structure layouts change, requiring complete recompilaitbow

clients to aoid recompilation, an extension field at the end of each class part can point to a record
that contains anadditional class information required.

All other fields are described in their respeetiections.

The .c file also contains the declaration of the global class structure pointer variable used to create
instances of the class. The following is an abbreviated version of the .c file for a Label widget.
The resources table is described in Chapter 9.

17

/* Resources specific to Label */
static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString,
XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString,
XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

}

/* Forward declarations of procedures */
static void Classinitialize();

static void Initialize();

static void Realize();

static void Setéxt();

static void Getéxt();

/* Class record constant */
LabelClassRec labelClassRec ={

{
[* core_class fields */

[* superclass * (WidgetClass)&coreClassRec,
[* class_name */ "Label",
[* widget_size * sizeof(LabelRec),
[* class_initialize */ Classlnitialize,
[* class_part_initialize */ NULL,
[* class_inited */ False,
/* initialize */ Initialize,
[* initialize_hook */ NULL,
/* realize */ Realize,
/* actions */ NULL,
/* num_actions */ 0,
/* resources */ resources,
/* num_resources * XtNumber(resources),
[* xrm_class */ NULLQ UARK,
[* compress_motion */ True,
[* compress_eposure */ True,
[* compress_enterlea */ True,
[* visible_interest */ False,
[* destrgy */ NULL,
[* resize * Resize,

18

[* expose */
[* set_\alues */
/* set_\alues_hook *
/* set_walues_almost */
/* get_\alues_hook */

[* accept_focus *
[* version */
[* callback_ofsets */
[*tm_table *

[* query_geometry */
/* display_accelerator */

Redisplay,

SetValues,

NULL,
XtinheritSetValuesAlmost,
NULL,

NULL,

XtVersion,

NULL,

NULL,
XtinheritQueryGeometry
NULL,

[* extension */ NULL

|3

{

[* Label_class fields */

[* get_text */ GetText,
[* set_tet */ Setlext,
[* extension */ NULL

}

|3

/* Class record pointer */
WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;

/* New method access routines */
void LabelSet&xt(w, text)

Widget w;
String text;

{
Label WidgetClass Ilwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(WabelWidgetClass, NULL);
*(lwc->label_class.set_text)(vext)

}

[* Private procedures */

1.6.5. Wdget Class and Superclass Look Up
To dbtain the class of a widget, u¥¢Class.

WidgetClass XtClasg()
Widgetw;
w Specifies the widget. Must be of class Object grsabclass thereof.

The XtClass function returns a pointer to the widgetlass structure.

19

To dbtain the superclass of a widget, u@Superclass

WidgetClass XtSuperclasg(
Widgetw;,

w Specifies the widget. Must be of class Object grsabclass thereof.

The XtSuperclassfunction returns a pointer to the widgegiperclass class structure.

1.6.6. Wdget Subclass Verification
To check the subclass to which a widget belongs Xit&Subclass

Boolean XtlsSubclasa(widget_clask
Widgetw;,
WidgetClassvidget_class

w Specifies the widget or object instance whose class is to beechelgkustbe of
class Object or gnsubclass thereof.

widget_class Specifies the widget class for which to test. MusblijectClassor ary subclass
thereof.

The XtlsSubclassfunction returnsTr ue if the class of the specified widget is equal to or is a
subclass of the specified class. The widgedéss can be gmumber of subclasses down the

chain and need not be an immediate subclass of the specified class. Composite widgets that need
to restrict the class of the items ylemntain can us&tlsSubclassto find out if a widget belongs

to the desired class of objects.

To test if a gien widget belongs to a subclass of an Intrinsics-defined class, the Intrinsics define
macros or functions equalent to XtisSubclassfor each of the built-in classes. These proce-
dures areXtlsObject, XtlsRectObj, XtlsWidget, XtlsComposite, XtlsConstraint , Xtls-

Shell, XtlsOverrideShell, XtiswWMShell , XtisVendorShell, XtlsTransientShell, XtlsTo-
pLevelShell, XtisApplicationShell, and XtlsSessionShell

All these macros and functionsveasihe same argument description.

Boolean Xtlsclass> (w)
Widgetw;

w Specifies the widget or object instance whose class is to beechelgkistbe of
class Object or ansubclass thereof.

These procedures may be faster than caMitigSubclassdirectly for the built-in classes.

To dheck a widges dass and to generate a debugging error messag&t@beckSubclass
defined in X11/IntrinsicP.h >:

20

void XtCheckSubclasg(widget classmessge)
Widgetw;
WidgetClasavidget_class
Stringmessage

w Specifies the widget or object whose class is to be ededWlustbe of class
Object or ag subclass thereof.

widget_class Specifies the widget class for which to test. MusbhjectClassor ary subclass
thereof.

messge Specifies the message to be used.

The XtCheckSubclassmacro determines if the class of the specified widget is equal to or is a
subclass of the specified class. The widgeaéiss can be gmumber of subclasses down the

chain and need not be an immediate subclass of the specified class. If the specifiesl dadget’

is not a subclass{tCheckSubclassconstructs an error message from the supplied message, the
widget’s ectual class, and the expected class and saltsrorMsg . XtCheckSubclassshould

be used at the entry point of exported routines to ensure that the client has passed in a valid wid-
get class for the exported operation.

XtCheckSubclassis only executed when the module has been compiled with the compiler sym-
bol DEBUG defined; otherwise, it is defined as the empty string and generates no code.

1.6.7. Supeclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to their cor-
responding fields in their superclass structuk®gh a linked field, the Intrinsics access the

field’s value only after accessing its corresponding superclass value (called downward superclass
chaining) or before accessing its corresponding superclass value (called upward superclass chain-
ing). Theself-contained fields are

In all widget classes: class_name
class_initialize
widget_size
realize
visible_interest
resize
expose
accept_focus
compress_motion
compress_exposure
compress_enterleave
set values_almost
tm_table
version
allocate
deallocate

In Composite widget classes: geometry _manger

change_manged
insert_child

21

delete_child
accepts_objects
allows_change_mamad_set

In Constraint widget classes: constraint_size

In Shell widget classes: root_geometry_marugr

With downward superclass chaining, theoration of an operation first accesses the field from
the Object, RectObj, and Core class structures, then from the subclass structure, and so on down
the class chain to that widgetass structure. These superclass-to-subclass fields are

class_part_initialize
get_values_hook
initialize
initialize_hook
set_values
set_values_hook
resources

In addition, for subclasses of Constraint, the following fields ofabestraintClassPart and
ConstraintClassExtensionRecstructures are chained from the Constraint class down to the sub-
class:

resources

initialize

set_values

get_values_hook

With upward superclass chaining, theaeation of an operation first accesses the field from the
widget class structure, then from the superclass structure, and so on up the class chain to the Core,
RectObj, and Object class structures. The subclass-to-superclass fields are

destroy
actions

For subclasses of Constraint, the following field@bnstraintClassPart is chained from the
subclass up to the Constraint class:

destroy

1.6.8. Clasdnitialization: class_initialize and class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some casegefhowe
a dass may need to register type wenters or perform other sorts of once-only runtime initializa-
tion.

Because the C language does nethaitialization procedures that arevoked automatically

when a program starts up, a widget class can declare a class_initialize procedure that will be auto-
matically called exactly once by the Intrinsias class initialization procedure pointer is of type
XtProc:

22

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying NULL in the
class_initializefield.

In addition to the class initialization that is done exactly once, some classes perform initialization
for fields in their parts of the class record. These are performed not just for the particular class,
but for subclasses as well, and are done in the sldass part initialization procedure, a pointer

to which is stored in thelass_part_initializefield. Theclass_part_initialize procedure pointer is

of type XtWidgetClassProc.

typedef void (*XtWidgetClassProc)(WidgetClass);
WidgetClassvidget_class

widget_class Points to the class structure for the class being initialized.

During class initialization, the class part initialization procedures for the class and all its super-
classes are called in superclass-to-subclass order on the class record. These proveduees ha
responsibility of doing andynamic initializations necessary to their clagsirt of the record.

The most common is the resolution of@nherited methods defined in the claBsr example, if

a widget class C has superclasses Core, Composite, A, and B, the class record for C first is passed
to Core § dass_part_initialize procedure. This resolveg iamerited Core methods and com-

piles the textual representations of the resource list and action table that are defined in the class
record. Net, Composites dass_part_initialize procedure is called to initialize the composite part
of C's dass record. Finallfthe class_part_initialize procedures for A, B, and C, in that cader
called. for further information, see Section 1.6.9. Classes that do not defimewrdass fields

or that need no extra processing for them can specify NULL iclélss_part_initializdield.

All widget classes, whether théavea dass initialization procedure or not, must start with their
class_initedield False.

The first time a widget of a class is creatéti;reateWidget ensures that the widget class and
all superclasses are initialized, in superclass-to-subclass lbydiecking eacltlass_initedield
and, if it isFalse, by calling the class_initialize and the class_part_initialize procedures for the
class and all its superclasses. The Intrinsics then selage initedield to a nonzero value.

After the one-time initialization, a class structure is constant.

The following example provides the class initialization procedure for a Label class.

static void Classlinitialize()

{
XtSetTypeCouerter(XtRString, XtRJustifyCvtStringToJustify,

NULL, 0, XtCacheNone, NULL);

1.6.9. Initializing a Widget Class

A class is initialized when the first widget of that class grsabclass is createdlo initialize a
widget class without creating yawidgets, useXtlinitializeWidgetClass.

23

void XtInitializeWidgetClassgbject_clasp
WidgetClas®bject_class

object_class Specifies the object class to initialize. MaydigectClassor ary subclass
thereof.

If the specified widget class is already initializ&dinitializeWidgetClass returns immediately.

If the class initialization procedure registers typeveders, these type coerters are not\ail-
able until the first object of the class or subclass is creat¥tnmitializeWidgetClass is called
(see Section 9.6).

1.6.10. Inheritanceof Superclass Operations

A widget class is free to useyaof its superclass’slf-contained operations rather than imple-
menting its own code. The most frequently inherited operations are

expose
realize
insert_child
delete_child
geometry_manager
set_values_almost
To inherit an operatioryz specify the constanXtinherit Xyzin your class record.

Every class that declares annprocedure in its widget class part must provide for inheriting the
procedure in its class_part_initialize procedure. The chained operations declared in Core and
Constraint records are vee inherited. Vilget classes that do nothing beyond what their super-
class does specify NULL for chained procedures in their class records.

Inheriting works by comparing the value of the field with a known, special value and by copying
in the superclassvalue for that field if a match occurs. This special value, called the inheritance
constant, is usually the Intrinsics internal valuéinherit cast to the appropriate type Xtin-

herit is a procedure that issues an error message if it is actually called.

For example,CompositeP.hcontains these definitions:

#define XtinheritGeometryManager ((XtGeometryHandler) _Xtinherit)
#define XtinheritChangeManaged ((XtWidgetProc) _Xtinherit)
#define XtinheritinsertChild ((XtArgsProc) _Xtinherit)

#define XtinheritDeleteChild ((XtWidgetProc) _Xtinherit)

Composites dass_part_initialize procedure begins as follows:

static void CompositeClassPartinitialize(widgetClass)
WidgetClass widgetClass;
{

CompositeWidgetClass wc = (CompositeWidgetClass)widgetClass;
CompositeWidgetClass super = (CompositeWidgetClass)wc->core_class.superclass;

if (wc->composite_class.geometry_manager == XtlnheritGeometryManager) {
wc->composite_class.geometry _manager = super->composite_class.geometry_manager;

24

}

if (wc->composite_class.change _managed == XtinheritChangeManaged) {
wc->composite class.change_managed = super->composite_class.change_managed;

}

Nonprocedure fields may be inherited in the same manner as procedure fields. The class may
declare apreserved value it wishes for the inheritance constant foruwdie&ls. Theollowing
inheritance constants are defined:

For Object:
XtInheritAllocate
XtinheritDeallocate

For Core:
XtinheritRealize
XtInheritResize
XtInheritExpose
XtInheritSetValuesAlmost
XtInheritAcceptFocus
XtInheritQueryGeometry
XtInheritTranslations
XtinheritDisplayAccelerator

For Composite:
XtInheritGeometryManager
XtInheritChangeManaged
XtInheritinsertChild
XtInheritDeleteChild

For Shell:
XtInheritRootGeometryManager

1.6.11. Irvocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not canedample, a wid-
get’s expose procedure might call its superclasgfmseand then perform a little more work on
its ovn. For example, a Composite class with predefined managed children can implement
insert_child by first calling its superclasbisert_childand then calling{tManageChild to add
the child to the managed set.

25

Note

A class method should not u¥g¢Superclassbut should instead call the class

method of its own specific superclass directly through the superclass record. That is,
it should use its own class pointers qmigt the widges dass pointers, as the wid-

get's dass may be a subclass of the class whose implementation is being referenced.

This technique is referred to asvelopinghe superclass’gperation.

1.6.12. Clas€xtension Records

It may be necessary at times to add fields to already existing widget class structurks per-

mit this to be done without requiring recompilation of all subclasses, the last field in a class part
structure should be an extension pointéno extension fields for a classVv&yet been defined,
subclasses should initialize the value of the extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint, and Shell classes, sub-
classes can provide values for these fields by settingxidwgsionpointer for the appropriate part

in their class structure to point to a statically declared extension record containing the additional
fields. Settingheexensionfield is never mandatory; code that uses fields in the extension record
must alvays check thextensionfield and tak osme appropriate default action if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from exéémgle
sionfield, extension records should be declared as a linked list, and each extension record defini-
tion should contain the following four fields at the beginning of the structure declaration:

struct {
XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;

%

next_extension Specifies the next record in the list, or NULL.

record_type Specifies the particular structure declaration to which each extension record
instance conforms.

version Specifies a version id symbolic constant supplied by the definer of the struc-
ture.

record_size Specifies the total number of bytes allocated for the extension record.

Therecord_typefield identifies the contents of the extension record and is used by the definer of
the record to locate its particular extension record in the list.rédoed_typefield is normally

assigned the result ®frmStringToQuark for a registered string constant. The Intrinsics reserve
all record type strings beginning with theotaharacters “XT for future standard uses. The

value NULLQ UARK may also be used by the class part owner in extension records attached to its
own dass part extension field to identify the extension record unique to that particular class.

Theversionfield is an owner-defined constant that may be used to identify binary filestbat ha
been compiled with alternate definitions of the remainder of the extension record data structure.
The private header file for a widget class should provide a symbolic constant for subclasses to use
to initialize this field. Theecord_sizdield value includes the four common header fields and

26

should normally be initialized witkizeof).

Any value stored in the class part extension field€@ipositeClassPart ConstraintClass-
Part , or ShellClassPartmust point to an extension record conforming to this definition.

The Intrinsics provide a utility function for widget writers to locate a particular class extension
record in a linked list, gen a widget class and the offset of tegensionfield in the class record.

To locate a class extension record, ¥$8etClassExtension

XtPointer XtGetClassExtensiantfject classbyte offsettype version record_sizé
WidgetClas®bject_class
Cardinalbyte_offset
XrmQuarktype
long version
Cardinalrecord_size

object_class Specifies the object class containing the extension list to be searched.

byte offset Specifies the offset in bytes from the base of the class record of the extension
field to be searched.

type Specifies the record_type of the class extension to be located.
version Specifies the minimum acceptable version of the class extension required for a
match.

record_size Specifies the minimum acceptable length of the class extension record required
for a match, or 0.

The list of extension records at the specified offset in the specified object class will be searched
for a match on the specified type, a version greater than or equal to the specified version, and a
record size greater than or equal the specified record_size if it is noxt&etClassExtension
returns a pointer to a matching extension record or NULL if no match is found. The returned
extension record must not be modified or freed by the caller if the caller is not the extension
owner.

27

Chapter 2

Widget Instantiation

A hierarcly of widget instances constitutes a widget tree. The shell widget returnsthpy
pCreateShellis the root of the widget tree instance. The widgets with one or more children are
the intermediate nodes of that tree, and the widgets with no childreg kiharare the leges o

the widget tree With the exception of pop-up children (see Chapter 5), this widget tree instance
defines the associated X Wivdtree.

Widgets can be either composite or priwgti Both kinds of widgets can contain children, but the
Intrinsics provide a set of management mechanisms for constructing and interfacing between
composite widgets, their children, and other clients.

Composite widgets, that is, members of the ctasapositeWidgetClassare containers for an
arbitrary but widget implementation-defined, collection of children, which may be instantiated by
the composite widget itself, by other clients, or by a combination of ihe @@mpositavidgets

also contain methods for managing the geometry (layout)yodtalad widget. Under unusual cir-
cumstances, a composite widget mayehzero children, but it usually has at least one. By con-
trast, primitive widgets that contain children typically instantiate specific children of known
classes themselves and do not expect external clients to do so.venwdtets also do not ke
general geometry management methods.

In addition, the Intrinsics recuxvay perform mawy operations (for example, realization and
destruction) on composite widgets and all their children. Prienitidgets that hae cildren
must be prepared to perform the recwesiperations themselves on behalf of their children.

A widget tree is manipulated byveeal Intrinsics functionsFor example, XtRealizeWidget tra-
verses the tree downward and recuslyi realizes all pop-up widgets and children of composite
widgets. XtDestroyWidget traverses the tree downward and destroys all pop-up widgets and
children of composite widgets. The functions that fetch and modify resourceséréhe tree
upward and determine the inheritance of resources from a védgegstors. XtMake-
GeometryRequesttraverses the tree up onevib and calls the geometry manager that is respon-
sible for a widget child geometry.

To facilitate upward tngersal of the widget tree, each widget has a pointer to its parent widget.
The Shell widget thaXtAppCreateShell returns has parentpointer of NULL.

To facilitate downward trgersal of the widget tree, thahildren field of each composite widget is

a pointer to an array of child widgets, which includes all normal children created, not just the sub-
set of children that are managed by the composite wigstimetry managePrimitive widgets

that instantiate children are entirely responsible for all operations that require downwashlra
below themseles. Inaddition, @ery widget has a pointer to an array of pop-up children.

2.1. Initializing the X Toolkit

Before an application can callyamtrinsics function other thaKktSetLanguageProcand
XtToolkitThreadInitialize , it must initialize the Intrinsics by using

. XtToolkitInitialize , which initializes the Intrinsics internals

28

. XtCreateApplicationContext, which initializes the per-application state
. XtDisplaylnitialize or XtOpenDisplay, which initializes the per-display state
. XtAppCreateShell, which creates the root of a widget tree

Or an application can call the a@nience procedurXtOpenApplication , which combines the
functions of the preceding procedures. An application wishing to use the ANSI C locale mecha-
nism should calXtSetLanguageProcprior to callingXtDisplaylnitialize , XtOpenDisplay,
XtOpenApplication, or XtApplnitialize .

Multiple instances of X Toolkit applications may be implemented in a single address space. Each
instance needs to be able to read input and dispagatséndependently of grother instance.

Further an gplication instance may need multiple display connectionsue Walgets on multi-

ple displays. From the applicatieoint of view, multiple display connections usually are

treated together as a single unit for purposes@ftalispatching.To accommodate both require-
ments, the Intrinsics define application contexts, each of which provides the information needed
to distinguish one application instance from anotfdre major component of an application

context is a list of one or more Bisplay pointers for that application. The Intrinsics handle all
display connections within a single application context simultanedwsigling input in a round-

robin fashion. Thepplication context typ&XtAppContext is opaque to clients.

To initialize the Intrinsics internals, usé&ToolkitInitialize .

void XtToolkitInitialize()

If XtToolkitInitialize was previously called, it returns immediatelyWhen XtToolkitThrea-
dinitialize is called beforeXtToolkitInitialize , the latter is protected against simultaneous acti-
vation by multiple threads.

To aeate an application context, useCreateApplicationContext.

XtAppContext XtCreateApplicationContext()

The XtCreateApplicationContext function returns an application context, which is an opaque
type. E\ery application must lva & least one application context.

To destrgy an gplication context and closeyaremaining display connections in it, ukeéDe-
stroyApplicationContext.

void XtDestroyApplicationContexspp_context
XtAppContextapp_context

app_context Specifies the application context.

The XtDestroyApplicationContext function destroys the specified application centéf called
from within an @ent dispatch (for example, in a callback procedux¢lDestroyApplication-
Context does not destgothe application context until the dispatch is complete.

29

To get the application context in which avgh widget was created, usgWidgetToApplica-
tionContext.

XtAppContext XtWidgetToApplicationContext(
Widgetw;

w Specifies the widget for which you want the application cantislustbe of class
Object or ag subclass thereof.

The XtWidgetToApplicationContext function returns the application context for the specified
widget.

To initialize a display and add it to an application context, Xtf8splaylnitialize .

void XtDisplaylInitialize@pp_contextdisplay, application_namgapplication_class
options num_optionsargc, argv)
XtAppContextapp_context
Display *display;
Stringapplication_namg
Stringapplication_class
XrmOptionDescRecdptions
Cardinalnum_options
int *arggc;
String *argy,

app_context Specifies the application context.

display Specifies a previously opened display connection. Note that a single dis-
play connection can be in at most one application context.

application_name Specifies the name of the application instance.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies hw to parse the command line foryaapplication-specific
resources. Theptionsargument is passed as a parametefrtoParseC-
ommand. For further information, see Section 15.9%lib — C Lan-
guage X hterfaceand Section 2.4 of this specification.

num_options Specifies the number of entries in the options list.
argc Specifies a pointer to the number of command line parameters.
argv Specifies the list of command line parameters.

The XtDisplaylnitialize function retri&es the language string to be used for the specified display
(see Section 11.11), calls the language procedure (if set) with that language string, builds the
resource database for the default screen, calls thexXxiii’arseCommand function to parse

the command line, and performs other per-display initialization. AfterParseCommand has
been calledargc andargv contain only those parameters that were not in the standard option ta-
ble or in the table specified by thptionsargument. Ifthe modifiedargcis not zero, most appli-
cations simply print out the modifiedlgv along with a message listing the allble options. On
POSIX-based systems, the application name is usually the final compoaenf@f. If the

30

synchronous resource Ts ue, XtDisplaylnitialize calls the XlibXSynchronize function to put
Xlib into synchronous mode for this display connection arydotimers currently open in the
application contet. SeeSections 2.3 and 2.4 for details on #mpplication_namegapplica-
tion_classoptions and num_optiongrguments.

XtDisplaylnitialize calls XrmSetDatabaseto associate the resource database of the default
screen with the display before returning.

To gpen a displayinitialize it, and then add it to an application context, Xi€@penDisplay.

Display *XtOpenDisplayépp_contextdisplay_string application_nameapplication_class
options num_optionsargc, argv)
XtAppContextapp_context
Stringdisplay_string
Stringapplication_namg
Stringapplication_class
XrmOptionDescRecdptions
Cardinalnum_options
int *argc;
String *argy,

app_context Specifies the application context.
display_string Specifies the display string, or NULL.
application_name Specifies the name of the application instance, or NULL.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies ha to parse the command line foryaapplication-specific
resources. Theptions argument is passed as a parametéridParseC-
ommand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the list of command line parameters.

The XtOpenDisplay function callsXOpenDisplay with the specifiedlisplay_string If dis-
play_stringis NULL, XtOpenDisplay uses the current value of the —display option specified in
argv. If no display is specified imargv, the uses default display is retried from the environ-
ment. OnNPOSIX-based systems, this is the value ofQI&PLAY environment variable.

If this succeedsXtOpenDisplay then callsXtDisplaylnitialize and passes it the opened display
and the value of the —name option specifiedrgv as the application name. If no —-name option
is specified andpplication_namés non-NULL, application_nameés passed tXtDisplaylni-

tialize. If application_namés NULL and if the environment variabRESOURCE_NAME is

set, the value ORESOURCE_NAME is used. Otherwise, the application name is the name used
to invoke the program. On implementations that conform to ANSI C Hosted Environment sup-
port, the application name will l@@gV0] less aw directory and file type components, that is, the
final component oarg\{0], if specified. Ifargv{0] does not exist or is the empty string, the appli-
cation name is “main”. XtOpenDisplay returns the newly opened display or NULL if it failed.

See Section 7.12 for informatiorgaeding the use oKtOpenDisplay in multiple threads.

31

To dose a display and reme it from an application context, ud@CloseDisplay.

void XtCloseDisplaydisplay)
Display *display;

display Specifies the display.

The XtCloseDisplay function callsXCloseDisplay with the specifiedlisplayas soon as it is

safe to do so. If called from within amemt dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that applications
need only calXtCloseDisplay if they are to continuexecuting after closing the display; other-
wise, thg should callXtDestroyApplicationContext.

See Section 7.12 for informatiorgaeding the use oKtCloseDisplay in multiple threads.

2.2. Establishingthe Locale

Resource databases are specified to be created in the current process locale. During display ini-
tialization prior to creating the per-screen resource database, the Intrinsics will call out to a speci-
fied application procedure to set the locale according to options found on the command line or in
the per-display resource specifications.

The callout procedure provided by the application is of ifie&anguageProc.

typedef String (*XtLanguageProc)(Display*, String, XtPointer);
Display *display;
Stringlanguage
XtPointerclient_data

display Passes the display.

language Passes the initial language value obtained from the command line or server per-
display resource specifications.

client_ data Passes the additional client data specified in the callt8&etLanguageProc

The language procedure allows an application to set the locale to the value of the language
resource determined B¥tDisplaylnitialize . The function returns a melanguage string that

will be subsequently used XtDisplaylnitialize to establish the path for loading resource files.
The returned string will be copied by the Intrinsics intes meemory.

Initially, no language procedure is set by the Intrinsits st the language procedure for use by
XtDisplaylnitialize , use XtSetLanguageProc

32

XtLanguageProc XtSetLanguagePamf contextproc, client_datg
XtAppContextapp_context
XtLanguageProgproc,
XtPointerclient_data

app_context Specifies the application context in which the language procedure is to be used,

or NULL.

proc Specifies the language procedure.

client data Specifies additional client data to be passed to the language procedure when it is
called.

XtSetLanguageProcsets the language procedure that will be called fxaDisplaylnitialize

for all subsequent Displays initialized in the specified application xionté app_contexis

NULL, the specified language procedure is registered in all application contexts created by the
calling process, including girffuture application contexts that may be createdord€is NULL,

a default language procedure is registerédSetLanguageProcreturns the previously regis-

tered language procedure. If a language procedure has not yet been registered, the return value is
unspecified, but if this return value is used in a subsequent ¢éibailanguageProg it will

cause the default language procedure to be registered.

The default language procedure does the following:

. Sets the locale according to theviennment. OPANSI C-based systems this is done by
calling setlocald LC_ALL , language). If an error is encountered, a warning message is
issued withXtWarning .

. Calls XSupportsLocale to verify that the current locale is supported. If the locale is not
supported, a warning message is issued Xitharning and the locale is set to “C”".

. Calls XSetLocaleModifiers specifying the empty string.

. Returns the value of the current locale. On ANSI C-based systems this is the return value
from a final call tosetlocalg LC_ALL , NULL).

A client wishing to use this mechanism to establish locale can do so by ¢éiietl anguage-
Proc prior to XtDisplaylnitialize , as in he following example.

Widget top;
XtSetLanguageProc(NULL, NULL, NULL);
top = XtOpenApplication(...);

2.3. Loadingthe Resource Database

The XtDisplaylnitialize function first determines the language string to be used for the specified
display It then creates a resource database for the default screen of the display by combining the
following sources in ordewith the entries in the first named source having highest precedence:

. Application command lineafgc, argv).
. Per-host user environment resource file on the local host.
. Per-screen resource specifications from the server.

33

. Per-display resource specifications from the server or from
the user preference file on the local host.

. Application-specific user resource file on the local host.
. Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either,iaternally
when XtScreenDatabaseis called), it is created in the following manner using the sources listed
above in the same order:

. A temporary database, the “server resource database”, is created from the string returned
by XResourceManagerStringor, if XResourceManagerStringreturns NULL, the con-
tents of a resource file in the usemme directory On POSIX-based systems, the usual
name for this user preference resource file is $HOXAtEfaults.

. If a language procedure has been X#Displaylnitialize first searches the command line
for the option “-xnlLanguage”, or for a -xrm option that specifies the xnlLanguage/Xnl-
Language resource, as specified by Section 2.4. If such a resource is found, the value is
assumed to be entirely in XPCS, the X Portable Character Set. If neither option is specified
on the command linetDisplaylnitialize queries the server resource database (which is
assumed to be entirely in XPCS) for the resonaraexnlLanguage classClassXnlLan-
guagewherenameandClassare theapplication_namendapplication_classpecified to
XtDisplaylnitialize . The language procedure is themaked with the resource value if
found, else the empty string. The string returned from the language proceduesl ifbsa
all future references in the Intrinsics that require the per-display language string.

. The screen resource database is initialized by parsing the command line in the manner
specified by Section 2.4.

. If a language procedure has not been set, the initial database is then queried for the resource
namexnlLanguage classClassXnlLanguage as specified alve. If this database query
fails, the server resource database is queried; if this query also fails, the language is deter-
mined from the environment; on POSIX-based systems, this is done by retrieving the value
of the LANG environment griable. Ifno language string is found, the empty string is
used. Thidanguage string is 8ead for all future references in the Intrinsics that require the
per-display language string.

. After determining the language string, the usarvironment resource file is then merged
into the initial resource database if the fikises. Thisfile is user-, host-, and process-spe-
cific and is expected to contain user preferences that avertide those specifications in
the per-display and per-screen resources. On POSIX-based systems, shevismn-
ment resource file name is specified by the value cXKENVIRONMENT environment
variable. Ifthis environment variable does not exist, the sd®rme directory is searched
for a file namedXdefaults-host, wherehostis the host name of the machine on which the
application is running.

. The per-screen resource specifications are then merged into the screen resource database, if
they exist. Thesespecifications are the string returnedXfycreenResourceStringor the
respectie creen and are owned entirely by the user.

34

Next, the server resource database created earlier is merged into the screen resource
database. Thserver propertyand corresponding user preference file, are owned and con-
structed entirely by the user.

The application-specific user resource file from the local host is then merged into the screen
resource database. This file contains user customizations and is stored in a directory owned
by the user Either the user or the application or both can store resource specifications in

the file. Each should be prepared to find and respect entries made by thdloghide

name is found by callingirmSetDatabasewith the current screen resource database, after
preserving the original display-associated database, then cétitesolvePathnamewith

the parametersdisplay, NULL, NULL, NULL, path NULL, O, NULL), wherepathis

defined in an operating-system-specific weyn POSIX-based systempathis defined to

be the value of the environment variall@SERFILESEARCHPATH if this is defined. If
XUSERFILESEARCHPATH is not defined, an implementation-dependent default value is
used. Thiglefault value is constrained in the following manner:

— |If the environment variablEAPPLRESDIR is not defined, the defaulUSERFILE-
SEARCHPATH must contain at least six entries. These entries must contain SHOME as
the directory prefix, plus the following substitutions:

%C,%N, %L or %C, %N, %l, %t, %c
%C,%N, %l

%C,%N

%N, %L or %N, %I, %t, %c

%N, %l

%N

ok wn R

The order of these six entries within the path must bevas gbove. The order and
use of substitutions within agin entry are implementation-dependent.

— If XAPPLRESDIR is defined, the defaukUSERFILESEARCHPATH must contain at
least seen entries. Thesentries must contain the following directory prefixes and sub-
stitutions:

$XAPPLRESDIR with %C,%N, %L or %C,%N, %l, %t, %c
$XAPPLRESDIR with %C, %N, %l

$XAPPLRESDIR with %C, %N

$XAPPLRESDIR with %N, %L or %N, %lI, %t, %c
$XAPPLRESDIR with %N, %l

$XAPPLRESDIR with %N

$HOME with %N

NogMwdhE

The order of these gen entries within the path must be as@i ébove. The order and
use of substitutions within avgn entry are implementation-dependent.

Last, the application-specific class resource file from the local host is merged into the
screen resource database. This file is owned by the application and is usually installed in a
system directory when the application is installed. It may contain sitewide customizations
specified by the system manag&he name of the application class resource file is found

35

by calling XtResolvePathnamewith the parameterslisplay, “app-defaults”, NULL,

NULL, NULL, NULL, 0, NULL). This file is expected to be provided by theséleper of

the application and may be required for the application to function progedimple

application that wants to be assured of having a minimal set of resources in the absence of
its class resource file can declare fallback resource specificationXtijtpSetFallback-
Resources Note that the customization substitution string is re¢dedynamically by
XtResolvePathnameso that the resolved file hame of the application class resource file

can be affected by grof the earlier sources for the screen resource databasgheugh

the contents of the class resource fileehawest precedence. After callingtRe-
solvePathname the original display-associated database is restored.

To dbtain the resource database for a particular screerstGseeenDatabase

XrmDatabase XtScreenDatabasaéen
Screen creen

screen Specifies the screen whose resource database is to be returned.

The XtScreenDatabasefunction returns the fully merged resource database as specifiaz] abo
associated with the specified screen. If the speafiegkndoes not belong to Risplay initial-
ized by XtDisplaylnitialize , the results are undefined.

To dbtain the default resource database associated with a particular,displdtDatabase.

XrmDatabase XtDatabaghb¢play)
Display *display;

display Specifies the display.

The XtDatabase function is equialent to XrmGetDatabase. It returns the database associated
with the specified displaypr NULL if a database has not been set.

To ecify a default set of resource values that will be used to initialize the resource database if no
application-specific class resource file is found (the last of the six sources liste}] abe
XtAppSetFallbackResources

void XtAppSetFallbackResourcegip_contextspecification_list
XtAppContextapp_context
String *specification_list

app_context Specifies the application context in which the fallback specifications will be
used.

specification_list Specifies a NULL-terminated list of resource specifications to preload the
database, or NULL.

Each entry irspecification_lispoints to a string in the format dfrmPutLineResource. Fol-
lowing a call toXtAppSetFallbackResources when a resource database is being created for a
particular screen and the Intrinsics are not able to find or read an application-specific class

36

resource file according to the ruleseagyi above and if specification_lists not NULL, the resource
specifications irspecification_listvill be merged into the screen resource database in place of the
application-specific class resource fildtAppSetFallbackResourcesis not required to copy
specification_listthe caller must ensure that the contents of the list and of the strings addressed
by the list remain valid until all displays are initialized or uXtiRppSetFallbackResourcesis

called agin. Thevalue NULL for specification_listemoves any previous fallback resource spec-
ification for the application cormte Theintended use for fallback resources is to provide a mini-
mal number of resources that will neake application usable (or at least terminate with helpful
diagnostic messages) when some problem exists in finding and loading the application defaults
file.

2.4. Rarsing the Command Line
The XtOpenDisplay function first parses the command line for the following options:

—display Specifiethe display name foXOpenDisplay.
—name Setthe resource name prefix, whicherrides the application name passed to
XtOpenDisplay.

—-xnllanguage Specifighe initial language string for establishing locale and for finding appli-
cation class resource files.

XtDisplaylnitialize has a table of standard command line options that are pasxedRar-
seCommandfor adding resources to the resource database, and it takes as a parameter additional
application-specific resource abliagions. Theformat of this table is described in Section 15.9

in Xlib — C Languge X hterface

typedef enum {

XrmoptionNoAg, /* Value is specified in OptionDescRec.value */
XrmoptionlsAig, /* Value is the option string itself */
XrmoptionStickyAg, /* Value is characters immediately following option */
XrmoptionSepAg, /* Value is next argument in argv */
XrmoptionResAg, /* Use the next argument as input to XrmPutLineResource*/
XrmoptionSkipAmg, /* Ignore this option and the next argument in argv */
XrmoptionSkipNAgs, /*1gnore this option and the next */
/* OptionDescRec.value arguments in argv */

XrmoptionSkipLine [*Ignore this option and the rest of argv */

} X rmOptionKind;

typedef struct {
char *option; /* Option name in argv */
char *specifier; /* Resource name (without application name) */
XrmOptionKind agKind; /* Location of the resource value */
XPointer alue; /*Value to provide if XrmoptionNoAg */

} X rmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

37

Option String Resource Name Argument Kind Resource Value

—background *background SepAg next argument
-bd *borderColor SepAg next argument
-bg *packground SepAg next argument
—borderwidth .border\idth SepAg next argument
—bordercolor *borderColor SepAg next argument
—bw .borderVidth SepAg next argument
—display display SepAyr next argument
—fg *foreground SepAg next argument
-fn *font SepAg next argument
—font *font SepAg next argument
—foreground *forgground SepAy next argument
—geometry .geometry Sepg\r next argument
—iconic .iconic NoAg “true”

-name .name Sepgr next argument
—-reverse reerseMdeo NoAg “on”

-rv reverseMdeo NoAg “on”

+rv .reverseMdeo NoAg “off”’
—selectionTmeout .selectionTimeout Sep#\r next argument
—synchronous .synchronous N@Ar “on”
+synchronous .synchronous NaAr “off"”

—title title SepAg next argument
—xnllanguage xnlLanguage SepAg next argument
=Xrm net agument ResAt next argument
—xtsessionID .sessionID SepAg next argument

Note that ap unique abbreviation for an option name in the standard table or in the application
table is accepted.

If reverseVideo isTr ue, the values oXtDefaultForeground and XtDefaultBackground are
exchanged for all screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into synchronous
mode. Ifa value is found in the resource database during display initializattnisplaylnitial-

ize makes a call t&Synchronize for all display connections currently open in the application
contet. Thereforewhen multiple displays are initialized in the same application context, the

most recent value specified for the synchronous resource is used for all displays in the application
context.

The value of the selectionTimeout resource applies to all displays opened in the same application
contxt. Whenmultiple displays are initialized in the same application context, the most recent
value specified is used for all displays in the application context.

The —xrm option provides a method of setting essource in an application. The next argument
should be a quoted string identical in format to a line in the user resourdedfilexample, to

give a ed background to all command buttons in an application naméd you can start it up

as

xmh —xrm '’xmh*Command.background: red’

38

When it parses the command lin@Displaylnitialize merges the application option table with

the standard option table before calling the XitmParseCommand function. Anentry in the
application table with the same name as an entry in the standardvarbiges the standard table

entry If an gotion name is a prefix of another option name, both names are kept in the merged ta-
ble. Thelntrinsics resere dl option names beginning with the characters “#r future stan-

dard uses.

2.5. Creating Widgets
The creation of widget instances is a three-phase process:

1. Thewidgets are allocated and initialized with resources and are optionally added to the
managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottomwepstthof the
widget tree.

3. Thewidgets create X windows, which then are mapped.

To dart the first phase, the application caliCreateWidget for all its widgets and adds some

(usually most or all) of its widgets to their respegtiparents’ managed set by calligMan-

ageChild. To avoid anO(n?) creation process where each composite widget lays itself out each

time a widget is created and managed, parent widgets are not notified of changes in their managed
set during this phase.

After all widgets hge keen created, the application caXitRealizeWidget with the top-leel

widget to eecute the second and third phasedRealizeWidget first recursiely traverses the
widget tree in a postorder (bottom-up)vesal and then notifies each composite widget with one
or more managed children by means of its change_managed procedure.

Notifying a parent about its managed s&binves geometry layout and possibly geometry negoti-
ation. Aparent deals with constraints on its size imposed fromeafor example, when a user
specifies the application windcsize) and suggestions made from belfor example, when a

primitive dhild computes its preferred size). One difference between theanvcause geometry
changes to ripple in both directions through the widget tree. The parent may force some of its
children to change size and position and may issue geometry requests to its own parent in order to
better accommodate all its childre¥ou cannot predict where anything will go on the screen

until this process finishes.

Consequentlyin the first and second phases, no X windows are actually created, because it is
likely that they will get moved aound after creation. Thisvaids unnecessary requests to the X
server.

Finally, XtRealizeWidget starts the third phase by making a preorder (top-dovwsrgal of the
widget tree, allocates an X wingldo each widget by means of its realize procedure, and finally
maps the widgets that are managed.

2.5.1. Crating and Merging Argument Lists

Marny Intrinsics functions may be passed pairs of resource nameslaed.vThesare passed as
an arglist, a pointer to an array Afg structures, which contains

39

typedef struct {
String name;
XtArgVal value;
} Arg, *ArglList;

whereXtArgVal is as defined in Section 1.5.

If the size of the resource is less than or equal to the sizeXiragVal , the resource value is
stored directly irvalue otherwise, a pointer to it is storedvalue

To st values in amrgList , use XtSetArg.

void XtSetArg@rg, name valug

Arg arg;

Stringname

XtArgVal value
arg Specifies th@mame/valugair to set.
name Specifies the name of the resource.

value Specifies the value of the resource if it will fit in 4tArgVal , ese the address.

The XtSetArg function is usually used in a highly stylized manner to minimize the probability of
making a mistake; for example:

Arg ags[20];

int n;

n=0;

XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;

XtSetValues(widget, args, n);
Alternatively, an aplication can statically declare the argument list andXasieimber :

static Args args[] = {
{XtNheight, (XtArgVal) 100},
{XtNwidth, (XtArgVal) 200},

¥

XtSetValues(Widget, args, XtNumber(args));

Note that you should not use expressions with side effects such as auto-increment or auto-decre-
ment within the first argument #6tSetArg. XtSetArg can be implemented as a macro that
evduates the first argument twice.

To merge tvwo aglist arrays, us&XtMergeArgLists .

40

ArgList XtMergeArgListsargsl, num_argslargs2 num_args2
ArgList argsl
Cardinalnum_argsi
ArgList args2
Cardinalnum_args2

argsl Specifies the first argument list.

num_argsl Specifies the number of entries in the first argument list.
args2 Specifies the second argument list.

num_args2 Specifies the number of entries in the second argument list.

The XtMergeArgLists function allocates enough storage to hold the combined arglist arrays and
copies them into it. Note that it does not check for duplicate entries. The length of the returned
list is the sum of the lengths of the specified lists. When it is no longer needed, free the returned
storage by usingtFree.

All Intrinsics interfaces that requirgrgList arguments hae analogs conforming to the ANSI C
variable argument list (traditionally called “varargs”) calling eention. Thename of the analog
is formed by prefixing “Va'to the name of the correspondifggList procedure; e.g.,
XtVaCreateWidget. Each procedure name@tVasomethingakes as its last arguments, in place
of the correspondingirgList / Cardinal parameters, a variable parameter list of resource name
and value pairs where each name is of tgfreng and each value is of typ&ArgVal . The end

of the list is identified by aameentry containing NULL. Deelopers writing in the C language
wishing to pass resource name and value pairsytofghese interfaces may use thggList and
varargs forms interchangeably.

Two special names are defined for use only in varargs Ks¥@aTypedArg and XtVaNest-
edList.

#define XtVaTypedAg "XtVaTypedArg"

If the nameXtVaTypedArg is specified in place of a resource name, then the following four
arguments are interpreted asaane/type/value/sizaplewherename is of typestring, typeis of
type String, valueis of type XtArgVal , and sizeis of type int. When a varargs list containing
XtVaTypedArg is processed, a resource typevasion (see Section 9.6) is performed if neces-
sary to cowert the value into the format required by the associated resourtygel$ XtRString,
thenvaluecontains a pointer to the string asidecontains the number of bytes allocated, includ-
ing the trailing null byte. Itypeis not XtRString, theif size is less than or equal to
sizeofXtArgVal), the value should be the data cast to the XigegVal , otherwisevalueis a
pointer to the data. If the type aansion fails for ag reason, a warning message is issued and
the list entry is skipped.

41

#define Xt\ANestedList "Xt@NestedList"

If the nameXtVaNestedList is specified in place of a resource name, then the following argu-
ment is interpreted as aftVarArgsList value, which specifies another varargs list that is logi-
cally inserted into the original list at the point of declaration. The end of the nested list is identi-
fied with a name entry containing NULMarargs lists may nest to ydepth.

To dynamically allocate a varargs list for use wiXtVaNestedList in multiple calls, use
XtVaCreateArgsList.

typedef XtPointer XtVarArgsList;

XtVarArgsList XtVaCreateArgsList(nused...)
XtPointerunused
unused This argument is not currently used and must be specified as NULL.
Specifies variable parameter list of resource name and value pairs.

The XtVaCreateArgsList function allocates memory and copies its arguments into a single list
pointer which may be used witKtVaNestedList. The end of both lists is identified byname

entry containing NULL. Awg entries of typeXtVaTypedArg are copied as specified without
applying conersions. Datgassed by reference (including Strings) are not copied, only the
pointers themselves; the caller must ensure that the data remain valid for the lifetime of the cre-
ated varargs list. The list should be freed usftigree when no longer needed.

Use of resource files and of the resource database is generally encoueadeagtty arglist or
varargs lists wheneer possible in order to permit modification without recompilation.

2.5.2. Crating a Widget Instance
To aeate an instance of a widget, U&€reateWidget.

42

Widget XtCreateWidget@me object_classparent args, num_args

St

ringname

WidgetClas®bject_class
Widgetparent

ArglList args
Cardinalnum_args

name

Specifies the resource instance name for the created widget, which is used for
retrieving resources and, for that reason, should not be the sanyeotiseanwid-
get that is a child of the same parent.

object_class Specifies the widget class pointer for the created object. MugijbetClassor

paren
args

ary subclass thereof.
t Specifies the parent widget. Must be of class Objectysclass thereof.
Specifies the argument list tgepride ary other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtCreateWidget function performs all the boilerplate operations of widget creation, doing

the fo

llowing in order:

Checks to see if the class_initialize procedure has been called for this class and for all
superclasses and, if not, calls those necessary in a superclass-to-subclass order.

If the specified class is nobreWidgetClassor a subclass thereof, and the pasedéss is
a abclass ofcompositeWidgetClassand either no extension record in the pasegim-
posite class part extension field exists withrdwerd_typeNULLQ UARK or the
accepts_objectfeld in the extension record igalse, XtCreateWidget issues a fatal error;
see Section 3.1 and Chapter 12.

If the specified class contains an extension record in the object clasgqyasionfield

with record_typeNULLQ UARK and theallocatefield is not NULL, the procedure is

invoked to dlocate memory for the widget instance. If the parent is a member of the class
constraintWidgetClass, the procedure also allocates memory for the parentistraints

and stores the address of this memory intctmstraintsfield. If no allocate procedure is
found, the Intrinsics allocate memory for the widget and, when applicable, the constraints,
and initializes theonstraintsfield.

Initializes the Core nonresource data fieddl§ parent widget_classbeing_destroyed
name manayed, window; visible popup_list and num_popups

Initializes the resource fields (for examgdackground_pix@lby using theCoreClassPart
resource lists specified for this class and all superclasses.

If the parent is a member of the clasmistraintWidgetClass, initializes the resource
fields of the constraints record by using @enstraintClassPart resource lists specified
for the parens dass and all superclasses ugtmstraintWidgetClass.

Calls the initialize procedures for the widget starting at the Object initialize procedure on
down to the widges initialize procedure.

If the parent is a member of the classistraintWidgetClass, calls theConstraintClass-
Part initialize procedures, starting abnstraintWidgetClasson down to the parent’s
ConstraintClassPart initialize procedure.

If the parent is a member of the classnpositeWidgetClass puts the widget into its par-
ent’s dildren list by calling its parer#t’insert_child procedureror further information,

43

see Section 3.1.

To areate an instance of a widget using varargs listsXtigeCreateWidget.

Widget XtVaCreateWidget@me object_classparent ...)
Stringhame
WidgetClas®bject_class
Widgetparent

name Specifies the resource name for the created widget.

object_class Specifies the widget class pointer for the created object. MuijbetClassor
ary subclass thereof.

parent Specifies the parent widget. Must be of class Objectysuiclass thereof.
Specifieshe variable argument list taoverride ary other resource specifications.

The XtVaCreateWidget procedure is identical in function XtCreateWidget with theargsand
num_arggparameters replaced by a varargs list, as described in Section 2.5.1.

2.5.3. Crating an Application Shell Instance

An application can hee nmultiple top-level widgets, each of which specifies a unique widget tree
that can potentially be on different screens or displays. An applicatiorXt&spsCreateShell
to create independent widget trees.

Widget XtAppCreateSheliame application_classwidget_classdisplay, args num_arg}
Stringname
Stringapplication_class
WidgetClassvidget_class
Display *display;
ArgList args
Cardinalnum_args

name Specifies the instance name of the shell widgetafieis NULL, the appli-
cation name passed ¥iDisplaylnitialize is used.

application_class Specifies the resource class string to be used in place of the widget
class_nametring whenwidget_classs applicationShellWidgetClassor a
subclass thereof.

widget_class Specifies the widget class for the topdavidget (e.g.applicationShell-
WidgetClasg.

display Specifies the display for the default screen and for the resource database used
to retrieve the shell widget resources.

args Specifies the argument list teasride ary other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtAppCreateShell function creates a meshell widget instance as the root of a widget tree.
The screen resource for this widget is determined by first scaargafpr the XtNscreen

44

argument. Ifno XtNscreen argument is found, the resource database associated with the default
screen of the specified display is queried for the resmantescreen, clas€lassScreen where
Classis the specifiedpplication_classf widget_classs applicationShellwWidgetClassor a

subclass thereof. iidget classs notapplicationShellWidgetClassor a subclas<;lassis the
class_namdield from theCoreClassPartof the specifiedvidget_class If this query fails, the

default screen of the specified display is used. Once the screen is determined, the resource
database associated with that screen is used torecifieemaining resources for the shell widget
not specified irargs The widget name an@lassas determined ale ae used as the leftmost

(i.e., root) components in all fully qualified resource names for objects within this widget tree.

If the specified widget class is a subclass of WMShell, the nam€lassas determined abe
will be stored into thavM_CLASS property on the widget'window when it becomes realized.
If the specifiedvidget classgs applicationShellWidgetClassor a subclass thereof, the
WM_COMMAND property will also be set from the values of the XtNargv and XtNargc
resources.

To aeate multiple top-kel shells within a single (logical) application, you can use one of two
methods:

. Designate one shell as the real togelshell and create the others as pop-up children of it
by usingXtCreatePopupShell

. Haveall shells as pop-up children of an unrealized tagtishell.

The first method, which is best used when there is a clear choice for what is the maim windo
leads to resource specificationglike following:

xmail.geometry:... (thenain window)
xmail.read.geometry:... (thread window)
xmail.compose.geometry:... (ttempose window)

The second method, which is best if there is no main winads to resource specifications like
the following:

xmail.headers.geometry:... (theaders window)
xmail.read.geometry:... (tread window)
Xmail.compose.geometry:... (tcempose window)

To aeate a top-kel widget that is the root of a widget tree using varargs listsXtéa@AppCre-
ateShell

45

Widget XtVaAppCreateSheliame application_classwidget_classdisplay; ...)
Stringname
Stringapplication_class
WidgetClassvidget_class
Display *display,

name Specifies the instance name of the shell widgetaffieis NULL, the
application name passedXtDisplaylnitialize is used.

application_class Specifies the resource class string to be used in place of the widget
class_nametring whenwidget classs applicationShellWidgetClass
or a subclass thereof.

widget_class Specifies the widget class for the topdavidget.

display Specifies the display for the default screen and for the resource database
used to retrige the shell widget resources.

Specifieshe variable argument list taverride ary other resource specifi-
cations.

The XtVaAppCreateShell procedure is identical in function ¥XtAppCreateShell with theargs
andnum_argarameters replaced by a varargs list, as described in Section 2.5.1.

2.5.4. Cowenience Procedue to Initialize an Application

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial root shell instance, an application maXi@eenApplication or
XtVaOpenApplication .

46

Widget XtOpenApplicatiorgpp_context_returrapplication_classoptions num_options
argc_in_outargv_in_out fallback resourceswvidget classargs num_arg$
XtAppContext *app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options

int *argc_in_out

String *argv_in_out
String *fallback_resources
WidgetClassvidget_class

ArglList args

Cardinalnum_args

app_context_return
application_class
options
num_options
argc_in_out
argv_in_out
fallback_resources

widget_class
args

num_args

Returns the application context, if non-NULL.

Specifies the class name of the application.

Specifies the command line options table.

Specifies the number of entriesoptions

Specifies a pointer to the number of command line arguments.
Specifies a pointer to the command line arguments.

Specifies resource values to be used if the application class resource file
cannot be opened or read, or NULL.

Specifies the class of the widget to be created. Must be shellWidgetClass
or a subclass.

Specifies the argument list teapride ary other resource specifications
for the created shell widget.

Specifies the number of entries in the argument list.

The XtOpenApplication function callsXtToolkitlnitialize followed by XtCreateApplication-
Context, then callsXtOpenDisplay with display_stringNULL and application_naméNULL,
and finally callsXtAppCreateShell with nameNULL, the specifiedvidget_classan agument
list and count, and returns the created shell. The recommevidget classs sessionShellwid-
getClass The argument list and count are created by merging the spexijieandnum_args
with a list containing the specifiedigc andargv. The modifiedargc andargvreturned by
XtDisplaylnitialize are returned ilargc_in_outandargv_in_out If app_context_returis not
NULL, the created application context is also returned. If the display specified by the command
line cannot be opened, an error message is issuedt@pinApplication terminates the appli-
cation. Iffallback_resourcess non-NULL, XtAppSetFallbackResourcesis called with the
value prior to callingXtOpenDisplay.

47

Widget XtVaOpenApplicatiompp_context_returrapplication_classoptions num_options
argc_in_outargv_in_out fallback resourceswidget class...)
XtAppContext *app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options
int *argc_in_out
String *argv_in_out
String *fallback_resources
WidgetClassvidget_class

app_context_return Returns the application context, if non-NULL.
application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesoptions

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resource values to be used if the application class resource file
cannot be opened, or NULL.

widget_class Specifies the class of the widget to be created. Must be shellwidgetClass
or a subclass.

Specifieshe variable argument list taverride ary other resource specifi-
cations for the created shell.

The XtVaOpenApplication procedure is identical in function XtOpenApplication with the
argsandnum_arggparameters replaced by a varargs list, as described in Section 2.5.1.

2.5.5. Wdget Instance Allocation: The allocate Procedure

A widget class may optionally provide an instance allocation procedure @ifleetClassEx-
tension record.

When the call to create a widget includes a varargs list contaitvaylypedArg , these argu-
ments will be passed to the allocation procedure iKtdgpedArgList .

typedef struct {
String name;
String type;
XtArgVal value;
int size;
} X tTypedArg, *XtTypedArgList;

The allocate procedure pointer in &jectClassExtensionrecord is of typeXtAllocateProc.

48

typedef void (*XtAllocateProc)(WidgetClass, Cardinal*, Cardinal*, ArgList, Cardinal*,
XtTypedArgList, Cardinal*, Widget*, XtPointer*);
WidgetClasavidget_class
Cardinal*constraint_sizp
Cardinal*more_bytes
ArglList args
Cardinal*num_args
XtTypedArgListtyped_args
Cardinal*num_typed_args
Widget* new_return
XtPointer* more_bytes_return

widget_class Specifies the widget class of the instance to allocate.

constraint_size Specifies the size of the constraint record to allocate, or 0.

more_bytes Specifies the number of auxiliary bytes of memory to allocate.

args Specifies the argument list az@i in the call to create the widget.

num_args Specifies the number of arguments.

typed_args Specifies the list of typed argumentsagiin the call to create the wid-
get.

num_typed_args Specifies the number of typed arguments.

new_return Returns a pointer to the newly allocated instance, or NULL in case of
error.

more_bytes_return Returns the auxiliary memory if it was requested, or NULL if requested
and an error occurred; otherwise, unchanged.

At widget allocation time, if an extension record wiord_typeequal toNULLQ UARK is
located through the object class patensionfield and theallocatefield is not NULL, theXtAl-
locateProcwill be invoked to dlocate memory for the widget. If no ObjectClassPart extension
record is declared witlfecord_type equato NULLQ UARK , then XtinheritAllocate and XtIn-
heritDeallocate are assumed. If n¥tAllocateProc is found, the Intrinsics will allocate mem-
ory for the widget.

An XtAllocateProc must perform the following:

. Allocate memory for the widget instance and return fiteéw_return The memory must be
at leaswc->core_class.widget_sizg/tes in length, double-word aligned.

. Initialize thecore.constraintsfield in the instance record to NULL or to point to a con-
straint record. Itonstraint_sizés not 0, the procedure must allocate memory for the con-
straint record. The memory must be double-word aligned.

. If more_byte$s not 0, then the address of a block of memory at teast_bytedn size,
double-word aligned, must be returned inih@re_bytes_returparameteror NULL to
indicate an error.

A class allocation procedure thatvelops the allocation procedure of a superclass must rely on

the eweloped procedure to perform the instance and constraint allocation. Allocation procedures
should refrain from initializing fields in the widget record except to store pointers to newly allo-
cated additional memaoryJnder no circumstances should an allocation procedure thabpes

its superclass allocation procedure modify fields in the instance past sfiggrclass.

49

2.5.6. Wdget Instance Initialization: The initialize Procedure
The initialize procedure pointer in a widget class is of tffaitProc .

typedef void (*XtInitProc)(Widget, Widget, ArgList, Cardinal*);

Widgetrequest
Widgetnew
ArgList args
Cardinal num_args
request Specifies a cgpof the widget with resource values as requested by the argument
list, the resource database, and the widget defaults.
new Specifies the widget with thewevalues, both resource and nonresource, that are
actually allowed.
args Specifies the argument list passed by the client, for computingediezsource

vaues. Ifthe client created the widget using a varargs formyasources speci-
fied viaXtVaTypedArg are conerted to the widget representation and the list is
transformed into thérgList format.

num_args Specifies the number of entries in the argument list.

An initialization procedure performs the following:

. Allocates space for and copieyaasources referenced by address that the client is
allowed to free or modify after the widget has been credtedexample, if a widget has a
field that is aString, it may choose not to depend on the characters at that address remain-
ing constant but dynamically allocate space for the string andittapthe nev space.
Widgets that do not cgmne or more resources referenced by address should clearly so
state in their user documentation.

Note
It is not necessary to allocate space for or toy @aiback lists.

. Computes values for unspecified resource fieks.example, ifwidth andheightare zero,
the widget should compute an appropriate width and height based on its other resources.

Note

A widget may directly assign only its owvidth andheightwithin the initial-
ize, initialize_hook, set_values, and set_values _hook procedures; see Chapter
6.

. Computes values for uninitialized nonresource fields that areeddrom resource fields.
For example, graphics contexts (GCs) that the widget uses avedi&om resources like
background, foreground, and font.

An initialization procedure also can check certain fields for internal consistBocexample, it
makes no sense to specify a colormap for a depth that does not support that colormap.

Initialization procedures are called in superclass-to-subclass order after all fields specified in the
resource lists hae been initialized. The initialize procedure does not need to exaanysand
num_argsf all public resources are declared in the resource list. Most of the initialization code
for a specific widget class deals with fields defined in that class and not with fields defined in its

50

superclasses.

If a subclass does not need an initialization procedure because it does not need to pgdbrm an
the abwe erations, it can specify NULL for theitialize field in the class record.

Sometimes a subclass may wantverarite values filled in by its superclass. In particusiare
calculations of a superclass often are incorrect for a subclass, and in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass.disytaig case, the width and
height calculated by the superclass initialize procedure are too small and need to be incremented
by the size of the surround. The subclass needs tw imnts superclass’'sze was calculated by

the superclass or was specified explicityl widgets must place themselves into whetesize is
explicitly given, but thg should compute a reasonable size if no size is requested.

Therequestandnewarguments provide the necessary information for a subclass to determine the
difference between an explicitly specified field and a field computed by a superclassquest

widget is a cop of the widget as initialized by the arglist and resource databasenevheidget

starts with the values in the request, but it has been updated by all superclass initialization proce-
dures called so farA subclass initialize procedure can compare theeddwesole any potential
conflicts.

In the aboe example, the subclass with the visual surround can seewithie andheightin the
requestwidget are zero. If so, it adds its surround size tontidéh andheightfields in thenew
widget. Ifnot, it must ma& do with the size originally specified.

Thenewwidget will become the actual widget instance record. Therefore, the initialization pro-
cedure should do all its work on thewwidget; therequestwidget should neer be nodified. If

the initialize procedure needs to calyanutines that operate on a widget, it should spewfy

as the widget instance.

2.5.7. Constraintinstance Initialization: The ConstraintClassPart initialize Procedure

The constraint initialization procedure pointieund in theConstraintClassPart initialize field

of the widget class record, is of typ@lnitProc . The values passed to the parent constraint ini-
tialization procedures are the same as those passed to the d¢add'widget initialization proce-
dures.

Theconstraintdfield of therequestwidget points to a copof the constraints record as initialized
by the arglist and resource database.

The constraint initialization procedure should computecanstraint fields deved from con-
straint resources. It can nafurther changes to threwwidget to mak the widget and another
constraint fields conform to the specified constraints, for example, changing the s\ddgedr
position.

If a constraint class does not need a constraint initialization procedure, it can specify NULL for
theinitialize field of theConstraintClassPart in the class record.

2.5.8. NonwidgetData Initialization: The initialize _hook Procedure

51

Note

The initialize_hook procedure is obsolete, as the same informatiow iavaitable
to the initialize procedure. The procedure has been retained for those widgets that
used it in previous releases.

The initialize_hook procedure pointer is of tygArgsProc:

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widgetw;
ArgList args
Cardinal num_args

w Specifies the widget.

args Specifies the argument list passed by the client. If the client created the widget
using a varargs form, gmesources specified viétVaTypedArg are comerted
to the widget representation and the list is transformed intAuhleist format.

num_args Specifies the number of entries in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding initialize proce-
dure or in its place if thimitialize field is NULL.

The initialize_hook procedure allows a widget instance to initialize nonresource data using infor-
mation from the specified argument list as if it were a resource.

2.6. RealizingWidgets
To realize a widget instance, ux¢RealizeWidget.

void XtRealizeWidgety)
Widgetw;,

w L Specifies the widget. Must be of class Core grsaclass thereof.

If the widget is already realizeXtRealizeWidget simply returns. Otherwise it performs the fol-
lowing:

. Binds all action names in the widget'anslation table to procedures (see Section 10.1.2).

. Makes a postorder trersal of the widget tree rooted at the specified widget and calls each

non-NULL change_managed procedure of all composite widgets treatia or more
managed children.

. Constructs arKSetWindowAttributes structure filled in with information desed from
the Core widget fields and calls the realize procedure for the widget, which gdsislan
get-specific attributes and creates the X windo

. If the widget is not a subclass @dmpositeWidgetClass XtRealizeWidget returns; oth-
erwise it continues and performs the following:

- Descends recursily to each of the widget'managed children and calls the realize
procedures. Primite widgets that instantiate children are responsible for realizing
those children themselves.

52

- Maps all of the managed children windows thatelmaapped_when_maged Tr ue.
If a widget is managed butapped_when_maged is False, the widget is allocated
visual space but is not displayed.

If the widget is a top-keel shell widget (that is, it has no parent), andpped_when_maged is
True, XtRealizeWidget maps the widget winda

XtCreateWidget, XtVaCreateWidget, XtRealizeWidget, XtManageChildren,
XtUnmanageChildren, XtUnrealizeWidget, XtSetMappedWhenManaged and XtDestroy-
Widget maintain the following imariants:

. If a composite widget is realized, then all its managed children are realized.

. If a composite widget is realized, then all its managed children that ha
mapped_when_maged Tr ue are mapped.

All Intrinsics functions and all widget routines should accept either realized or unrealized wid-
gets. Whertalling the realize or change_managed procedures for children of a composite wid-
get, XtRealizeWidget calls the procedures inv&se order of appearance in tBempositePart

children list. By default, this ordering of the realize procedures will result in the stacking order of
ary newly created subwindows being top-to-bottom in the order of appearance on the list, and the
most recently created child will be at the bottom.

To check whether or not a widget has been realizedXtisRealized.

Boolean XtlsRealizedy)
Widgetw;

w Specifies the widget. Must be of class Object grsabclass thereof.

The XtlsRealized function returnsTr ue if the widget has been realized, that is, if the widget has
a monzero windw ID. If the specified object is not a widget, the state of the nearest widget
ancestor is returned.

Some widget procedures (for example, set_values) might wish to operate differently after the wid-
get has been realized.

2.6.1. Wdget Instance Window Creation: The realize Procedure
The realize procedure pointer in a widget class is of KfealizeProc.

typedef void (*XtRealizeProc)(Widget, XtValueMask*, XSetWindowAttributes*);
Widgetw;
XtValueMask *value_mask
XSetWindowAttributes attributes

w Specifies the widget.
value_mask Specifies which fields in thetributesstructure are used.
attributes Specifies the windw attributes to use in th¥CreateWindow call.

The realize procedure must create the widgaitidow.

53

Before calling the class realize procedure, the genéRealizeWidget function fills in a mask
and a correspondingSetWindowAttributes structure. lisets the following fields iattributes
and corresponding bits iralue_maskased on information in the widget core structure:

. Thebackground_pixmafor background_pixelf background_pixmajs XtUnspecified-
Pixmap) is filled in from the corresponding field.

. Theborder_pixmagor border_pixelif border_pixmaps XtUnspecifiedPixmap) is filled
in from the corresponding field.

. The colormapis filled in from the corresponding field.

. Theewent_masils filled in based on therent handlers registered, theeat translations
specified, whether theposefield is non-NULL, and whetheisisible_interests Tr ue.

. Thebit_gravityis set toNorthWestGravity if the exposefield is NULL.

These or another fields in attributes and the corresponding bitalne _maskan be set by the
realize procedure.

Note that because realize is not a chained operation, the widget class realize procedure must
update theXSetWindowAttributes structure with all the appropriate fields from non-Core super-
classes.

A widget class can inherit its realize procedure from its superclass during class initialization. The
realize procedure defined fooreWidgetClasscalls XtCreateWindow with the passed
value_maslandattributesand withwindow_classandvisualset toCopyFromParent. Both
compositeWidgetClassand constraintWidgetClassinherit this realize procedure, and most

new widget subclasses can do the same (see Section 1.6.10).

The most common noninherited realize procedureBisejravityin the mask and attributes to

the appropriate value and then create the windér example, depending on its justification,

Label might sebit_gravityto WestGravity , CenterGravity , or EastGravity. Consequently,
shrinking it would just mee te bits appropriatelyand no exposurevent is needed for repaint-

ing.

If a composite widge$' children should be realized in an order other than that specified (to control
the stacking ordefor example), it should caKtRealizeWidget on its children itself in the
appropriate order from within its own realize procedure.

Widgets that hae dildren and whose class is not a subclassoofipositeWidgetClassare
responsible for callingtRealizeWidget on their children, usually from within the realize proce-
dure.

Realize procedures cannot manage or unmanage their descendants.

2.6.2. Window Creation Convenience Routine

Rather than call the XliiXCreateWindow function explicitly a realize procedure should nor-
mally call the Intrinsics analojtCreateWindow, which simplifies the creation of windows for
widgets.

54

void XtCreateWindowyy, window_classvisual value_maskattributeg
Widgetw;
unsigned intvindow_class
Visual #isuat
XtValueMaskvalue _mask
XSetWindowAttributes attributes

w Specifies the widget that defines the additional wineitributed. Mustoe of
class Core or gnsubclass thereof.

window_class Specifies the Xlib windw class (for examplelnputOutput , InputOnly , or

CopyFromParent).
visual Specifies the visual type (usuallopyFromParent).
value_mask Specifies which fields in thegtributesstructure are used.
attributes Specifies the windw attributes to use in th&¥CreateWindow call.

The XtCreateWindow function calls the XlibXCreateWindow function with values from the
widget structure and the passed parameters. Then, it assigns the createdtavihdavidget’s
windowfield.

XtCreateWindow evduates the following fields of the widget core structaiepth screen par-
ent->corewindow X, y, width, height and border_width

2.7. ObtainingWindow | nformation from a Widget

The Core widget class definition contains the screen and wiitito Thewindowfield may be
NULL for a while (see Sections 2.5 and 2.6).

The display pointetthe parent widget, screen pointard windav of a widget are wailable to the
widget writer by means of macros and to the application writer by means of functions.

Display *XtDisplay(w)
Widgetw;

w Specifies the widget. Must be of class Core grsaclass thereof.

XtDisplay returns the display pointer for the specified widget.

Widget XtParentf)
Widgetw;

w Specifies the widget. Must be of class Object grsabclass thereof.

XtParent returns the parent object for the specified widget. The returned object will be of class
Object or a subclass.

55

Screen *XtScreemy)
Widgetw;

w Specifies the widget. Must be of class Core grsabclass thereof.

XtScreen returns the screen pointer for the specified widget.

Window XtWindow(w)
Widgetw;,

w Specifies the widget. Must be of class Core grsaclass thereof.
XtWindow returns the winde of the specified widget.

The display pointeiscreen pointerand windav of a widget or of the closest widget ancestor of a
nonwidget object arevailable by means oKtDisplayOfObject, XtScreenOfObject, and
XtwWindowOfObiject .

Display *XtDisplayOfObject¢bjec)
Widgetobject

object Specifies the object. Must be of class Object graabclass thereof.
XtDisplayOfObiject is identical in function toXtDisplay if the object is a widget; otherwise

XtDisplayOfObiject returns the display pointer for the nearest ancestobjettthat is of class
Widget or a subclass thereof.

Screen *XtScreenOfObjedijec)
Widgetobject

object Specifies the object. Must be of class Object graabclass thereof.
XtScreenOfObiject is identical in function toXtScreen if the object is a widget; otherwise

XtScreenOfObiject returns the screen pointer for the nearest ancestij@étthat is of class
Widget or a subclass thereof.

Window XtWindowOfObjectbbjec)
Widgetobject

object Specifies the object. Must be of class Object graabclass thereof.

XtWindowOfObject is identical in function toXtWindow if the object is a widget; otherwise
XtwindowOfObject returns the winde for the nearest ancestorafjectthat is of class Widget
or a subclass thereof.

56

To retrieve the instance name of an object, dXddlame.

String XtNameg¢bjec)
Widgetobject

object Specifies the object whose name is desired. Must be of class Objegtsaban
class thereof.

XtName returns a pointer to the instance name of the specified object. The storage is owned by
the Intrinsics and must not be modified. The name is not qualified by the namgobfren
objects ancestors.

Several window attributes are locally cached in the widget instance. Thug,ddre be set by the
resource manager andSetValuesas well as used by routines that deriructures from these
values (for examplegepthfor deriving pixmapsbackground_pixefor deriving GCs, and so on)
or in theXtCreateWindow call.

Thex, y, width, height and border_widthwindow attributes are ailable to geometry managers.
These fields are maintained synchronously inside the Intrinsics. Whe@anfigureWindow

is issued by the Intrinsics on the widgetindow (on request of its parent), these values are
updated immediately rather than some time later when the server genéatdmareNotify

evant. (Infact, most widgets do not seleBubstructureNotify events.) Thisensures that all
geometry calculations are based on the internally consistent toolkit world rather than on either an
inconsistent world updated by asynchron@mnfigureNotify events or a consistent, but sip

world in which geometry managers ask the server for wirgipes wheneer they need to lay out

their managed children (see Chapter 6).

2.7.1. Unralizing Widgets

To destrgy the windows associated with a widget and its non-pop-up descendantsUnseal-
izeWidget.

void XtUnrealizeWidget)
Widgetw;

w Specifies the widget. Must be of class Core grsabclass thereof.

If the widget is currently unrealizeXtUnrealizeWidget simply returns. Otherwise it performs
the following:

. Unmanages the widget if the widget is managed.

. Makes a postorder (child-to-parentyvisal of the widget tree rooted at the specified wid-
get and, for each widget that has declared a callback list resource named “unrealizeCall-
back”, executes the procedures on the XtNunrealizeCallback list.

. Destroys the widget'window and ary subwindows by callingKDestroyWindow with the
specified widget'svindowfield.

Any events in the queue or which arei following a call toXtUnrealizeWidget will be dis-
patched as if the window(s) of the unrealized widget(s) haet egisted.

57

2.8. Destoying Widgets
The Intrinsics provide support

. To destrg al the pop-up children of the widget being destroyed and deallrohildren of
composite widgets.

. To remove (@and unmap) the widget from its parent.

. To call the callback procedures thatwkaren registered to trigger when the widget is
destroyed.

. To minimize the number of things a widget has to deallocate when destroyed.
. To minimize the number oKDestroyWindow calls when destroying a widget tree.

To destrgy a widget instance, us¥tDestroyWidget.

void XtDestroyWidget()
Widgetw;

w Specifies the widget. Must be of class Object grsabclass thereof.

The XtDestroyWidget function provides the only method of destroying a widget, including wid-
gets that need to desyrthemseles. Itcan be called at grime, including from an application
callback routine of the widget being degied. Thisrequires a two-phase destnarocess in

order to &oid dangling references to destroyed widgets.

In phase 1XtDestroyWidget performs the following:
. If thebeing_destroyefleld of the widget isIt ue, it returns immediately.

. Recursvely descends the widget tree and setdttiag_destroyefield to Tr ue for the
widget and all normal and pop-up children.

. Adds the widget to a list of widgets (the degtiist) that should be destroyed when it is
safe to do so.

Entries on the destydist satisfy the imariant that if w2 occurs after wl on the degthst, then
w2 is not a descendent, either normal or pop-up, of wl.

Phase 2 occurs when all procedures that showltlige as a result of the curreneet have keen
called, including all procedures registered with theneand translation managers, that is, when
the current iocation of XtDispatchEvent is about to return, or immediately if not ¥iDis-
patchEvent.

In phase 2XtDestroyWidget performs the following on each entry in the degtist in the
order specified:

. If the widget is not a pop-up child and the widgetrent is a subclass cbmposite-
WidgetClass and if the parent is not being destroyed, it caltnmanageChild on the
widget and then calls the widgeparents celete_child procedure (see Section 3.3).

. Calls the destipcallback procedures registered on the widget and all normal and pop-up
descendants in postorder (it calls child callbacks before parent callbacks).

The XtDestroyWidget function then makes secondvieesal of the widget and all normal and
pop-up descendants to perform the following three items on each widget in postorder:

. If the widget is not a pop-up child and the widggtrent is a subclass obnstraint-
WidgetClass it calls theConstraintClassPart destry procedure for the parent, then for

58

the parens auperclass, until finally it calls th€onstraintClassPart destrg procedure for
constraintWidgetClass.

. Calls theCoreClassPartdestry procedure declared in the widget class, then the destroy
procedure declared in its superclass, until finally it calls the ggstncedure declared in
the Object class record. Callback lists are deallocated.

. If the widget class object class part contain®©ajectClassExtensionrecord with the
record_typeNULLQ UARK and thedeallocatefield is not NULL, calls the deallocate pro-
cedure to deallocate the instance and if one exists, the constraint record. Otherwise, the
Intrinsics will deallocate the widget instance record and if one exists, the constraint record.

. Calls XDestroyWindow if the specified widget is realized (that is, has an X wivyddrhe
server recursely destroys all normal descendant wimgo (Wndows of realized pop-up
Shell children, and their descendants, are destroyed by a shell clasg prestedure.)

2.8.1. Addingand Removing Destroy Callbacks

When an application needs to perform additional processing during the destruction of a widget, it
should register a desyr@allback procedure for the widget. The degtrallback procedures use

the mechanism described in Chapter 8. The des#itback list is identified by the resource

name XtNdestroyCallback.

For example, the following adds an application-supplied dgstatiback procedur€lientDe-
stroywith client data to a widget by callingtAddCallback .

XtAddCallbackv, XtNdestroyCallbackClientDestroy client_datg

Similarly, the following remawes the application-supplied desyroallback procedur€lientDe-
stroyby calling XtRemoveCallback.

XtRemoveCallback{v, XtNdestroyCallbackClientDestroy client_datg

TheClientDestroyargument is of typeXtCallbackProc ; see Section 8.1.

2.8.2. DynamicData Deallocation: The destroy Procedure

The destryg procedure pointers in th®bjectClassPart, RectObjClassPart, and CoreClass-
Part structures are of typ¥tWidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Specifies the widget being destroyed.

The destrg procedures are called in subclass-to-superclass. oftterefore, a widget’' destroy
procedure should deallocate only storage that is specific to the subclass and should ignore the
storage allocated by wmwf its superclasses. The destprocedure should deallocate only

resources that ka been explicitly created by the subclass.yAesource that was obtained from

the resource database or passed in an argument list was not created by the widget and therefore
should not be destroyed by it. If a widget does not need to deallogaseye, the destroy
procedure entry in its class record can be NULL.

59

Deallocating storage includes, but is not limited to, the following steps:

. Calling XtFree on dynamic storage allocated wittMalloc , XtCalloc, and so on.
. Calling XFreePixmap on pixmaps created with direct X calls.

. Calling XtReleaseGCon GCs allocated witktGetGC.

. Calling XFreeGC on GCs allocated with direct X calls.

. Calling XtRemoveEventHandler on event handlers added to other widgets.

. Calling XtRemoveTimeOut on timers created witKtAppAddTimeOut .

. Calling XtDestroyWidget for each child if the widget has children and is not a subclass of
compositeWidgetClass

During destrg phase 2 for each widget, the Intrinsics remnthe widget from the modal cascade,
unregister all eent handlers, reme dl key, keyboard, button, and pointer grabs and reendl
callback procedures registered on the widgety dutstanding selection transfers will time out.

2.8.3. DynamicConstraint Data Deallocation: The ConstraintClassPart destroy Procedure

The constraint destyqorocedure identified in th€onstraintClassPart structure is called for a
widget whose parent is a subclassonstraintWidgetClass. This constraint destyoprocedure
pointer is of typeXtWidgetProc. The constraint destygrocedures are called in subclass-to-
superclass ordestarting at the class of the widgeparent and ending aonstraint-

WidgetClass Therefore, a parerst'ionstraint destypprocedure should deallocate only storage
that is specific to the constraint subclass and not storage allocategdfyitarsuperclasses.

If a parent does not need to deallocate @mstraint storage, the constraint degpmocedure
entry in its class record can be NULL.

2.8.4. Wdget Instance Deallocation: The deallocate Procedure

The deallocate procedure pointer in thbjectClassExtensionrecord is of typeXtDeallo-
cateProc.

typedef void (*XtDeallocateProc)(Widget, XtPointer);
Widgetwidget
XtPointermore_bytes

widget Specifies the widget being destroyed.

more_bytes Specifies the auxiliary memory reeed from the corresponding allocator along
with the widget, or NULL.

When a widget is destroyed, if @bjectClassExtensionrecord exists in the object class part
exensionfield with record_typeNULLQ UARK and thedeallocatefield is not NULL, the
XtDeallocateProcwill be called. If no ObjectClassPart extension record is declared with
record_typeequal toNULLQ UARK , then XtInheritAllocate andXtinheritDeallocate are

assumed. Theesponsibilities of the deallocate procedure are to deallocate the memory specified
by more_bytedf it is not NULL, to deallocate the constraints record as specified by the widget’s
core constraintsfield if it is not NULL, and to deallocate the widget instance itself.

If no XtDeallocateProcis found, it is assumed that the Intrinsics originally allocated the memory
and is responsible for freeing it.

60

2.9. Exiting from an Application

All X Toolkit applications should terminate by callingDestroyApplicationContext and then

exiting using the standard method for their operating system (typibalisalling exit for

POSIX-based systems). The quickest way toertiag windows disappear while exiting is to call
XtUnmapWidget on each top-kel shell widget. The Intrinsics va& ro resources beyond those

in the program image, and the X server will free its resources when its connection to the applica-
tion is broken.

Depending upon the widget set in use, it may be necessary to explicitlydedtwdual wid-

gets or widget trees witKtDestroyWidget before callingXtDestroyApplicationContext in

order to ensure that gnequired widget cleanup is propertyeeuted. Theapplication deeloper

must refer to the widget documentation to learn if a widget needs to perform cleanup beyond that
performed automatically by the operating system. If the client is a session participant (see Sec-
tion 4.2), then the client may wish to resign from the session befbirge SeeSection 4.2.4 for
details.

61

Chapter 3

Composite Widgets and Their Children

Composite widgets (widgets whose class is a subclassngpositeWidgetClas3 can hae an
arbitrary number of children. Consequenthgy are responsible for much more than printi
widgets. Theiresponsibilities (either implemented directly by the widget class or indirectly by
Intrinsics functions) include:

. Overall management of children from creation to destruction.
. Destruction of descendants when the composite widget is destroyed.

. Physical arrangement (geometry management) of a displayable subset of children (that is,
the managed children).

. Mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic procedii@GreateWidget and XtDestroyWid-
get. XtCreateWidget adds children to their parent by calling the paseinsert_child proce-
dure. XtDestroyWidget removes dhildren from their parent by calling the parsrdélete_child
procedure and ensures that all children of a destroyed composite widget also get destroyed.

Only a subset of the total number of children is actually managed by the geometry manager and
hence possibly visibleFor example, a composite editor widget supporting multiple editing

buffers might allocate one child widget for each file byffat it might display only a small num-

ber of the existing bidrs. Wdgets that are in this displayable subset are called managed widgets
and enter into geometry manager calculations. The other children are called unmanaged widgets
and, by definition, are not mapped by the Intrinsics.

Children are added to and remed from their parens managed set by usingtManageChild,
XtManageChildren, XtUnmanageChild, XtUnmanageChildren, and XtChangeManaged-

Set, which notify the parent to recalculate the physical layout of its children by calling the par-
ent’s change_managed procedure. TXt€reateManagedWidget corvenience function calls
XtCreateWidget and XtManageChild on the result.

Most managed children are mapped, but some widgets can be in a state whiaie tine ghysi-
cal space but do not sh@nything. Manageavidgets are not mapped automatically if their
map_when_mared field is False. The default isTr ue and is changed by usir¥tSetMapped-
WhenManaged

Each composite widget class declares a geometry mamdgeh is responsible for figuring out
where the managed children should appear within the composite widgetow. Geometry
management techniques fall into four classes:

Fixed boxs Fixed boxes ha a fked humber of children created by the parent. All
these children are managed, and nome makes geometry manager
requests.

Homogeneous be&s Homogeneousoxes treat all children equally and apply the same
geometry constraints to each child. Matients insert and delete wid-
gets freely.

Heterogeneous bes Heterogeneoumxes hae a pecific location where each child is
placed. Thidocation usually is not specified in pixels, because the

62

window may be resized, but is expressed rather in terms of the relation-
ship between a child and the parent or between the child and other spe-
cific children. The class of heterogeneous boxes is usually a subclass
of Constraint.

Shell boxes Shelboxes typically hae aly one child, and the chilgl’'sze is usually
exactly the size of the shell. The geometry manager must communicate
with the windav managerif it exists, and the box must also accept
ConfigureNotify events when the winde size is changed by the win-
dow manager.

3.1. Addition of Children to a Composite Widget: The insert_child Procedure

To add a child to the parestlist of children, theXtCreateWidget function calls the parent’s
class routine insert_child. The insert_child procedure pointer in a composite widget is of type
XtwWidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widgetw;,

w Passes the newly created child.

Most composite widgets inherit their superclagsperation. Thénsert_child routine irCom-
positeWidgetClasalls and inserts the child at the specified position irchidren list, expand-
ing it if necessary.

Some composite widgets define their own insert_child routine so tlyataherder their children
in some cowenient way create companion controller widgets for ameidget, or limit the num-
ber or class of their child widget# composite widget class that wishes towallwnwidget chil-
dren (see Chapter 12) must specifg@mpositeClassExtensiorextension record as described in
Section 1.4.2.1 and set thecepts_objectield in this record tdr ue. If the CompositeClas-
sExtensionrecord is not specified or tlaecepts_objecteld is False, the composite widget can
assume that all its children are of a subclass of Core without an explicit subclass test in the
insert_child procedure.

If there is not enough room to insert awehild in thechildren array (that isnum_childreris

equal tonum_slot} the insert_child procedure must first reallocate the array and update
num_slots The insert_child procedure then places the child at the appropriate position in the
array and increments tmeim_childrerfield.

3.2. Insertion Order of Children: The insert_position Procedure

Instances of composite widgets sometimes need to specify more about the order in which their
children are kpt. For example, an application may want a set of command buttons in some logi-
cal order grouped by function, and it may want buttons that represent file names to be kept in
alphabetical order without constraining the order in which the buttons are created.

An application controls the presentation order of a set of children by supplying an XtNinsertPosi-
tion resource. The insert_position procedure pointer in a composite widget instance is of type
XtOrderProc .

63

typedef Cardinal (*XtOrderProc)(Widget);
Widgetw;

w Passes the newly created widget.

Composite widgets that alloclients to order their children (usually homogeneous boxes) can call
their widget instance’insert_position procedure from the clasesert_child procedure to deter-
mine where a ne child should go in ithildren array Thus, a client using a composite class can
apply different sorting criteria to widget instances of the class, passing in a different insert_posi-
tion procedure resource when it creates each composite widget instance.

The return value of the insert_position procedure indicatestery children should go before
the widget. Returning zero indicates that the widget should go before all other children, and
returningnum_childrerindicates that it should go after all other children. The default
insert_position function returmsim_childrerand can bewerridden by a specific composite wid-
get’s resource list or by the argument list provided when the composite widget is created.

3.3. Deletionof Children: The delete child Procedure

To remove the child from the parenttshildren list, the XtDestroyWidget function ezentually
causes a call to the Composite paedtiss delete_child procedure. The delete_child procedure
pointer is of typeXtWidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Passes the child being deleted.

Most widgets inherit the delete_child procedure from their superclass. Composite widgets that
create companion widgets define their own delete_child procedure teedrmase companion
widgets.

3.4. Addingand Removing Children from the Managed Set

The Intrinsics provide a set of generic routines to permit the addition of widgets to or thhelremo
of widgets from a composite widgetranaged set. These generic routinemtually call the
composite widge$ change_managed procedure if the procedure pointer is non-NULL. The
change_managed procedure pointer is of ifWidgetProc. The widget argument specifies the
composite widget whose managed child set has been modified.

3.4.1. ManagingChildren

To add a list of widgets to the geometry-managed (and hence displayable) subset of their Com-
posite parent, us&tManageChildren.

64

typedef Widget *WidgetList;

void XtManageChildrerghildren, num_childrei
WidgetListchildren;
Cardinalnum_children

children Specifies a list of child widgets. Each child must be of class RectOby aulbn
class thereof.
num_children Specifies the number of children in the list.

The XtManageChildren function performs the following:
. Issues an error if the children do not alddhe same parent or if the parasmass is not a
subclass otompositeWidgetClass

. Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list XtManageChildren ignores the child if it already is managed or is being
destroyed, and marks it if not.

. If the parent is realized and after all childremeéhbeen marked, it makes some of the newly
managed children wesble:
- Calls the change_managed routine of the widgets’ parent.
- Calls XtRealizeWidget on each previously unmanaged child that is unrealized.
- Maps each previously unmanaged child thathas_when_marged Tr ue.

Managing children is independent of the ordering of children and independent of creating and
deleting children. The layout routine of the parent should consider children wiaosged field

is True and should ignore all other children. Note that some composite widgets, especially fixed
boxes, callXtManageChild from their insert_child procedure.

If the parent widget is realized, its change_managed procedure is called to notify it that its set of
managed children has changed. The parent can reposition and rgotéschildren. It moes

each child as needed by calliXgMo veWidget, which first updates theandy fields and which

then callsXMoveWindow.

If the composite widget wishes to change the size or border widtly of &s children, it calls
XtResizeWidget, which first updates thwidth, height and border_widthfields and then calls
XConfigureWindow. Simultaneous repositioning and resizing may be done Mi@onfig-
ureWidget; see Section 6.6.

To add a single child to its parent widgetet of managed children, ud¢ManageChild.

void XtManageChild¢hild)
Widgetchild;

child Specifies the child. Must be of class RectObj graubclass thereof.

The XtManageChild function constructs &VidgetList of length 1 and callXtManageChil-
dren.

To aeate and manage a child widget in a single proceduret@eateManagedWidget or
XtVaCreateManagedWidget.

65

Widget XtCreateManagedWidget{ime widget_classparent args hum_arg$
Stringname
WidgetClasavidget_class
Widgetparent
ArglList args
Cardinalnum_args
name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Musth@bjClass
or ary subclass thereof.

parent Specifies the parent widget. Must be of class Compositeymulclass thereof.
args Specifies the argument list teapride ary other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtCreateManagedWidget function is a comenience routine that callstCreateWidget
and XtManageChild.

Widget XtVaCreateManagedWidges{me widget_classparent ...)
Stringhame
WidgetClassvidget_class
Widgetparent
name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Musth@bjClass
or ary subclass thereof.

parent Specifies the parent widget. Must be of class Compositeyasudiclass thereof.
Specifieshe variable argument list toverride ary other resource specifications.

XtVaCreateManagedWidgetis identical in function toXtCreateManagedWidget with the
argsandnum_arggparameters replaced by a varargs list, as described in Section 2.5.1.

3.4.2. UnmanagingChildren
To remove a Ist of children from a parent widgstmanaged list, us&tUnmanageChildren.

void XtUnmanageChildrewpildren, num_childrei
WidgetListchildren;
Cardinalnum_children

children Specifies a list of child widgets. Each child must be of class RectObyaulbn
class thereof.
num_children Specifies the number of children.

The XtUnmanageChildren function performs the following:

66

. Returns immediately if the common parent is being destroyed.

. Issues an error if the children do not alddhe same parent or if the parent is not a sub-
class ofcompositeWidgetClass

. For each unique child on the listtUnmanageChildren ignores the child if it is unman-
aged; otherwise it performs the following:

- Marks the child as unmanaged.
- If the child is realized and tmeap_when_marggd field is Tr ue, it is unmapped.

. If the parent is realized and ifyachildren hae become unmanaged, calls the change_man-
aged routine of the widgets’ parent.

XtUnmanageChildren does not destgothe child widgets. Removing widgets from a parent’s
managed set is often a temporary banishment, and some time later the client may manage the
children agin. To destrgy widgets entirelyXtDestroyWidget should be called instead; see Sec-
tion 2.9.

To remove a ingle child from its parent widgethmanaged set, usstUnmanageChild.

void XtUnmanageChildghild)
Widgetchild;

child Specifies the child. Must be of class RectObj graubclass thereof.

The XtUnmanageChild function constructs a widget list of length 1 and cxigdnman-
ageChildren.

These functions are lowse routines that are used by generic composite widget building rou-
tines. Inaddition, composite widgets can provide widget-specific, higé-t®rnvenience proce-
dures.

3.4.3. BundlingChanges to the Managed Set

A client may simultaneously unmanage and manage children with a single call to the Intrinsics.

In this same call the client may provide a callback procedure that can modify the geometries of
one or more children. The composite widget class defines whether this single client call results in
separate wocations of the change_managed method, one to unmanage and the other to manage,
or in just a single wocation.

To smultaneously remee from and add to the geometry-managed set of children of a composite
parent, useXtChangeManagedSet

67

void XtChangeManagedSetfmanae children num_unmange_children

do_change_praclient_data
manae_children num_mange children
WidgetListunmanage_children
Cardinalnum_unmange_children
XtDoChangeProdo_change_prac
XtPointerclient_data
WidgetListmanaye children
Cardinalnum_mange children

unmanae_children Specifies the list of widget children to initially remeofrom the

managed set.

num_unmange_children Specifies the number of entries in themange_childrenlist.

do_change_proc Specifies a procedure tovoke ketween unmanaging and managing
the children, or NULL.

client_data Specifies client data to be passed to the do_change_proc.

manaye_children Specifies the list of widget children to finally add to the managed
set.

num_mange_children Specifies the number of entries in thanae_childrenlist.

The XtChangeManagedSetfunction performs the following:

Returns immediately itum_unmange_childrenandnum_mange_childrenare both O.

Issues a warning and returns if the widgets specified iméamage _childrenand the
unmanae_childrenlists do not all hae the same parent or if that parent is not a subclass of
compositeWidgetClass

Returns immediately if the common parent is being destroyed.

If do_change_prois not NULL and the parent€ompositeClassExtension
allows_change_magad_seffield is False, then XtChangeManagedSetperforms the fol-
lowing:

- Calls XtUnmanageChildren (unmange_children num_unmange_children).

- Calls thedo_change_prac

- Calls XtManageChildren (manae_children num_mange_children).

Otherwise, the following is performed:

For each child on thenmange_childrenlist; if the child is already unmanaged it is
ignored, otherwise it is marked as unmanaged, and if it is realized and its
map_when_margd field is Tr ue, it is unmapped.

- If do_change_prots non-NULL, the procedure isvoked.

- For each child on thmanaye_childrenlist; if the child is already managed or is
being destroyed, it is ignored; otherwise it is marked as managed.

- If the parent is realized and after all childremehbeen marked, the change_managed
method of the parent isvaked, and subsequently some of the newly managed chil-
dren are made wieable by callingXtRealizeWidget on each previously unmanaged
child that is unrealized and mapping each previously unmanaged child that has
map_when_marged Tr ue.

68

If no CompositeClassExtensionecord is found in the pareattomposite class paeitension
field with record typeNULLQ UARK and version greater than 1, an&iftnheritChangeMan-
agedwas ecified in the parerst’dass record during class initialization, the value of the
allows_change_mamad_seffield is inherited from the superclass. The value inherited from
compositeWidgetClasdor theallows_change_margad_seffield is False.

It is not an error to include a child in both temanae_childrenand themanage_childrenlists.
The effect of such a call is that the child remains managed following the call, but the
do_change_prots able to affect the child while it is in an unmanaged state.

Thedo_change_prots of type XtDoChangeProc.

typedef void (*XtDoChangeProc)(Widget, WidgetList, Cardinal*, WidgetList, Cardinal*, XtPointer);
Widgetcomposite_parent
WidgetListunmange_children
Cardinal "num_unmange _children
WidgetListmanaye children
Cardinal num_mange_children
XtPointerclient_data

composite_parent Passes the composite parent whose managed set is being altered.
unmange_children Passes the list of children just rewsol from the managed set.
num_unmange children Passes the number of entries in tirenanae_childrenlist.
manae_children Passes the list of children about to be added to the managed set.
num_mange_children Passes the number of entries in thanaye_childrenlist.

client_data Passes the client data passedXt€hangeManagedSet

Thedo_change_proprocedure is used by the callerXtChangeManagedSeto male changes

to one or more children at the point when the managed set contains the fewest entries. These
changes may imlve geometry requests, and in this case the calletGhangeManagedSet

may tale advantage of the fact that the Intrinsics internally grant geometry requests made by
unmanaged children withoutvioking the parens geometry managerTo achieve this advantage,

if the do_change_proprocedure changes the geometry of a child or of a descendant of a child,
then that child should be included in temange_childrenandmanaye_childrenlists.

3.4.4. Determiningif a Widget Is Managed
To determine the managed state of\aegichild widget, useXtisManaged.

Boolean XtlsManage#(
Widgetw;

w Specifies the widget. Must be of class Object grsabclass thereof.

The XtlsManaged function returnsTr ue if the specified widget is of class RectObj oy anb-
class thereof and is managed Fafse otherwise.

69

3.5. Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. Hoarethis behavior can beverridden by set-
ting the XtNmappedWhenManaged resource for the widget when it is created or by setting the
map_when_marged field to False.

To change the value of avgin widget'smap_when_marged field, usexXtSetMappedWhen-
Managed.

void XtSetMappedWhenManaged(map_when_maruged)
Widgetw;
Booleanmap_when_margd;

w Specifies the widget. Must be of class Core grsabclass thereof.

map_when_margzd
Specifies a Boolean value that indicates thve vedue that is stored into the wid-
get'smap_when_margd field.

If the widget is realized and managed, amddip_when_marged is Tr ue, XtSetMapped-
WhenManaged maps the winde. If the widget is realized and managed, and if
map_when_mared is False, it unmaps the winde. XtSetMappedWhenManagedis a con-
venience function that is equaent to (but slightly faster than) callingtSetValuesand setting

the nev value for the XtNmappedWhenManaged resource then mapping the widget as appropri-
ate. Asan alternatie o using XtSetMappedWhenManagedto control mapping, a client may
setmapped_when_maged to False and useXtMapWidget and XtUnmapWidget explicitly.

To map a widget explicitlyuse XtMapWidget .

XtMapWidget{w)
Widgetw;

w Specifies the widget. Must be of class Core grsabclass thereof.

To unmap a widget explicitiyuse XtUnmapWidget.

XtUnmapWidget{)
Widgetw;

w Specifies the widget. Must be of class Core grsabclass thereof.

3.6. ConstrainedComposite Widgets

The Constraint widget class is a subclassahpositeWidgetClass The name is dered from

the fact that constraint widgets may manage the geometry of their children based on constraints
associated with each child. These constraints can be as simple as the maximum width and height
the parent will allav the child to occupor can be as complicated aswother children should

change if this child is mad or resized. Constraintidgets let a parent define constraints as

70

resources that are supplied for their childrEor example, if the Constraint parent defines the
maximum sizes for its children, thesewngze resources are retviel for each child as if they
were resources that were defined by the child widgietss. Accordinglyconstraint resources
may be included in the argument list or resource file justdily ather resource for the child.

Constraint widgets va dl the responsibilities of normal composite widgets and, in addition,
must process and act upon the constraint information associated with each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints associated with a
child, every widget has &onstraintdfield, which is the address of a parent-specific structure that
contains constraint information about the child. If a chifgirent does not belong to a subclass
of constraintWidgetClass, then the child'sonstraintsfield is NULL.

Subclasses of Constraint can add constraint data to the constraint record defined by their super-
class. © dlow this, widget writers should define the constraint records in theaterih file by

using the same cwentions as used for widget recordsor example, a widget class that needs to
maintain a maximum width and height for each child might define its constraint record as fol-
lows:

typedef struct {
Dimension max_width, max_height;
} M axConstraintPart;

typedef struct {
MaxConstraintPart max;
} M axConstraintRecord, *MaxConstraint;

A subclass of this widget class that also needs to maintain a minimum size would define its con-
straint record as follows:

typedef struct {
Dimension min_width, min_height;
} MinConstraintPart;

typedef struct {
MaxConstraintPart max;
MinConstraintPart min;

} M axMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar as possible by
the Intrinsics. The Constraint class record part haaaleentries that facilitate this. All entries

in ConstraintClassPart are fields and procedures that are defined and implemented by the par-
ent, but thg are called wheneer actions are performed on the parsrdiildren.

The XtCreateWidget function uses theonstraint_sizdield in the parens dass record to allo-

cate a constraint record when a child is creabéCreateWidget also uses the constraint

resources to fill in resource fields in the constraint record associated with a child. It then calls the
constraint initialize procedure so that the parent can compute constraint fields thawvate deri

from constraint resources and can possiblyerm resize the child to conform to thevgn con-

straints.

When theXtGetValues and XtSetValues functions are xecuted on a child, thyeuse the con-
straint resources to get the values or set the values of constraints associated with that child.
XtSetValuesthen calls the constraint set_values procedures so that the parent can recompute
derived constraint fields and nve a resize the child as appropriate. If a Constraint widget class

71

or ary of its superclasses V@ declared aConstraintClassExtensionrecord in theConstraint-
ClassPart exensionfields with a record type ofULLQ UARK and theget_values_hoofkield in

the extension record is non-NULKtGetValues calls the get _values _hook procedure(s) to allow
the parent to return dedd constraint fields.

The XtDestroyWidget function calls the constraint desgrprocedure to deallocate yadynamic
storage associated with a constraint record. The constraint record itself must not be deallocated
by the constraint destygrocedure XtDestroyWidget does this automatically.

72

Chapter 4

Shell Widgets

Shell widgets hold an applicati@ibp-level widgets to allaw them to communicate with the win-
dow manager and session manag@hnells hae keen designed to be as nearly invisible as possi-
ble. Clientshave o create them, but tlyeshould neer haveto worry about their sizes.

If a shell widget is resized from the outside (typically by a windwmnager), the shell widget

also resizes its managed child widget automatic&imilarly, if the shells child widget needs to
change size, it can malka ggometry request to the shell, and the shell negotiates the size change
with the outer evironment. Clientshould nger attempt to change the size of their shells

directly.

The five types of public shells are:

OverrideShell Used for shell windows that completely bypass the wind@anager
(for example, pop-up menu shells).

TransientShell Used for shell windows that & the WM_TRANSIENT_FOR prop-
erty set. The effect of this property is dependent upon the window
manager being used.

TopLevelShell Used for normal top-iesl windows (for example, gnedditional top-
level widgets an application needs).

ApplicationShell Formerly used for the single main topAgwindow that the window
manager identifies as an application instance and made obsolete by
SessionShell.

SessionShell Used for the single main topvig window that the winde manager

identifies as an application instance and that interacts with the ses-
sion manager.

4.1. Shellwidget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget that directly
contains themWidgets at the top of the hierayctio not have parent widgets. Instead, thenust

deal with the outside avld. To provide for this, each topel widget is encapsulated in a special
widget, called a shell widget.

Shell widgets, whose class is a subclass of the Composite class, encapsulate other widgets and
can allav a widget to &oid the geometry clipping imposed by the parent-child windelation-
ship. The also can provide a layer of communication with the wimdoanager.

The eight different types of shells are:

Shell The base class for shell widgets; provides the fields needed for all types
of shells. Shell is a direct subclassooimpositeWidgetClass

73

OverrideShell A subclass of Shell; used for shell windows that completely bypass the
window manager.

WMShell A subclass of Shell; contains fields needed by the common wingm-
ager protocol.

VendorShell A subclass of WMShell; contains fields used by vendor-specific window
managers.

TransientShell A subclass of VendorShell; used for shell windows that desire the
WM_TRANSIENT_FOR property.

TopLevelShell A subclass of VendorShell; used for normal topel@vindows.

ApplicationShell A subclass of TopLeelShell; may be used for an applicatism@dditional
root windows.

SessionShell A subclass of ApplicationShell; used for an applicasamin root win-
dow.

Note that the classes Shell, WMShell, and VendorShell are internal and should not be instantiated
or subclassed. Only OverrrideShell, TransientShell, TegBhell, ApplicationShell, and Ses-
sionShell are intended for public use.

4.1.1. ShellClass&rt Definitions

Only the Shell class has additional class fields, which are all containedShe¢hH€lassExten-
sionRec None of the other Shell classev@any aditional class fields:

typedef struct {
XtPointer extension;
} ShellClassPart, OverrideShellClassPart,
WMShellClassPart, VendorShellClassPart, TransientShellClassPart,
TopLevelShellClassPart, ApplicationShellClassPart, SessionShellClassPart;

The full Shell class record definitions are:

74

typedef struct _ShellClassRec {

CoreClassirt
CompositeClassitt
ShellClassBrt

} ShellClassRec;

typedef struct {
XtPointer
XrmQuark
long
Cardinal
XtGeometryHandler

core_class;
composite_class;
shell_class;

net_extension;
record_type;
\ersion;
record_size;

root_geometry_manager;

} ShellClassExtensionRec, *ShellClassExtension;

typedef struct _OverrideShellClassRec {

CoreClassért
CompositeClassitt
ShellClassBrt

OverrideShellClassitt

} OverrideShellClassRec;

typedef struct _ WMShellClassRec {

CoreClassrt

CompositeClassitt

ShellClassBrt

WMShellClassart
} WMShellClassRec;

core_class;
composite_class;
shell_class;
override_shell_class;

core_class;
composite_class;
shell_class;
wm_shell_class;

typedef struct _VendorShellClassRec {

CoreClassart

CompositeClassitt

ShellClassBrt

WMShellClassart

VendorShellClassétt
} VendorShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;

typedef struct _TransientShellClassRec {

CoreClassért
CompositeClassitt
ShellClassBrt
WMShellClassAart
VendorShellClassftt

TransientShellClassiet

} TransientShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
transient_shell_class;

75

Se&ection 1.6.12

See Section 1.6.12
Seé&ection 1.6.12
See Section 1.6.12
See below

typedef struct _ToplhwlShellClassRec {

CoreClassért

CompositeClassitt

ShellClassBrt

WMShellClasshArt

VendorShellClassitt

TopLevelShellClassBrt
} TopLevelShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
top_leel_shell_class;

typedef struct _ApplicationShellClassRec {

CoreClassért

CompositeClassitt

ShellClassBrt

WMShellClassBrt

VendorShellClass#tt

TopLevelShellClassBrt

ApplicationShellClassit
} A pplicationShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
top_leel_shell_class;
application_shell_class;

typedef struct _SessionShellClassRec {

CoreClassért

CompositeClassdtt

ShellClassBrt

WMShellClassAart
VendorShellClassidt
TopLevelShellClassBrt
ApplicationShellClassétt
SessionShellClassi

} SessionShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell _class;
top_leel_shell_class;
application_shell_class;
session_shell_class;

76

The single occurrences of the class records and pointers for creating instances of shells are:

extern ShellClassRec shellClassRec;

extern OverrideShellClassRewarideShellClassRec;

extern WMShellClassRec wmShellClassRec;

extern VendorShellClassRec vendorShellClassRec;

extern TransientShellClassRec transientShellClassRec;
extern TopLe&elShellClassRec toplvelShellClassRec;

extern ApplicationShellClassRec applicationShellClassRec;
extern SessionShellClassRec sessionShellClassRec;

extern WidgetClass shellWidgetClass;

extern WidgetClasswerrideShellWidgetClass;
extern WidgetClass wmShellWidgetClass;

extern WidgetClass vendorShellwidgetClass;
extern WidgetClass transientShellWidgetClass;
extern WidgetClass tophelShellWidgetClass;
extern WidgetClass applicationShellWidgetClass;
extern WidgetClass sessionShellWidgetClass;

The following opaque types and opaque variables are defined for generic operations on widgets
whose class is a subclass of Shell.

Types \ariables

ShellWidget shellwWidgetClass
OverrideShellWidget overideShellWidgetClass
WMShellWidget wmsShellWidgetClass
VendorShellWidget vendorShellWidgetClass
TransientShellWidget transientShellwidgetClass
TopLevelShellWidget topLevelShellWidgetClass
ApplicationShellWidget applicationShellWidgetClass
SessionShellWidget sessionShellWidgetClass

ShellWidgetClass
OverrideShellwidgetClass
WMShellWidgetClass
VendorShellwWidgetClass
TransientShellWidgetClass
TopLevelShellWidgetClass
ApplicationShellWidgetClass
SessionShellwidgetClass

The declarations for all Intrinsics-defined shells except VendorShell app8helith and
ShellP.h. VendorShell has separate public andgpe .h files which are included [$hell.h and
ShellP.h.

Shell.h uses incomplete structure definitions to ensure that the compiler catches attempts to
access pviate data in ayof the Shell instance or class data structures.

77

The symbolic constant for tHghellClassExtensiorversion identifier isXtShellExtensionVer-
sion (see Section 1.6.12).

The root_geometry_manager procedure acts as the parent geometry manager for geometry
requests made by shell widgets. When a shell widget calls &ithMakeGeometryRequestor
XtMakeResizeRequestthe root_geometry _manager procedurevskad to negotiate the new
geometry with the winde manager If the windav manager permits the wegeometry the
root_geometry_manager procedure should rei@eometryYes; if the windav manager

denies the geometry request or does not change thewvgedonetry within some timeout inter-
val (equal towvm_timeoutn the case of WMShells), the root_geometry _manager procedure
should returrXtGeometryNo. If the windav manager makes some altermatgeometry change,
the root_geometry_manager procedure may return effi@eometryNo and handle the new
geometry as a resize gtGeometryAlmost in anticipation that the shell will accept the compro-
mise. Ifthe compromise is not accepted, thevsze must then be handled as a resize. Sub-
classes of Shell that wish to provide their own root_geometry_manager procedures are strongly
encouraged to use\ehoping to irvoke their superclass’root_geometry _manager procedure
under most situations, as the wimdmanager interaction may be very complex.

If no ShellClassPartextension record is declared witbcord_typeequal toNULLQ UARK , then
XtInheritRootGeometryManager is assumed.

4.1.2. ShellRrt Definition

The various shell widgets bathe following additional instance fields defined in their widget
records:

78

typedef struct {

String geometry;
XtCreatePopupChildProc create_popup_child_proc;
XtGrabKind grab_kind;
Boolean spring_loaded,;
Boolean popped_up;
Boolean allev_shell_resize;
Boolean client_specified;
Boolean see_under;
Boolean werride_redirect;
XtCallbackList popup_callback;
XtCallbackList popdwn_callback;
Visual * visual;

} ShellPart;

typedef struct {
int empty;

} OverrideShellPart;

typedef struct {
String title;
int wm_timeout;
Boolean vait_for_wm;
Boolean transient;
Boolean ugency;
Widget client_leader;
String windav_role;
struct _OIldXSizeHints {
long flags;
int X, Y,
int width, height;
int min_width,min_height;
int max_width,max_height;
int width_inc,height_inc;
struct {
int X;
int Y;
} min_aspect, max_aspect;
} size_hints;
XWMHints wm_hints;
int base_widthbase_height, win_gravity;
Atom title_encoding;
} WMShellPart;
typedef struct {
int vendor_specific;
} VendorShellPart;
typedef struct {
Widget transient_for;

79

-

} TransientShellPart;

typedef struct {
String
Boolean
Atom

} TopLevelShellPart;

typedef struct {
char *
XrmClass
int
char **
} A pplicationShellPart;

typedef struct {
SmcConn
String
String *
String *
String *
String *
String *
String *
String
String
unsigned char
Boolean
XtCallbackList
XtCallbackList
XtCallbackList
XtCallbackList
XtCallbackList
XtCallbackList

} SessionShellPart;

icon_name;
iconic;
icon_name_encoding;

class;
xrm_class;

amc;

argv;

connection;
session_id;
restart_command;
clone_command;
discard_command;
resign_command,;
shutdown_command;
environment;
current_dir;
program_path;

restart_style;
join_session;
sae_callbacks;
interact_callbacks;
cancel_callbacks;
sae_complete_callbacks;
die_callbacks;
error_callbacks;

80

The full shell widget instance record definitions are:

typedef struct {
CoreFRart core,;
Compositefrt composite;
ShellRart shell;

} ShellRec, *ShellWidget;

typedef struct {
CoreFRart core;
Compositefrt composite;
ShellRart shell;
OverrideShellart override;

} OverrideShellRec, *OverrideShellWidget;

typedef struct {
CoreFRart core;
Compositefrt composite;
ShellRart shell;
WMShellPart wm;

} WMShellRec, *WMShellWidget;

typedef struct {

CoreFRart core;
Compositefrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRrt vendor;

} VendorShellRec, *VendorShellWidget;

typedef struct {
CoreRart core;
CompositefBrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRrt vendor;
TransientShell&rt transient;

} TransientShellRec, *TransientShellwidget;

typedef struct {
CoreRart core;
Compositefrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRrt vendor;
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLeelShellwidget;

81

typedef struc{

CoreRart core;
Compositefrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRrt vendor;
TopLevelShellRart topLevel;
ApplicationShellRrt application;

} A pplicationShellRec, *ApplicationShellWidget;

typedef struc{

CoreFRart core;
Compositefrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRrt vendor;
TopLevelShellRart topLevel;
ApplicationShellRrt application;
SessionShell@t session;

} SessionShellRec, *SessionShellWidget;

4.1.3. ShelResources

The resource names, classes, and representation types specifieshiglltblassReaesource list
are:

Name Class Representation
XtNallowShellResize XtCAllavShellResize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProcXtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOegrrideRedirect XtRBoolean
XtNpopdavnCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSaeUnder XtRBoolean
XtNvisual XtCMisual XtRVisual

OverrideShell declares no additional resources beyond those defined by Shell.

The resource names, classes, and representation types specifiagrnmhellClassRec
resource list are:

Name Class Representation
XtNbaseHeight XtCBaseHeight XtRInt
XtNbaseWdth XtCBaseVitith XtRInt
XtNclientLeader XtCClientLeader XtRWidget

82

XtNheightinc
XtNiconMask
XtNiconPixmap
XtNiconWindow
XtNiconX
XtNiconY
XtNinitialState
XtNinput
XtNmaxAspectX
XtNmaxAspectY
XtNmaxHeight
XtNmaxWidth
XtNminAspectX
XtNminAspectY
XtNminHeight
XtNminWidth
XtNtitle
XtNtitleEncoding
XtNtransient
XtNwaitforwm, XtNwaitForWwm
XtNwidthiInc
XtNwindowRole
XtNwinGravity
XtNwindowGroup
XtNwmTimeout
XtNurgeny

XtCHeightlnc
XtClconMask
XtClconPixmap
XtClconWindav
XtClconX
XtClconY
XtClnitialState
XtClnput
XtCMaxAspectX
XtCMaxAspectY
XtCMaxHeight
XtCMaxWidth
XtCMinAspectX
XtCMinAspectY
XtCMinHeight
XtCMinWidth
XtCTitle
XtCTtleEncoding
XtCTansient
XtCWaitforwm, XtCWaitForwm
XtCWidthinc
XtCWindowRole
XtCWinGravity
XtCWndowGroup
XtCWmTmeout
XtCUrgeny

XtRInt
XtRBitmap
XtRBitmap
XtRWindow
XtRInt
XtRInt
XtRInitialState
XtRBool
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRString
XtRAtom
XtRBoolean
XtRBoolean
XtRInt
XtRString
XtRGravity
XtRNindow
XtRInt
XtRBoolean

The class resource list for VendorShell is implementation-defined.

The resource names, classes, and representation types that are specifitrerigiémg-

ShellClassReaesource list are:

Name

Class

Representation

XtNtransientfer

XtCTransientler

XtRWidget

The resource names, classes, and representation types that are specifiepirettatShell-

ClassRecresource list are:

Name Class Representation
XtNiconName XtClconName XtRString
XtNiconNameEncoding XtClconNameEncoding XtRAtom
XtNiconic XtClconic XtRBoolean

The resource names, classes, and representation types that are specifiegplict#on-

ShellClassReaesource list are:

83

Name Class Representation
XtNargc XtCArgc XtRInt
XtNargv XtCArgv XtRStringArray

The resource names, classes, and representation types that are specifisgssiagh&hellClass-

Recresource list are:

Name Class Representation
XtNcancelCallback XtCCallback XtRCallback
XtNcloneCommand XtCCloneCommand XtRCommandArgArray
XtNconnection XtCConnection XtRSmcConn
XtNcurrentDirectory XtCCurrentDirectory XtRDirectoryString
XtNdieCallback XtCCallback XtRCallback
XtNdiscardCommand XtCDiscardCommand XtRCommandArgArray
XtNernvironment XtCERironment XtRERironmentArray
XtNerrorCallback XtCCallback XtRCallback
XtNinteractCallback XtCCallback XtRCallback
XtNjoinSession XtCJoinSession XtRBoolean
XtNprogramPth XtCProgramé&th XtRString
XtNresignCommand XtCResignCommand XtRCommandArgArray
XtNrestartCommand XtCRestartCommand XtRCommandArgArray
XtNrestartStyle XtCRestartStyle XtRRestartStyle
XtNsaveCallback XtCCallback XtRCallback
XtNsaveCompleteCallback XtCCallback XtRCallback
XtNsessionID XtCSessionID XtRString
XtNshutdavnCommand XtCShutdenCommand XtRCommandgArray

4.1.4. Shell”rt Default Values

The default values for fields common to all classes of public shells (filled in by the Shell resource

lists and the Shell initialize procedures) are:

Field Defuwult Value

geometry NULL

create_popup_child_proc NULL

grab_kind (none)

spring_loaded (none)

popped_up False

allow_shell_resize False

client_specified (internal)

save_under True for OverrideShell and TransientShell,
False otherwise

overide_redirect True for OverrideShell False otherwise

popup_callback NULL

popdavn_callback NULL

84

visual CopyFromParent

Thegeometryfield specifies the size and position and is usuallgngonly on a command line or

in a defaults file. If thgeometryfield is non-NULL when a widget of class WMShell is realized,
the geometry specification is parsed usktWyMGeometry with a default geometry string con-
structed from the values gfy, width, height width_ing and height_incand the size and position
flags in the windey manager size hints are set. If the geometry specifies an x or y position, then
USPositionis set. If the geometry specifies a width or height, ld&%izeis set. Ary fields in

the geometry specificatiorveride the corresponding values in the Cang, width, and height

fields. Ifgeometryis NULL or contains only a partial specification, then the Goyewidth, and
heightfields are used andPosition and PSizeare set as appropriate. The geometry string is not
copied by an of the Intrinsics Shell classes; a client specifying the string in an arglist or varargs
list must ensure that the value remains valid until the shell widget is reakpetlurther infor-
mation on the geometry string, see Section 16X4im— C Languge X hterface

Thecreate_popup_child_progrocedure is called by thé&tPopup procedure and may remain
NULL. Thegrab_kind spring_loadedand popped_ugields maintain widget state information
as described undettPopup, XtMenuPopup, XtPopdown, and XtMenuPopdown. The
allow_shell_resizéield controls whether the widget contained by the shell is allowed to try to
resize itself. If allow_shell_resize isalse, any geometry requests made by the child wivals
return XtGeometryNo without interacting with the winde manager Settingsave_undeifr ue
instructs the server to attempt tovsdhe contents of windows obscured by the shell when it is
mapped and to restore those contents automatically when the shell is unmapped. It is useful for
pop-up menus. Settingverride_redirectTr ue determines whether the wingananager can
intercede when the shell winadlas mapped. Br further information onwerride_redirect, see
Section 3.2 irKlib — C Languge X hterfaceand Sections 4.1.10 and 4.2.2 in thier-Client
Communication Conventions Manudthe pop-up and pop-down callbacks are called during
XtPopup and XtPopdown. The default value of thesualresource is the symbolic value
CopyFromParent. The Intrinsics do not need to query the pasevisual type when the default
value is used; if a client usingtGetValues to examine the visual type reees the valueCopy-
FromParent, it must then us&XGetWindowAttributes if it needs the actual visual type.

The default values for Shell fields in WMShell and its subclasses are:

Field Defult Value

title Icon name, if specified, otherwise the applicasaagme
wm_timeout Rre conds, in units of milliseconds
wait_for_wm True

transient Tr ue for TransientShellFalse otherwise
urgency False

client_leader NULL

window_role NULL

min_width XtUnspecifiedShellint

min_height XtUnspecifiedShellint

max_width XtUnspecifiedShellint

max_height XtUnspecifiedShellint

width_inc XtUnspecifiedShellint

height_inc XtUnspecifiedShellint

85

min_aspect_x
min_aspect_y
max_aspect_x
max_aspect_y
input
initial_state
icon_pixmap
icon_windav
icon_x

icon_y
icon_mask
window_group
base_ width
base_height
win_gravity
title_encoding

XtUnspecifiedShellint
XtUnspecifiedShellint
XtUnspecifiedShellint
XtUnspecifiedShellint
False

Normal

None
None
XtUnspecifiedShelllnt
XtUnspecifiedShellint

None
XtUnspecifiedWindow
XtUnspecifiedShellint
XtUnspecifiedShellint
XtUnspecifiedShellint

Setext

Thetitle andtitle_encodindields are stored in th&/M_NAME property on the shef'window

by the WMShell realize procedure. If thee encodindield is None, thetitle string is assumed

to be in the encoding of the current locale and the encoding BfNheNAME property is set to
XStdICCTextStyle. If a language procedure has not been set the default vatitle afncoding

is XA_STRING, otherwise the default value done. Thewm_timeoufield specifies, in millisec-
onds, the amount of time a shell is to wait for confirmation of a geometry request to the window
manager If none comes back within that time, the shell assumes the wimdmager is not
functioning properly and setgait_for wmto False (later ezents may reset thisalue). When
wait_for_wmis False, the shell does not wait for a response, but relies on asynchronous notifica-
tion. If transientis True, the WM_TRANSIENT_FOR property will be stored on the shell win-

dow with a value as specified balo The interpretation of this property is specific to the window
manager under which the application is run; sedniee-Client Communication Conventions
Manualfor more details.

The realize and set_values procedures of WMShell stor/fmeCLIENT_LEADER property

on the shell winde. Whenclient_leadelis not NULL and the client leader widget is realized,
the property will be created with the value of the wimad the client leader widget. When
client_leadelis NULL and the shell widget has a NULL parent, the widgeithdow is used as

the value of the propertywhenclient_leadelis NULL and the shell widget has a non-NULL
parent, a search is made for the closest shell ancestor with a nondletil leader and if none

is found the shell ancestor with a NULL parent is the result. If the resulting widget is realized,
the property is created with the value of the widgethdow.

When the value ofvindow_roleis not NULL, the realize and set_values procedures store the
WM_WINDOW_ROLE property on the shefi’'window with the value of the resource.

All other resources specify fields in the wimdmanager hints and the wingdonanager size

hints. Therealize and set_values procedures of WMShell set the corresponding flag bits in the
hints if ary of the fields contain nondefaulales. Inaddition, if a flag bit is set that refers to a
field with the valueXtUnspecifiedShellint, the value of the field is modified as follows:

Field Replacement

86

base_ width, base_height 0

width_inc, height_inc 1

max_width, max_height 32767

min_width, min_height 1

min_aspect_x, min_aspect_y -1

max_aspect_x, max_aspect_y -1

icon_x, icon_y -1

win_gravity Value returned byxXWMGeometry if called,
elseNorthWestGravity

If the shell widget has a non-NULL parent, then the realize and set_values procedures replace the
value XtUnspecifiedWindow in thewindow_grougdield with the winda id of the root widget

of the widget tree if the root widget is realized. The symbolic con3iurispecifiedWindow-

Group may be used to indicate that thindow_grouphint flag bit is not to be set. tfansientis

Tr ue, the shells dass is not a subclass of TransientShell,\aimdlow_grougs not XtUnspeci-
fiedWindowGroup, the WMShell realize and set_values procedures then stovgNh&@RAN-
SIENT_FOR property with the value afindow_group

Transient shells ha the following additional resource:

Field Detwult Value

transient_for NULL

The realize and set_values procedures of TransientShell stoMMhERANSIENT_FOR prop-
erty on the shell winde if transientis True. If transient_foris non-NULL and the widget speci-
fied bytransient_foris realized, then its windois used as the value of th&M_TRAN-
SIENT_FOR property; otherwise, the value wfndow_groups used.

TopLevel shells hae the the following additional resources:

Field Defuult Value
icon_name Sheilidget's nrame
iconic False

icon_name_encoding Seext

Theicon_namendicon_name_encodiniields are stored in th&/M_ICON_NAME property on
the shells window by the TopLe&elShell realize procedure. If theon_name_encodinfigld is
None, theicon_namestring is assumed to be in the encoding of the current locale and the encod-
ing of theWM_ICON_NAME property is set tXStdICCTextStyle. If a language procedure has
not been set, the default valuei@dn_name_encodinig XA_STRING, otherwise the default

vaue isNone. Theiconicfield may be used by a client to request that the windanager

iconify or deiconify the shell; the TopleShell set_values procedure will send the appropriate
WM_CHANGE_STATE message (as specified by theer-Client Communication Conventions
Manual) if this resource is changed frdralse to Tr ue and will call XtPopup specifying
grab_kindas XtGrabNone if iconicis changed fronTr ue to False. The XtNiconic resource is
also an alternate way to set the XtNinitialState resource to indicate that a shell should be

87

initially displayed as an icon; the ToptetShell initialize procedure will senitial_stateto Icon-
icState if iconicis Tr ue.

Application shells hee the following additional resources:

Field Defult Value

argc 0
angv NULL

Theargcandargvfields are used to initialize the standard prop&rty COMMAND . See the
Inter-Client Communication Conventions Mant@l more information.

The default values for the SessionShell instance fields, which are filled in from the resource lists
and by the initialize procedure, are

Field Dehult Value
cancel_callbacks NULL
clone_command Sdext
connection NULL
current_dir NULL
die_callbacks NULL
discard_command NULL
ervironment NULL
error_callbacks NULL
interact_callbacks NULL
join_session True
program_path Sdext
resign_command NULL
restart_command Seext
restart_style SmRestartlfRunning
save _callbacks NULL
sare_complete_callbacks NULL
session_id NULL
shutdevn_command NULL

Theconnectiorfield contains the session connection object or NULL if a session connection is
not being managed by this widget.

Thesession_ids an identification assigned to the session participant by the session manager.
Thesession_idvill be passed to the session manager as the client identifier of the previous ses-
sion. Whera mnnection is established with the session man#ggeclient id assigned by the
session manager is stored in fassion_idield. Whennot NULL, thesession_iaf the Session

shell widget that is at the root of the widget tree of the client leader widget will be used to create
the SM_CLIENT_ID property on the client leadsrvindow.

If join_sessiors False, the widget will not attempt to establish a connection to the session man-
ager at shell creation time. See Sections 4.2.1 and 4.2.4 for more information on the functionality
of this resource.

Therestart_commangclone_commandliscard_commandesign_commandshutdown_com-
mand environmentcurrent_dir, program_path and restart_stylefields contain standard session

88

properties.

When a session connection is established or newly managed by the shell, the shell initialize and
set_values methods check the values ofdbart commangdclone_commandind pro-
gram_pathresources. Athat time, ifrestart_commands NULL, the value of thargvresource

will be copied taestart_commandWhether or notestart_commanavas NULL, if “-xtses-

sionID” *‘<session id>'does not already appear in ttestart_commandt will be added by the
initialize and set_values methods at the beginning of the command arguments; if the “-xtses-
sionID” argument already appears with an incorrect session id in the following argument, that
argument will be replaced with the current session id.

After this, the shell initialize and set_values procedures cheaktdhe _commandif
clone_commanis NULL, restart_commanavill be copied tcclone_commandxcept the
“ -xtsessionlD’and following argument will not be copied.

Finally, the shell initialize and set_values procedures checgrdgeam_path If program_path
is NULL, the first element akstart_commands copied tqprogram_path

The possible values ofstart_styleare SmRestartlifRunning, SmRestartAnyway, SmRestar-
timmediately, and SmRestartNever . A resource corerter is registered for this resource; for
the strings that it recognizes, see Section 9.6.1.

The resource type EnvironmentArray is a NULL-terminated array of pointers to strings; each
string has the format "nameadue”. The'=" character may not appear in the name, and the string
is terminated by a null character.

4.2. SessioParticipation

Applications can participate in a usegession, exchanging messages with the session manager as
described in th&X Session Mangement Protocobnd theX Session Mangement Library

When a widget obessionShellWidgetClassr a subclass is created, the widget provides support
for the application as a session participant and continues to provide support until the widget is
destroyed.

4.2.1. dining a Session

When a Session shell is created;dhnectioris NULL, and ifjoin_sessiors Tr ue, and if argv
or restart_commands not NULL, and if in POSIX environments tIS£SSION_MANAGER envi-
ronment variable is defined, the shell will attempt to establistvacoenection with the session
manager.

To transfer management of an existing session connection from an application to the shell at wid-
get creation time, pass the existing session connection ID asrthectiorresource value when
creating the Session shell, and if the other creation-time conditions on session participation are
met, the widget will maintain the connection with the session mana@gerapplication must

ensure that only one Session shell manages the connection.

In the Session shell set_values proceduijejnf sessiorthanges frontalse to Tr ue andcon-
nectionis NULL and when in POSIX environments tBESSION_MANAGER environment vari-
able is defined, the shell will attempt to open a connection to the session mahegenection
changes from NULL to non-NULL, the Session shell willedaler management of that session
connection and will sgbin_sessiorto True. If join_sessiorchanges fronfalse to Tr ue and
connectionis not NULL, the Session shell will talover management of the session connection.

89

When a successful connection has been establisbiedectiorcontains the session connection

ID for the session participant. When the shell begins to manage the connection, it WitApall
pAddinput to register the handler which watches for protocol messages from the session man-
ager When the attempt to connect fails, a warning message is issuedrarettions set to

NULL.

While the connection is being managed, 8aveYourself, SaveYourselfPhase? Interact,
ShutdownCancelled SaveComplete, or Die message is reagid from the session managtre
Session shell will call out to application callback procedures registered on the vesgdittack

list of the Session shell and will seBdveYourselfPhase2RequestinteractRequest, Interact-

Done, SaveYourselfDone, and ConnectionClosedmessages as appropriate. Initially of the

client’'s ®ssion properties are undefined. Whep@irthe session property resource values are
defined or change, the Session shell initialize and set_values procedures will update the client’s
session property value bySetPropertiesor a DeletePropertiesmessage, as appropriate. The
session ProcessID and UserlD properties aveyal set by the shell when it is possible to deter-
mine the value of these properties.

4.2.2. Saing Application State

The session manager instigates an application checkpoint by sergimgyaurself request.
Applications are responsible for saving their state in response to the request.

When theSaveYourself request arties, the procedures registered on the Sessionskaeiicall-
back list are called. If the application does not registgisavecallback procedures on thevea
callback list, the shell will report to the session manager that the application failed s sa
state. Eaclprocedure on the ga @allback list receies a bken in thecall_dataparameter.

The checkpoint token in treall_dataparameter is of typ&tCheckpointToken.

typedef struct {
int save_type;
int interact_style;
Boolean shutden;
Boolean ast;
Boolean cancel_shutdm
int phase;
int interact_dialog_type; [* return */
Boolean request_cancel, [* return */
Boolean request_Rre phase; [return */
Boolean S@e_success; [feturn */

} XtCheckpointTokenRec, *XtCheckpointToken;

Thesave_typginteract_styleshutdownand fastfields of the token contain the parameters of the
SaveYourself message. Theossible values afave typeare SmSavelocal, SmSaeGlobal,

and SmSaveBoth; these indicate the type of information to beesla Thepossible values of
interact_styleare SminteractStyleNone SminteractStyleErrors, and SminteractStyleAny;

these indicate whether user interaction would be permitted and, if so, what kind of interaction. If
shutdowris Tr ue, the checkpoint is being performed in preparation for the end of the session. If
fastis True, the client should perform the checkpoint as quickly as possibtantfel shutdown

is True, a ShutdownCancelledmessage has been re@difor the current s& qeration. (See

90

Section 4.4.4.) Thphaseis used by manager clients, such as a wina@anagerto dstinguish
between the first and second phase ofva gaeration. Thehasewill be either 1 or 2. The
remaining fields in the checkpoint token structure are provided for the application to communi-
cate with the shell.

Upon entry to the first applicationv&allback procedure, the return fields in the tokereHae
following initial values:interact_dialog_typés SmDialogNormal; request_cancdk False;
request_next_phags False; and save_success True. When a token is returned withyaof

the four return fields containing a noninitial value, and when the field is applicable, subsequent
tokens passed to the application during the currenet geeration will alvays contain the nonini-

tial value.

The purpose of the tokersave_succedild is to indicate the outcome of the entire operation to
the session manager and ultimatédythe user ReturningFalse indicates some portion of the
application state could not be successfullyeda If ary token is returned to the shell with
save_succedsalse, tokens subsequently reeed by the application for the currentvaagera-

tion will showsave_succeszs False. When the shell sends the final status of the checkpoint to
the session managérwill indicate failure to see gplication state if antoken was returned

with save_succedsalse.

Session participants that manage ane dze state of other clients should structure theie a
interact callbacks to setquest_next_phage True when phase is 1, which will cause the shell
to send thesaveYourselfPhase2Requestvhen the first phase is complete. When $ageYour-
selfPhase2message is recad, the shell will ivoke the sae allbacks a second time wiihase
equal to 2. Manager clients shouldadhe state of other clients when the callbacks arekiu
the second time anghaseequal to 2.

The application may request additional tokens while a checkpoint is undeangaiiese addi-
tional tokens must be returned by an explicit call.

To request an additional token for avsaallback response that has a deferred outcome, use
XtSessionGetToken

XtCheckpointToken XtSessionGetTokendge)
Widgetwidget

widget Specifies the Session shell widget which manages session participation.

The XtSessionGetTokenfunction will return NULL if no checkpoint operation is currently
under way.

To indicate the completion of checkpoint processing including user interaction, the application
must signal the Session shell by returning aletek (Se&ections 4.2.2.2 and 4.2.2.4)o
return a token, usktSessionReturnToken

void XtSessionReturnToketokern)
XtCheckpointTokertoken

token Specifies a token that was reaei as hecall_databy a procedure on the interact
callback list or a token that was reasl by a @ll to XtSessionGetToken

91

Tokens passed asll_datato save allbacks are implicitly returned when theseaallback pro-
cedure returnsA savecallback procedure should not cXiSessionReturnTokenon the token
passed in itsall_data

4.2.2.1. Requestingnteraction

When the tokeinteract_styleallows user interaction, the application may interact with the user
during the checkpoint, but must wait for permission to interact. Applications request permission
to interact with the user during the checkpointing operation by registering a procedure on the Ses-
sion shells interact callback list. When all s allback procedures ka returned, and each time

a token that was granted by a callXtSessionGetTokenis returned, the Session shell examines

the interact callback list. If interaction is permitted and the interact callback list is not, émepty

shell will send arinteractRequestto the session manager when an interact request is not already
outstanding for the application.

The type of interaction dialog that will be requested is specified hiptdract_dialog_typdield

in the checkpoint tadn. Thepossible values fdnteract_dialog_typ&re SmDialogError and
SmbDialogNormal. If a token is returned wititeract_dialog_typ&ontainingSmDialogError ,

the interact request andyasubsequent interact requests will be for an error dialog; otherwise, the
request will be for a normal dialog with the user.

When a token is returned wiiave_succedsalse or interact_dialog_typeSmDialogError,

tokens subsequently passed to callbacks during the saweSa&teYourself response will

reflect these changed values, indicating that an error condition has occurred during the check-
point.

Therequest_cancdield is a return value for interact callbacks onljpon return from a proce-
dure on the see @llback list, the value of the tokemsquest_cancdield is not examined by the
shell. Thisis also true of tokens resed through a call toXtSessionGetToken

4.2.2.2. Interactingwith the User during a Checkpoint

When the session manager grants the applicatiequest for user interaction, the Session shell
receves an Interact message. Thprocedures registered on the interact callback list are

executed, but not as ifxecuting a typical callback list. These procedures are individually

executed in sequence, with a checkpoint token functioning as the sequencing mechanism. Each
step in the sequence begins by removing a procedure from the interact callback ketatidge

it with a token passed in tloall_data The interact callback will typically pop up a dialog box

and return. When the user interaction and associated application checkpointing has completed,
the application must return the token by callXtgessionReturnToken Returning the token
completes the current step and triggers the next step in the sequence.

During interaction the client may request cancellation of a stmmd®Vhena token passed as
call_datato an interact procedure is returnedshititdowris Tr ue andcancel_shutdowis False,
request_cancedhdicates whether the application requests that the pending shutdown be cancelled.
If request_cancdk True, the field will also belr ue in ary tokens subsequently granted during

the checkpoint operation. When a token is returned requesting cancellation of the session shut-
down, pending interact procedures will still be called by the Session shell. When all interact pro-
cedures ha been remued from the interact callback listxecuted, and the final interact token
returned to the shell, dnteractDone message is sent to the session managgicating whether

a pending session shutdown is requested to be cancelled.

92

4.2.2.3. Respondingo a Shutdown Cancellation

Callbacks registered on the cancel callback list atekad when the Session shell processes a
ShutdownCancelledmessage from the session manadéris may occur during the processing
of save @llbacks, while waiting for interact permission, during user interaction, or aftenthe sa
operation is complete and the application is expectiBgvaComplete or aDie message. The
call_datafor these callbacks is NULL.

When the shell notices that a pending shutdown has been cancelled, theatatednshutdown
field will be True in tokens subsequentlyvgn to the application.

Receiving notice of a shutdown cancellation does not cancel the perdingen of sae all-
backs or interact callbacks. After the cancel callbagksute, ifinteract_styles not Sminter-
actStyleNoneand the interact list is not emptiie procedures on the interact callback list will be
executed and passed a token witkeract_styleSminteractStyleNone The application should
not interact with the usgand the Session shell will not send lateractDone message.

4.2.2.4. Completinga Save

When there is no user interaction, the shgéms the application as having finished saving state
when all callback procedures on theesallback list hae returned, and 3nadditional tokens
passed out bXtSessionGetTokenhave keen returned by corresponding calls<tSessionRe-
turnToken . If the s&e qperation iwolved user interaction, the amampletion conditions

apply and in addition, all requests for interactiorvbdeen granted or cancelled, and all tokens
passed to interact callbacks/badeen returned through calls XaSessionReturnToken If the

save qoeration iwvolved a manager client that requested the second phase, teecabditions

apply to both the first and second phase of tkie gaeration.

When the application has finished saving state, the Session shell will report the result to the ses-
sion manager by sending teveYourselfDone message. Ifhe session is continuing, the shell

will receive the SaveComplete message when all applicationsseaompleted saving state. This
message indicates that applications may agaiw alh@nges to their state. The shell witbeute

the sae_complete callbacks. Treall_datafor these callbacks is NULL.

4.2.3. Respondingo a Shutdown

Callbacks registered on the die callback list aveked when the session manager sendse
message. Theallbacks on this list should do whegeis gppropriate to quit the application.

Before executing procedures on the die callback list, the Session shell will close the connection to
the session manager and will raradne handler that watches for protocol messages. The
call_datafor these callbacks is NULL.

4.2.4. Resigningrom a Session

When the Session shell widget is destroyed, the destethod will close the connection to the
session manager by sendinG@annectionClosedprotocol message and will renethe input
callback that was watching for session protocol messages.

When XtSetValuesis used to sgbin_sessiono False, the set_values method of the Session
shell will close the connection to the session manager if one exists by sel@bngection-
Closed message, ancbnnectiorwill be set to NULL.

Applications that exit in response to user actions and that do not wait for phase Y tdesmo-
plete on the Session shell shouldje#t_sessiono False before exiting.

93

When XtSetValuesis used to setonnectiorto NULL, the Session shell will stop managing the
connection, if onexasts. Havever, that session connection will not be closed.

Applications that wish to ensure continuation of a session connection beyond the destruction of
the shell should first retnie the connectiorresource value, then set th@nnectiorresource to

NULL, and then thg may safely destythe widget without losing control of the session connec-
tion.

The error callback list will be called if an unreemble communications error occurs while the
shell is managing the connection. The shell will close the connectiargresdctiorto NULL,
remove the input callback, and call the procedures registered on the error callback list. The
call_datafor these callbacks is NULL.

94

Chapter 5

Pop-Up Widgets

Pop-up widgets are used to create windows outside of the winidcarcly defined by the wid-
get tree. Each pop-up child has a wwdbat is a descendant of the root wingeo that the
pop-up windav is not clipped by the pop-up widgstparent windav. Therefore, pop-ups are cre-
ated and attached differently to their widget parent than normal widget children.

A parent of a pop-up widget does not aglif manage its pop-up children; in fact, it usually does

not operate upon them inyaway. Thepopup_listfield in the CorePart structure contains the

list of its pop-up children. This pop-up list exists mainly to provide the proper place in the widget
hierarcly for the pop-up to get resources and to provide a placétizestroyWidget to look for

all extant children.

A composite widget can ke loth normal and pop-up childrei pop-up can be popped up from
almost anywhere, not just by its parent. The tehitd always refers to a normal, geometry-man-
aged widget on the composite widgdist of children, and the terpop-up childalways refers to

a widget on the pop-up list.

5.1. Pop-Up Widget Types
There are three kinds of pop-up widgets:
. Modeless pop-ups

A modeless pop-up (for example, a dialog box that does natrireontinued interaction
with the rest of the application) can usually be manipulated by the wimdmager and
looks like any ather application windw from the uses point of view. The application
main windav itself is a special case of a modeless pop-up.

. Modal pop-ups

A modal pop-up (for example, a dialog box that requires user input to continue) can some-
times be manipulated by the windonanagerand except for eents that occur in the dia-
log box, it disables userent distribution to the rest of the application.

. Spring-loaded pop-ups
A spring-loaded pop-up (for example, a menu) can seldom be manipulated by the window

managerand except foreents that occur in the pop-up or its descendants, it disables user-
event distribution to all other applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be codedyawéfréhe

the same. In fact, the same widget (for example, a ButtonBox or Menu widget) can be used both
as a modal pop-up and as a spring-loaded pop-up within the same application. The main differ-
ence is that spring-loaded pop-ups are brought up with the pointer and, because of the grab that
the pointer button causes, require different processing by the Intrinsics. Furthermore, all user
input remap eents occurring outside the spring-loaded pop-up (e.g., in a descendant) are also
delivered to the spring-loaded pop-up aftenthavebeen dispatched to the appropriate descen-
dant, so that, for example, button-up caretddwn a ring-loaded pop-up no matter where the
button-up occurs.

95

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring-loaded pop-ups can
constrain usenents to the most recent such pop-up onellser &ents to be dispatched to any
of the modal or spring-loaded pop-ups currently mapped.

Regardless of their type, all pop-up widget classes are responsible for communicating with the X
window manager and therefore are subclasses of one of the Shell widget classes.

5.2. Creating a Pop-Up Shell

For a widget to be popped up, it must be the child of a pop-up shell widget. None of the Intrin-
sics-supplied shells will simultaneously manage more than one child. Both the shell and child
taken together are referred to as the pop-up. When you need to use a pop-upayotefér to

the pop-up by the pop-up shell, not the child.

To aeate a pop-up shell, udaCreatePopupShell

Widget XtCreatePopupSheil{me widget_classparent args num_arg$
Stringname
WidgetClassvidget_class
Widgetparent
ArglList args
Cardinalnum_args

name Specifies the instance name for the created shell widget.
widget_class Specifies the widget class pointer for the created shell widget.

parent Specifies the parent widget. Must be of class Coreysarclass thereof.
args Specifies the argument list tgepride ary other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtCreatePopupShellfunction ensures that the specified class is a subclass of Shell and,

rather than using insert_child to attach the widget to the pacéiitieen list, attaches the shell to

the parent'popup_listdirectly.

The screen resource for this widget is determined by first scaargafpr the XtNscreen argu-

ment. Ifno XtNscreen argument is found, the resource database associated with the parent’s

screen is queried for the resour@mescreen, clasSlassScreen wher€lassis theclass_name

field from theCoreClassPartof the specifiedvidget_class If this query fails, the parent’s

screen is used. Once the screen is determined, the resource database associated with that screen is
used to retriee dl remaining resources for the widget not specifiedrgs

A spring-loaded pop-up uwoked from a translation table vigtMenuPopup must already exist at

the time that the translation issoked, so the translation manager can find the shell by name.
Pop-ups imoked in ather ways can be created when the pop-up actually is needed. This delayed
creation of the shell is particularly useful when you pop up an unspecified number of pop-ups.
You can look to see if an appropriate unused shell (that is, not currently popped up) exists and
create a n& shell if needed.

To aeate a pop-up shell using varargs lists, X8&@aCreatePopupShell

96

Widget XtVaCreatePopupSheli{me widget_classparent ...)

Stringname

WidgetClasavidget_class

Widgetparent
name Specifies the instance name for the created shell widget.
widget_class Specifies the widget class pointer for the created shell widget.
parent Specifies the parent widget. Must be of class Coreysarclass thereof.

Specifieshe variable argument list taov@rride ary other resource specifications.

XtVaCreatePopupShellis identical in function toXtCreatePopupShellwith theargs and
num_arggparameters replaced by a varargs list as described in Section 2.5.1.

5.3. Creating Pop-Up Children

Once a pop-up shell is created, the single child of the pop-up shell can be created either statically
or dynamically.

At startup, an application can create the child of the pop-up shell, which is appropriate for pop-up
children composed of a fixed set of widgets. The application can change the state of the subparts
of the pop-up child as the application state chan§esexample, if an application creates a static
menu, it can calKtSetSensitive (or, in general XtSetValues) on any o the buttons that maap

the menu. Creating the pop-up child early means that pop-up time is minimized, especially if the
application callsXtRealizeWidget on the pop-up shell at startup. When the menu is needed, all
the widgets that makup he menu already exist and need only be mapped. The menu should pop
up as quickly as the X server can respond.

Alternatively, an gplication can postpone the creation of the child until it is needed, which mini-
mizes application startup time and allows the pop-up child to reconfigure itself each time it is
popped up. In this case, the pop-up child creation routine might poll the application to find out if
it should change the sensitivity ofyaof its subparts.

Pop-up child creation does not map the pop-ug & you create the child and ca{tReal-
izeWidget on the pop-up shell.

All shells hare pop-up and pop-down callbacks, which provide the opportunity either to make
last-minute changes to a pop-up child before it is popped up or to change it after it is popped
down. Notethat excesse use of pop-up callbacks can negopping up occur more slowly.

5.4. Mappinga Pop-Up Widget
Pop-ups can be popped up througbessd mechanisms:
. A call to XtPopup or XtPopupSpringLoaded.

. One of the supplied callback procedubg€allbackNone, XtCallbackNonexclusive, or
XtCallbackExclusive.

. The standard translation actidttMenuPopup.
Some of these routines w@kn agument of typeXtGrabKind , which is defined as

97

typedef enum {XtGrabNone, XtGrabNonexchesiXtGrabExclusie} X tGrabKind,;

The create_popup_child_proc procedure pointer in the shell widget instance record is of type
XtCreatePopupChildProc.

typedef void (*XtCreatePopupChildProc)(Widget);
Widgetw;,

w Specifies the shell widget being popped up.

To map a pop-up from within an application, us#opup.

void XtPopuppopup_shellgrab_king
Widgetpopup_shell
XtGrabKindgrab_kind
popup_shell Specifies the shell widget.
grab_kind Specifies the way in which usereats should be constrained.

The XtPopup function performs the following:
. Calls XtCheckSubclassto ensureopup_shel class is a subclass shellWidgetClass
. Raises the windw and returns if the shell’popped_ugield is alreadyTr ue.

. Calls the callback procedures on the sh@lbpup_callbackist, specifying a pointer to the
value ofgrab_kindas thecall_dataargument.

. Sets the shelbopped_upield to Tr ue, the shellspring_loadedield to False, and the shell
grab_kindfield fromgrab_kind

. If the shell'screate_popup_child_proield is non-NULL, XtPopup calls it with
popup_shelas the parameter.

. If grab_kindis eitherXtGrabNonexclusive or XtGrabExclusive, it calls
XtAddGrabpopup_shell(grab_kind== XtGrabExclusie), False)

. Calls XtRealizeWidget with popup_shelspecified.
. Calls XMapRaised with the windav of popup_shell

To map a spring-loaded pop-up from within an application,XtRopupSpringLoaded.

void XtPopupSpringLoadegbpup_she)l
Widgetpopup_shell

popup_shell Specifies the shell widget to be popped up.

The XtPopupSpringLoaded function performs exactly astPopup except that it sets the shell
spring_loadedield to Tr ue and alvays callsXtAddGrab with exclusive Tr ue andspring-

98

loadedTr ue.

To map a pop-up from agen widget’s allback list, you also can register one of ¥t€allbac-
kNone, XtCallbackNonexclusive, or XtCallbackExclusive corvenience routines as callbacks,
using the pop-up shell widget as the client data.

void XtCallbackNonef, client_data call_datg
Widgetw;
XtPointerclient_data
XtPointercall_datg

w Specifies the widget.
client_ data Specifies the pop-up shell.
call_data Specifies the callback data argument, which is not used by this procedure.

void XtCallbackNonexclusie(w, client_data call_datg
Widgetw;
XtPointerclient_data
XtPointercall_datg

w Specifies the widget.
client_data Specifies the pop-up shell.
call_data Specifies the callback data argument, which is not used by this procedure.

void XtCallbackExclusie(w, client_data call_datg
Widgetw;
XtPointerclient_data
XtPointercall_datg

w Specifies the widget.
client_data Specifies the pop-up shell.
call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive functions call

XtPopup with the shell specified by trdient_dataargument angrab_kindset as the name
specifies. XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive specify
XtGrabNone, XtGrabNonexclusive, and XtGrabExclusive, respectrely. Each function then

sets the widget thakecuted the callback list to be insensitiby calling XtSetSensitve. Using

these functions in callbacks is not required. In particalaigplication must provide customized
code for callbacks that create pop-up shells dynamically or that must do more than desensitizing
the button.

Within a translation table, to pop up a menu wheayadk pointer button is pressed or when the
pointer is meed into a widget, us&XtMenuPopup, or its synonymMenuPopup. From a trans-
lation writer's point of view, the definition for this translation action is

99

void XtMenuPopupghell_namg
Stringshell_name

shell_name Specifies the name of the shell widget to pop up.

XtMenuPopup is known to the translation managehich registers the corresponding built-in
action procedurXtMenuPopupAction using XtRegisterGrabAction specifyingowner_events
True, event_maskButtonPressMask | ButtonReleaseMaskand pointer_modend
keyboard_moddsrabModeAsync.

If XtMenuPopup is invoked on ButtonPress, it calls XtPopupSpringLoaded on the specified
shell widget. IfXtMenuPopup is invoked on KeyPressor EnterWindow, it calls XtPopup on
the specified shell widget witrab_kindset toXtGrabNonexclusive. Otherwise, the transla-
tion manager generates a warning message and ignores the action.

XtMenuPopup tries to find the shell by searching the widget tree starting at the widget in which
it is invoked. If it finds a shell with the specified name in the pop-up children of that widget, it
pops up the shell with the appropriate parameters. Otherwiseyésmp he parent chain to find

a pop-up child with the specified name. XftMenuPopup gets to the application topve shell
widget and has not found a matching shell, it generates a warning and returns immediately.

5.5. Unmappinga Pop-Up Widget

Pop-ups can be popped down througheisd mechanisms:
. A call to XtPopdown

. The supplied callback procedué@CallbackPopdown
. The standard translation actidttMenuPopdown

To unmap a pop-up from within an application, u&®opdown.

void XtPopdownpopup_she)l
Widgetpopup_shejl

popup_shell Specifies the shell widget to pop down.

The XtPopdown function performs the following:
. Calls XtCheckSubclassto ensuregopup_shel class is a subclass shellWidgetClass
. Checks that thpopped_ugdield of popup_shelis Tr ue; otherwise, it returns immediately.

. Unmapspopup_shels window and, if override_redirectis False, sends a synthetic
UnmapNotify event as specified by tHater-Client Communication Conventions Manual

. If popup_shel grab_kindis eitherXtGrabNonexclusive or XtGrabExclusive, it calls
XtRemoveGrab.

. Setspopup_sheks popped_ugield to False.

. Calls the callback procedures on the sheipdown_callbackst, specifying a pointer to
the value of the shellgrab_kindfield as thecall_dataargument.

100

To pop down a pop-up from a callback list, you may use the callg&ckllbackPopdown.

void XtCallbackPopdowny, client_data call_datg
Widgetw;,
XtPointerclient_data
XtPointercall_datg

w Specifies the widget.
client_ data Specifies a pointer to thétPopdownID structure.
call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackPopdown function casts thelient_dataparameter to a pointer of typ&Pop-
downiD.

typedef struct {
Widget shell_widget;
Widget enable_widget;
} XtPopdownIDRec, *XtPopdownID;

Theshell_widgets the pop-up shell to pop down, and émable_widgeis usually the widget
that was used to pop it up in one of the pop-up callbacken@nce procedures.

XtCallbackPopdown calls XtPopdown with the specifieghell_widgetnd then callXtSet-
Sensitive to resensitizenable_widget

Within a translation table, to pop down a spring-loaded menu whey @ gointer button is
released or when the pointer isvad into a widget, us&XtMenuPopdown or its synonym,
MenuPopdown. From a translation writes’'point of view, the definition for this translation
action is

void XtMenuPopdowrghell_namg
Stringshell_nameg

shell_name Specifies the name of the shell widget to pop down.

If a shell name is not gen, XtMenuPopdown calls XtPopdown with the widget for which the
translation is specified. #hell_names specified in the translation tabtMenuPopdown tries

to find the shell by looking up the widget tree starting at the widget in which violseth If it

finds a shell with the specified name in the pop-up children of that widget, it pops down the shell;
otherwise, it maes up tie parent chain to find a pop-up child with the specified name. If
XtMenuPopdown gets to the application topvé shell widget and cannot find a matching shell,

it generates a warning and returns immediately.

101

Chapter 6

Geometry Management

A widget does not directly control its size and location; ratteeparent is responsible for con-
trolling them. Although the position of children is usually left up to their parent, the widgets
themselves often kia the best idea of their optimal sizes and, possjioeferred locations.

To resole physical layout conflicts between sibling widgets and between a widget and its parent,
the Intrinsics provide the geometry management mechanism. Almost all composite wiglgets ha
a geometry manager specified in tp@metry_manger field in the widget class record that is
responsible for the size, position, and stacking order of the wsddpdtiren. Theonly exception

is fixed boxes, which create their children themselves and can ensure that their childrerewill ne
malke a ggometry request.

6.1. Initiating Geometry Changes

Paents, children, and clients each initiate geometry changes differ@atause a parent has

absolute control of its childreneometry it changes the geometry directly by calling

XtMo veWidget, XtResizeWidget, or XtConfigureWidget. A child must ask its parent for a
geometry change by callingtMakeGeometryRequestor XtMakeResizeRequest An aopli-

cation or other client code initiates a geometry change by cadli@gtValueson the appropriate
geometry fields, thereby giving the widget the opportunity to modify or reject the client request
before it gets propagated to the parent and the opportunity to respond appropriately to the parent’s
reply.

When a widget that needs to change its size, position, border width, or stacking depth asks its par-
ent’s geometry manager to makhe desired changes, the geometry manager cam thkdo

request, disalle the request, or suggest a compromise.

When the geometry manager is asked to change the geometry of a child, the geometry manager
may also rearrange and resizg andl of the other children that it controls. The geometry man-
ager can mee dhildren around freely usin¥tMo veWidget. When it resizes a child (that is,

changes the width, height, or border width) other than the one making the request, it should do so
by calling XtResizeWidget The requesting child may bevgh gpecial treatment; see Section

6.5. Itcan simultaneously nve and resize a child with a single call xaConfigureWidget.

Often, geometry managers find thatytiean satisfy a request only if hean reconfigure a wid-
get that thg are not in control of; in particulathe composite widget may want to change its own
size. Inthis case, the geometry manager makes a request to its pgeentetry manager.
Geometry requests can cascade this way to arbitrary depth.

Because such cascaded arbitration of widget geometry walndrextended negotiation, windows
are not actually allocated to widgets at application startup until all widgets are satisfied with their
geometry; see Sections 2.5 and 2.6.

102

Notes

1. Thelntrinsics treatment of stacking requests is deficientuarakareas.
Stacking requests for unrealized widgets are granted but wélfoegffect. In
addition, there is no way to do atSetValuesthat will generate a stacking
geometry request.

2. Aftera auccessful geometry request (one that retuiXggieometryYes), a
widget does not ke whether its resize procedure has been calMgitigets
should hae resize procedures that can be called more than once without ill
effects.

6.2. GeneralGeometry Manager Requests
When making a geometry request, the child specifiestéfidgetGeometry structure.

typedef unsigned long XtGeometryMask;

typedef struct {
XtGeometryMask request_mode;
Position X, y;
Dimension width, height;
Dimension border_width;
Widget sibling;
int stack_mode;

} X tWidgetGeometry;

To make a general geometry manager request from a widgetXtigekeGeometryRequest

XtGeometryResult XtMakeGeometryRequestequest reply_return
Widgetw;
XtwWidgetGeometry fequest
XtWidgetGeometry feply_return

w Specifies the widget making the request. Must be of class RectObj sutan
class thereof.

request Specifies the desired widget geometry (size, position, border width, and stacking
order).

reply_return Returns the allowed widget size, or may be NULL if the requesting widget is not
interested in handlingitGeometryAlmost.

Depending on the conditioxXxtMakeGeometryRequestperforms the following:

. If the widget is unmanaged or the widgghrent is not realized, it makes the changes and
returnsXtGeometryYes.
. If the parens dass is not a subclass cbmpositeWidgetClassor the parent'geome-

try_manae field is NULL, it issues an error.

103

. If the widget'sbeing_destroyefield is Tr ue, it returnsXtGeometryNo.

. If the widgetx, y, width, height and border_widthfields are all equal to the requested val-
ues, it returnXtGeometryYes; otherwise, it calls the parestgeometry _manager proce-
dure with the gien parameters.

. If the parens geometry manager return@GeometryYes and if XtCWQueryOnly is not
set inrequest->request_modind if the widget is realizeXtMakeGeometryRequest
calls theXConfigureWindow Xlib function to reconfigure the widgetivindow (set its
size, location, and stacking order as appropriate).

. If the geometry manager returkgGeometryDone, the change has been apged and
actually has been done. In this castdylakeGeometryRequestdoes no configuring and
returnsXtGeometryYes. XtMakeGeometryRequestnever returnsXtGeometryDone.

. Otherwise XtMakeGeometryRequestjust returns the resulting value from the parent’s
geometry manager.

Children of primitive widgets are atays unmanaged; therefor&tMakeGeometryRequest
always returnsXxtGeometryYes when called by a child of a primi widget.

The return codes from geometry managers are

typedef enum {
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone

} X tGeometryResult;

Therequest_moddefinitions are from X11/X.h>.

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)

The Intrinsics also support the following value.

#define XtCWQueryOnly (1<<7)

XtCWQueryOnly indicates that the corresponding geometry request is only a query as to what
would happen if this geometry request were made and that no widgets should actually be
changed.

XtMakeGeometryRequest like the XConfigureWindow Xlib function, usesequest_mod&o
determine which fields in th&tWidgetGeometry structure the caller wants to specify.

104

Thestack_modelefinitions are from X11/X.h>:

#define Above 0
#define Below 1
#define Toplf 2
#define Bottomif 3
#define Opposite 4
The Intrinsics also support the following value.

#define XtSMDontChange 5

For definition and behavior afbove, Below, Toplf , Bottomlf , and Opposite, see Section 3.7
in Xlib — C Languge X hterface XtSMDontChange indicates that the widget wants its cur-
rent stacking order preserved.

6.3. ResizeRequests

To make a smple resize request from a widget, you can X8dakeResizeRequestas an alter-
native b XtMakeGeometryRequest

XtGeometryResult XtMakeResizeRequestfidth, height width_return height_return
Widgetw;,
Dimensionwidth, height
Dimension Wwidth_return *height_return

w Specifies the widget making the request. Must be of class RectObj sutan
class thereof.

width Specify the desired widget width and height.

height

width_return Return the allowed widget width and height.
height_return

The XtMakeResizeRequesfunction, a simple interface t§tMakeGeometryRequest creates

an XtWidgetGeometry structure and specifies that width and height should change by setting
request_modéo CWWidth | CWHeight. The geometry manager is free to modify afithe

other windav attributes (position or stacking order) to satisfy the resize request. If the return
value is XtGeometryAlmost, width_returnandheight_returncontain a compromise width and
height. Ifthese are acceptable, the widget should immediatel)XtdihkeResizeRequesiagain

and request that the compromise width and height be applied. If the widget is not interested in
XtGeometryAlmost replies, it can pass NULL favidth_returnandheight_return

105

6.4. Potential Geometry Changes

Sometimes a geometry manager cannot respond to a geometry request from a child without first
making a geometry request to the widgetn parent (the original requestegrandparent). If

the request to the grandparent wouldwaltbe parent to satisfy the original request, the geometry
manager can makhe intermediate geometry request as if it were the origin@iothe other

hand, if the geometry manager already has determined that the original request cannot be com-
pletely satisfied (for example, if itvadys denies position changes), it needs to tell the grandparent

to respond to the intermediate request without actually changing the geometry because it does not
know if the child will accept the compromis&o accomplish this, the geometry manager uses
XtCWQueryOnly in the intermediate request.

When XtCWQueryOnly is used, the geometry manager needs to cache enough information to
exactly reconstruct the intermediate request. If the grandpamesponse to the intermediate

query wasXtGeometryAlmost, the geometry manager needs to cache the entire reply geometry
in the event the child accepts the parentbmpromise.

If the grandparerd’response waXtGeometryAlmost, it may also be necessary to cache the
entire reply geometry from the grandparent wke@WQueryOnly is not used. If the geometry
manager is still able to satisfy the original request, it may immediately accept the grandparent’s
compromise and then act on the clulgéquest. Ithe grandparerd’compromise geometry is
insufficient to allev the childs request and if the geometry manager is willing to offer a different
compromise to the child, the grandparetmpromise should not be accepted until the child has
accepted the mecompromise.

Note that a compromise geometry returned WiteometryAlmost is guaranteed only for the
next call to the same widget; therefore, a cache of size 1 is sufficient.

6.5. Child Geometry Management: The geometry_manager Procedure

The geometry _manager procedure pointer in a composite widget class is Xt@gmmetry-
Handler.

typedef XtGeometryResult (*XtGeometryHandler)(Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widgetw;
XtwidgetGeometry fequest
XtwidgetGeometry eometry_return

w Passes the widget making the request.

request Passes the ve geometry the child desires.

geometry return Passes a geometry structure in which the geometry manager may store a com-
promise.

A class can inherit its superclasgeometry manager during class initialization.

A bit set to zero in the requestiquest_modéeld means that the child widget does not care
about the value of the corresponding field, so the geometry manager can change this field as it
wishes. Abit set to 1 means that the child wants that geometry element set to the value in the
corresponding field.

If the geometry manager can satisfy all changes requested ét@hifQueryOnly is not speci-
fied, it updates the widgetsy, width, height and border_widthfields appropriately Then, it
returnsXtGeometryYes, and the values pointed to by tgeometry_returrargument are

106

undefined. Thevidget's window is moved and resized automatically bytMakeGeometry-
Request

Homogeneous composite widgets often find itvenrent to treat the widget making the request
the same as grother widget, including reconfiguring it usingConfigureWidget or XtRe-
sizeWidgetas part of its layout process, unle@E€WQueryOnly is specified. If it does this, it
should returrXtGeometryDone to inform XtMakeGeometryRequestthat it does not need to
do the configuration itself.

Note

To remain compatible with layout techniques used in older widgets (b¥f@eom-
etryDone was added to the Intrinsics), a geometry manager showditi aising
XtResizeWidgetor XtConfigureWidget on the child making the request because
the layout process of the child may be in an intermediate state in which it is not pre-
pared to handle a call to its resize procedérself-contained widget set may

choose this alternat geometry management scheme, heseeprovided that it

clearly warns widget delopers of the compatibility consequences.

Although XtMakeGeometryRequestresizes the widget'window (if the geometry manager
returnsXtGeometryYes), it does not call the widget classésize procedure. The requesting
widget must perform whater resizing calculations are needed explicitly.

If the geometry manager disallows the request, the widget cannot change its gedhestrai-
ues pointed to bgeometry_returrare undefined, and the geometry manager reiXit@some-
tryNo .

Sometimes the geometry manager cannot satisfy the request exactly but may be able to satisfy a
similar request. That is, it could satisfy only a subset of the requests (for example, size but not
position) or a lesser request (for example, it cannoertrekchild as big as the request but it can
make the child bigger than its current size). In such cases, the geometry manager fills in the
structure pointed to byeometry_returrwith the actual changes it is willing to make, including

an appropriateequest_modenask, and returnxtGeometryAlmost. If a bit in geome-
try_return->request_modes zero, the geometry manager agrees not to change the corresponding
value if geometry_returris used immediately in a werequest. Ifa Lt is 1, the geometry man-

ager does change that element to the corresponding vajeenietry return More bits may be

set ingeometry_return->request_modkean in the original request if the geometry manager

intends to change other fields should the child accept the compromise.

When XtGeometryAlmost is returned, the widget must decide if the compromise suggested in
geometry_returris acceptable. If it is, the widget must not change its geometry directly;, iather
must mak another call toXtMakeGeometryRequest

If the next geometry request from this child usegggmenetry_returrvalues filled in by the
geometry manager with axtGeometryAlmost return and if there & been no intervening
geometry requests on either its parent grafrits other children, the geometry manager must
grant the request, if possible. That is, if the child asks immediately with the returned gemetry
should get an answer dtGeometryYes. Howeve, dynamic behavior in the uservindow
manager may affect the final outcome.

To return XtGeometryYes, the geometry manager frequently rearranges the position of other
managed children by callingtMo veWidget. Howeve, a ew geometry managers may some-
times change the size of other managed children by calliRgsizeWidgetor XtConfig-
ureWidget. If XtCWQueryOnly is specified, the geometry manager must return data describ-
ing haw it would react to this geometry request without actually moving or resizingidgets.

107

Geometry managers must not assume thaetieestandgeometry_returrarguments point to
independent storage. The caller is permitted to use the same field for both, and the geometry
manager must allocate its own temporary storage, if necessary.

6.6. Widget Placement and Sizing

To move a #hling widget of the child making the geometry request, the parentibsveWwid-
get.

void XtMoveWidget{w, X, y)
Widgetw;
Positionx;
Positiony;

w Specifies the widget. Must be of class RectObj grsabclass thereof.

X
y Specify the n& widget x and y coordinates.

The XtMo veWidget function returns immediately if the specified geometry fields are the same as
the old alues. OtherwiseXtMo veWidget writes the newx andy values into the object and, if

the object is a widget and is realized, issues an Xlw veWindow call on the widges win-

dow.

To resize a sibling widget of the child making the geometry request, the pareditRges
sizeWidget

void XtResizeWidgewy, width, height border_widt)
Widgetw;
Dimensionwidth;
Dimensionheight
Dimensionborder_width

w Specifies the widget. Must be of class RectObj grsabclass thereof.

width
height
border_width Specify the ne widget size.

The XtResizeWidgetfunction returns immediately if the specified geometry fields are the same
as the old a&lues. OtherwiseXtResizeWidgetwrites the newvidth, height and border_width
values into the object and, if the object is a widget and is realized, issXx&SoafigureWindow

call on the widge$ window.

If the nev width or height is different from the old value§&ResizeWidgetcalls the object’s
resize procedure to notify it of the size change.

To move and resize the sibling widget of the child making the geometry request, the parent uses
XtConfigureWidget.

108

void XtConfigureWidget, x, y, width, height border_width
Widgetw;
Positionx;
Positiony;
Dimensionwidth;
Dimensionheight
Dimensionborder_width

w Specifies the widget. Must be of class RectObj grsabclass thereof.
X

y Specify the n& widget x and y coordinates.

width

height

border_width Specify the n& widget size.

The XtConfigureWidget function returns immediately if the specifiedwngeometry fields are
all equal to the currenalues. OtherwiseXtConfigureWidget writes the newx, y, width,
height and border_widthvalues into the object and, if the object is a widget and is realized,
makes an XlibXConfigureWindow call on the widges window.

If the nev width or height is different from its old valugtConfigureWidget calls the object’s
resize procedure to notify it of the size change; otherwise, it simply returns.

To resize a child widget that already has the malues of its width, height, and border width, the
parent useXtResizeWindow.

void XtResizeWindowg)
Widgetw;

w Specifies the widget. Must be of class Core grsabclass thereof.

The XtResizeWindow function calls theXConfigureWindow Xlib function to male the win-

dow of the specified widget match its width, height, and border width. This request is done
unconditionally because there is no inexpemsiay to tell if these values match the current val-
ues. Notahat the widges resize procedure is not called.

There are very fg times to useXtResizeWindow; instead, the parent should us#ResizeWid-
get.

6.7. Preferred Geometry

Some parents may be willing to adjust their layouts to accommodate the preferred geometries of
their children. Thg can useXtQueryGeometry to obtain the preferred geometry and, as they
see fit, can use or ignoreygportion of the response.

To query a child widges preferred geometryse XtQueryGeometry.

109

XtGeometryResult XtQueryGeometw(intended preferred_returi
Widgetw;
XtWidgetGeometry intended
XtWidgetGeometry preferred_return

w Specifies the widget. Must be of class RectObj grsabclass thereof.
intended Specifies the e geometry the parent plans tosgito the child, or NULL.
preferred_returnReturns the child widget'preferred geometry.

To dscover a dhild’s preferred geometryghe childs parent stores the megeometry in the corre-
sponding fields of the intended structure, sets the correspondingibisnded.request_mode

and callsXtQueryGeometry. The parent should set only those fields that are important to it so
that the child can determine whether it may be able to attempt changes to other fields.

XtQueryGeometry clears all bits in thereferred_return->request_modield and checks the
guery_geometrfield of the specified widget'dass record. Ifuery_geometris not NULL,
XtQueryGeometry calls the query_geometry procedure and passes as arguments the specified
widget,intended and preferred_returrstructures. Itheintendedargument is NULL XtQuery-
Geometry replaces it with a pointer to &tWidgetGeometry structure withrequest_mode

equal to zero before calling the query_geometry procedure.

Note

If XtQueryGeometry is called from within a geometry_manager procedure for the
widget that issueXtMakeGeometryRequestor XtMakeResizeRequestthe

results are not guaranteed to be consistent with the requested changes. The change
request passed to the geometry manager takes preceglentteereferred geome-

try.

The query_geometry procedure pointer is of tyjpe&eometryHandler.

typedef XtGeometryResult (*XtGeometryHandler)(Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widgetw;
XtWidgetGeometry fequest
XtwidgetGeometry preferred_return

w Passes the child widget whose preferred geometry is required.
request Passes the geometry changes that the parent plans to make.
preferred_return Passes a structure in which the child returns its preferred geometry.

The query_geometry procedure is expected to examine the bityegu@st->request_mocde

evduate the preferred geometry of the widget, and store the reguéiferred_return(setting the

bits in preferred_return->request._moderresponding to those geometry fields that it cares

about). Ifthe proposed geometry change is acceptable without modification, the query_geometry
procedure should retunitGeometryYes. If at least one field ipreferred_returrwith a bit set

in preferred_return->request_mode different from the corresponding fieldrequestor if a bit

was =t inpreferred_return->request_modkeat was not set in the request, the query_geometry
procedure should retunitGeometryAlmost. If the preferred geometry is identical to the cur-

rent geometrythe query_geometry procedure should reiit@eometryNo.

110

Note

The query_geometry procedure may assume thxithakeResizeRequesbr
XtMakeGeometryRequestis in progress for the specified widget; that is, it is not
required to construct a reply consistent with the requested geometry if such a request
were actually outstanding.

After calling the query_geometry procedure or if guery _geometrfield is NULL, XtQuery-
Geometry examines all the unset bits meferred_return->request_modand sets the corre-
sponding fields ipreferred_returrto the current values from the widget instanceC\f/Stack-
Mode is not set, thetack_moddield is set toXtSMDontChange. XtQueryGeometry returns
the value returned by the query_geometry proceduk®eometryYes if the query _geometry
field is NULL.

Therefore, the caller can interpret a returrXtGeometryYes as not needing tosdluate the con-

tents of the reply and, more important, not needing to modify its layout plareturn of XtGe-
ometryAlmost means either that both the parent and the child expressed interest in at least one
common field and the chilsljreference does not match the paeimtentions or that the child
expressed interest in a field that the parent might need to cansideturn value ofiXtGeome-

tryNo means that both the parent and the child expressed interest in a field and that the child sug-
gests that the field'aurrent value in the widget instance is its preferr@de. Inaddition,

whether or not the caller ignores the return value or the reply mask, it is guaranteedgieat the
ferred_returnstructure contains complete geometry information for the child.

Paents are expected to caltQueryGeometry in their layout routine and wherer else the
information is significant after change_managed has been called. The first timeakesljrthe
changed_managed procedure may assume that thesahilcdint geometry is its preferred geom-
etry. Thus, the child is still responsible for storing values into its own geometry during its initial-
ize procedure.

6.8. SizeChange Management: The resize Procedure

A child can be resized by its parent ay éime. Widgets usually need to kmowhen thg have
changed size so that thean lay out their displayed data again to match thesme. Whena
parent resizes a child, it caldResizeWidget, which updates the geometry fields in the widget,
configures the windm if the widget is realized, and calls the clsleisize procedure to notify the
child. Theresize procedure pointer is of typ&WidgetProc .

If a class need not recalculate anything when a widget is resized, it can specify NULL for the
resizefield in its class record. This is an unusual case and should occur only for widgets with

very trivial display semantics. The resize procedure takes a widget as its guniyeant. The,

y, width, height and border_widthfields of the widget contain thewealues. Theesize proce-

dure should recalculate the layout of internal data as needed. (For example, a centered Label in a
window that changes size should recalculate the starting position okthje Teewidget must

obey resize as a command and must not treat it as a requagtiget must not issue an
XtMakeGeometryRequestor XtMakeResizeRequestall from its resize procedure.

111

Chapter 7

Event Management

While Xlib allows the reading and processing wérés anywhere in an application, widgets in the
X Toolkit neither directly readvents nor grab the server or pointé¥idgets register procedures
that are to be called when areet or class ofeents occurs in that widget.

A typical application consists of startup code followed byvantdoop that readsvents and dis-
patches them by calling the procedures that widgets legistered. Thealefault &ent loop pro-
vided by the Intrinsics iXtAppMainLoop .

The event manager is a collection of functions to perform the following tasks:

. Add or remee event sources other than X serveests (in particulartimer interrupts, file
input, or POSIX signals).

. Query the status ofvent sources.
. Add or remee procedures to be called when arert occurs for a particular widget.

. Enable and disable the dispatching of user-initiatedts (keyboard and pointenvents)
for a particular widget.

. Constrain the dispatching ofents to a cascade of pop-up widgets.
. Regster procedures to be called when specifants arrve.

. Regster procedures to be called when the Intrinsics will block.

. Enable safe operation in a multi-threaded environment.

Most widgets do not need to callyaof the esent handler functions explicitlyThe normal inter-
face to X @ents is through the higherd translation managgewhich maps sequences of X
events, with modifiers, into procedure calls. Applications rarely ugeohthe event manager
routines besideXtAppMainLoop .

7.1. Addingand Deleting Additional Event Sources

While most applications are den only by X events, some applications need to incorporate other
sources of input into the Intrinsicgent-handling mechanism. Theant manager provides rou-
tines to integrate notification of timevemts and file data pending into this mechanism.

The next section describes functions that provide input gathering from files. The application reg-
isters the files with the Intrinsics read routine. When input is pending on one of the files, the reg-
istered callback procedures aredked.

7.1.1. Addingand Removing Input Sources
To regster a n& file as an input source for avgn goplication context, us&tAppAddinput .

112

Xtinputld XtAppAddIinput@pp_contextsource condition proc, client_datg
XtAppContextapp_context
int source
XtPointercondition
XtinputCallbackProgroc;
XtPointerclient_data

app_context Specifies the application context that identifies the application.

source Specifies the source file descriptor on a POSIX-based system or other operating-
system-dependent device specification.

condition Specifies the mask that indicates a read, write, or exception condition or some
other operating-system-dependent condition.

proc Specifies the procedure to be called when the condition is found.

client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddinput function registers with the Intrinsics read routine & seurce of gents,
which is usually file input but can also be file output. Notefilshould be loosely interpreted
to mean aysink or source of dataxXtAppAddinput also specifies the conditions under which
the source can generatesets. Wheran eent is pending on this source, the callback procedure
is called.

The lagd values for theeonditionargument are operating-system-dependent. On a POSIX-based
systemsourceis a file number and the condition is some union of the following:

XtinputReadMask Specifies thaprocis to be called whesourcehas data to be read.
XtinputWriteMask Specifies thaprocis to be called whesourceis ready for writing.
XtinputExceptMask Specifies thaprocis to be called whesourcehas exception data.
Callback procedure pointers used to handle fiemts are of typeXtinputCallbackProc .

typedef void (*XtInputCallbackProc)(XtPointant*, Xtinputld*);
XtPointerclient_data
int *source
Xtinputld *id;

client data Passes the client data argument that was registered for this procedifpp
AddInput .

source Passes the source file descriptor generating ¥hete
id Passes the id returned from the correspondiyppAddinput call.

See Section 7.12 for informatiorgaeding the use oKtAppAddinput in multiple threads.

To dscontinue a source of input, u¥éRemovelnput .

113

void XtRemaovelnput(id)
Xtinputldid;

id Specifies the id returned from the corresponcfiyppAddinput call.

The XtRemovelnput function causes the Intrinsics read routine to stop watchingéntsfrom
the file source specified .

See Section 7.12 for informatiorgaeding the use oKtRemovelnput in multiple threads.

7.1.2. Addingand Removing Blocking Notifications

Occasionally it is desirable for an application to reeebtification when the Intrinsicsvent
manager detects no pending input from file sources and no pending input from Xwawer e
sources and is about to block in an operating system call.

To regster a hook that is called immediately prior @r@ blocking, useXtAppAddBlockHook .

XtBlockHookld XtAppAddBlockHooképp_contextproc, client_datg
XtAppContextapp_context
XtBlockHookProcproc;
XtPointerclient_data
app_context Specifies the application context that identifies the application.
proc Specifies the procedure to be called before blocking.

client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddBlockHook function registers the specified procedure and returns an identifier
for it. The hook procedurgrocis called at aptime in the future when the Intrinsics are about to
block pending some input.

The procedure pointers used to provide notificatiorvefiteblocking are of type&tBlock-
HookProc.

typedef void (*XtBlockHookProc)(XtPointer);
XtPointerclient_data

client_ data Passes the client data argument that was registered for this procedifpm
AddBlockHook .

To dscontinue the use of a procedure for blocking notification XtBemoveBlockHook.

void XtRemoveBlockHook(d)
XtBlockHookld id;

id Specifies the identifier returned from the corresponding caltAppAddBlock-
Hook.

The XtRemoveBlockHook function remees the specified procedure from the list of procedures

114

that are called by the Intrinsics read routine before blockingyent sources.

7.1.3. Addingand Removing Timeouts

The timeout facility notifies the application or the widget through a callback procedure that a
specified time interval has elapselimeout values are uniquely identified by an interval id.

To regster a timeout callback, us&AppAddTimeOut .

Xtintervalld XtAppAddTimeOutépp_contextinterval, proc, client_datg
XtAppContextapp_context
unsigned longnterval,
XtTimerCallbackProroc;
XtPointerclient_data
app_context Specifies the application context for which the timer is to be set.
interval Specifies the time interval in milliseconds.
proc Specifies the procedure to be called when the time expires.

client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddTimeOut function creates a timeout and returns an identifier for it. The timeout
value is set tanterval. The callback proceduigocis called whenXtAppNextEvent or
XtAppProcessEventis next called after the time interval elapses, and then the timeout is
removed.

Callback procedure pointers used with timeouts are of ¥fpenerCallbackProc .

typedef void (*XtTimerCallbackProc)(XtPointextintervalld*);
XtPointerclient_data
Xtintervalld *timer;

client data Passes the client data argument that was registered for this procedifmopr
AddTimeOut .
timer Passes the id returned from the correspondt@ppAddTimeOut call.

See Section 7.12 for informatiorgaeding the use oKtAppAddTimeOut in multiple threads.

To dear a timeout value, usétRemoveTimeOut.

void XtRemoreTimeOutfimer)
Xtintervalld timer,

timer Specifies the id for the timeout request to be cleared.

The XtRemoveTimeOut function remees the pending timeout. Note that timeouts are automat-
ically removed once thg trigger.

115

Please refer to Section 7.12 for informatiogarding the use oKtRemaoveTimeOut in multiple
threads.

7.1.4. Addingand Removing Signal Callbacks

The signal facility notifies the application or the widget through a callback procedure that a signal
or other external asynchronousset has occurred. The registered callback procedures are
uniquely identified by a signal id.

Prior to establishing a signal handlitre application or widget should catAppAddSignal and
store the resulting identifier in a place accessible to the signal havdien a signal awes, the
signal handler should caltNoticeSignal to notify the Intrinsics that a signal has occuré&d.
register a signal callback us@AppAddSignal .

XtSignalld XtAppAddSignakipp_contextproc, client_datg
XtAppContextapp_context
XtSignalCallbackProgroc;
XtPointerclient_data
app_context Specifies the application context that identifies the application.
proc Specifies the procedure to be called when the signal is noticed.

client data Specifies an argument passed to the specified procedure when it is called.

The callback procedure pointers used to handle sigeateare of typeXtSignalCallbackProc.

typedef void (*XtSignalCallbackProc)(XtPointettSignalld*);
XtPointerclient_data

XtSignalld *d;
client_data Passes the client data argument that was registered for this procediAgpn
pAddSignal.
id Passes the id returned from the correspondigippAddSignal call.

To notify the Intrinsics that a signal has occured, XtfdoticeSignal.

void XtNoticeSignalid)
XtSignalldid;

id Specifies the id returned from the corresponiWyppAddSignal call.

On a POSIX-based systenitNoticeSignal is the only Intrinsics function that can safely be
called from a signal handletf XtNoticeSignal is invoked multiple times before the Intrinsics
are able to imoke te registered callback, the callback is only called once. Logitiadiyintrin-
sics maintain “pendingfl ag for each registered callback. This flag is initi#glse and is set to
True by XtNoticeSignal. When XtAppNextEvent or XtAppProcessEvent(with a mask
including XtIMSignal) is called, all registered callbacks with “pendind’t ue are irvoked and

116

the flags are reset tealse.

If the signal handler wants to trackvihanary times the signal has been raised, it can keep its own
private counter Typically the handler would not doanther work; the callback does the actual
processing for the signal. The Intrinsicyvareblock signals from being raised, so if aei sgnal

can be raised multiple times before the Intrinsics caokanthe callback for that signal, the call-
back must be designed to deal with this. In another case, a signal might be raised just after the
Intrinsics sets the pending flag False but before the callback can get control, in which case the
pending flag will still beTr ue after the callback returns, and the Intrinsics wiloke the call-

back again, wen though all of the signal raisesveabeen handled. The callback must also be
prepared to handle this case.

To remove a egstered signal callback, calltRemoveSignal.

void XtRemoreSignal{d)
XtSignalldid;

id Specifies the id returned by the corresponding calltAppAddSignal .

The client should typically disable the source of the signal before catRgmoveSignal. If

the signal could hee been raised again before the source was disabled and the client wants to
process it, then after disabling the source but before ca{liRgmoveSignal the client can test

for signals withXtAppPending and process them by callingAppProcessEventwith the mask
XtIMSignal .

7.2. ConstrainingEvents to a Cascade of Widgets

Modal widgets are widgets that, except for the input directed to them, lock out user input to the
application.

When a modal menu or modal dialog box is popped up d&iRgpup, user eents (keyboard
and pointer gents) that occur outside the modal widget should beaeli to the modal widget
or ignored. In no case will usevents be deliered to a widget outside the modal widget.

Menus can pop up submenus, and dialog boxes can pop up further dialog boxes to create a pop-up
cascade. Ithis case, usewnents may be delered to one of seral modal widgets in the cas-
cade.

Display-related eents should be deléred outside the modal cascade so that exposentseand

the like keep the applicatiog’dsplay up-to-date. Apevent that occurs within the cascade is
delivered as usual. The usereats delvered to the most recent spring-loaded shell in the cascade
when thg occur outside the cascade are called remaptge and ar&KeyPress KeyRelease
ButtonPress, and ButtonRelease The user eents ignored when tlysoccur outside the cascade
are MotionNotify andEnterNotify . All other events are deliered normally In particular note

that this is one way in which widgets can reedieaveNotify events without first receiving
EnterNotify events; the should be prepared to deal with this, typically by ignoring any
unmatched_eaveNotify events.

XtPopup uses theXtAddGrab and XtRemoveGrab functions to constrain usevents to a
modal cascade and subsequently to ren@gab when the modal widget is popped down.

117

To oonstrain or redirect user input to a modal widget, XigeddGrab .

void XtAddGrabgv, exclusive spring_loaded
Widgetw;,
Booleanexclusive
Booleanspring_loaded

w Specifies the widget to add to the modal cascade. Must be of class Core or any
subclass thereof.
exclusive Specifies whether usevants should be dispatched exclgy to this widget or

also to previous widgets in the cascade.

spring_loaded Specifies whether this widget was popped up because the user pressed a pointer
button.

The XtAddGrab function appends the widget to the modal cascade and checkgihaiveis
True if spring_loadeds True. If this condition is not meftAddGrab generates a warning
message.

The modal cascade is used XtDispatchEvent when it tries to dispatch a usereat. Whenat

least one modal widget is in the widget casc&dBjspatchEvent first determines if thevent

should be deliered. Itstarts at the most recent cascade entry and follows the cascade up to and
including the most recent cascade entry added witextiesiveparameteir ue.

This subset of the modal cascade along with all descendants of these widgets comprise the acti
subset. Useevents that occur outside the widgets in this subset are ignored or remapped. Modal
menus with submenus generally add a submenu widget to the cascaeeliive False.

Modal dialog boxes that need to restrict user input to the most deeply nested dialog box add a
subdialog widget to the cascade wétitlusiveTrue. User &ents that occur within the acé

subset are dedered to the appropriate widget, which is usually a child or further descendant of
the modal widget.

Regadless of where in the application yhaccur, remap gents are aliays delivered to the most
recent widget in the awi subset of the cascade registered \giphing_loadedTr ue, if any such
widget «ists. Ifthe event occurred in the aete subset of the cascade but outside the spring-
loaded widget, it is detered normally before being dedred also to the spring-loaded widget.
Regardless of where it is dispatched, the Intrinsics do not modify the contents oktite e

To remove the redirection of user input to a modal widget, ¥d§eemoveGrab .

void XtRemoveGrabw)
Widgetw;

w Specifies the widget to rem® from the modal cascade.

The XtRemoveGrab function remees widgets from the modal cascade starting at the most
recent widget up to and including the specified widget. It issues a warning if the specified widget
is not on the modal cascade.

118

7.2.1. Requestindgey and Button Grabs

The Intrinsics provide a set ok and button grab interfaces that are parallel to those provided by
Xlib and that allev the Intrinsics to modifyeent dispatching when necessaby Toolkit applica-

tions and widgets that need to padsi grab leys or luttons or actiely grab the kyboard or

pointer should use the following Intrinsics routines rather than the corresponding Xlib routines.

To passvely grab a single &y o the keyboard, useXtGrabKey .

void XtGrabKey(widget keycode modifiers owner_eventgointer_modekeyboard mode
Widgetwidget
KeyCodekeycode
Modifiersmodifiers
Booleanowner_events
int pointer_modekeyboard_mode

widget Specifies the widget in whose winddhe ley is to be gabbed. Musbe of class
Core or ag subclass thereof.

keycode

modifiers

owner_events

pointer_mode

keyboard_mode
Specify arguments t¥GrabKey ; see Section 12.2 iKlib — C Languge X
Interface

XtGrabKey calls XGrabKey specifying the widget window as te grab windw if the widget

is realized. The remaining arguments are exactly ax@mabKey . If the widget is not realized,
or is later unrealized, the call XGrabKey is performed (again) when the widget is realized and
its window becomes mapped. In the future XitDispatchEvent is called with aKeyPressevent
matching the specifieceiicode and modifiers (which may BewyKey or AnyModifier , respec-
tively) for the widgets window, the Intrinsics will callXtUngrabKeyboard with the timestamp
from theKeyPressevaent if either of the following conditions is true:

* There is a modal cascade and the widget is not in theeawhiset of the cascade and the
keyboard was not previously grabbed, or

+ XFilterEvent returnsTrue.

To cancel a pasge key gab, useXtUngrabKey .

119

void XtUngrabkey(widget keycode modifiery
Widgetwidget
KeyCodekeycode
Modifiersmodifiers

widget Specifies the widget in whose windthe lkey was grabbed.

keycode
modifiers Specify arguments t&UngrabKey ; see Section 12.2 iKlib — C Languge X
Interface

The XtUngrabKey procedure callXUngrabKey specifying the widget' window as te ungrab
window if the widget is realized. The remaining arguments are exactly d3JiograbKey . If
the widget is not realizetUngrabKey removes a ceferredXtGrabKey request, if ap, for the
specified widget, &ycode, and modifiers.

To ectively grab the kyboard, useXtGrabKeyboard .

int XtGrabKeyboard{vidget owner_eventgpointer_modgekeyboard_modgtime)
Widgetwidget
Booleanowner_events
int pointer_modekeyboard_mode
Timetime

widget Specifies the widget for whose windthe keyboard is to be grabbed. Must be
of class Core or gnsubclass thereof.

owner_events

pointer_mode

keyboard_mode

time Specify arguments t¥GrabKeyboard ; see Section 12.2 iXlib — C Languge
X Interface

If the specified widget is realizedtGrabKeyboard calls XGrabKeyboard specifying the wid-
get’s window as he grab winda. The remaining arguments and return value are exactly as for
XGrabKeyboard . If the widget is not realizeXtGrabKeyboard immediately return&rab-
NotViewable. No future automatic ungrab is implied b§GrabKeyboard .

To cancel an acte keyboard grab, us&tUngrabKeyboard .

void XtUngrabKkeyboardvidget time)
Widgetwidget
Timetime

widget Specifies the widget that has the aetieyboard grab.
time Specifies the additional argumentXtngrabKeyboard ; see Section 12.2 in
Xlib — C Languge X hterface

XtUngrabKeyboard calls XUngrabKeyboard with the specified time.

120

To passvely grab a single pointer button, u¥¢GrabButton .

void XtGrabButtongidget button, modifiers owner_eventevent_maskpointer_mode
keyboard_modgeconfine_tocursor)
Widgetwidget
int button;
Modifiersmodifiers
Booleanowner_events
unsigned inevent_mask
int pointer_modekeyboard_modge
Windowconfine_to

Cursorcursor,
widget Specifies the widget in whose windehe button is to be grabbed. Must be of
class Core or gnsubclass thereof.
button
modifiers
owner_events
event_mask

pointer_mode

keyboard_mode

confine_to

cursor Specify arguments t¥GrabButton ; see Section 12.1 iXlib — C Languge X
Interface

XtGrabButton calls XGrabButton specifying the widget window as he grab windw if the
widget is realized. The remaining arguments are exactly asGoabButton . If the widget is
not realized, or is later unrealized, the calKi@rabButton is performed (again) when the wid-
get is realized and its windobecomes mapped. In the future XitDispatchEvent is called with
a ButtonPress event matching the specified button and modifiers (which ma&rbdutton or
AnyModifier , respectrely) for the widgets window, the Intrinsics will callXtUngrabPointer
with the timestamp from thButtonPressevent if either of the following conditions is true:

» There is a modal cascade and the widget is not in theeasbiset of the cascade and the
pointer was not previously grabbed, or

o XFilterEvent returnsTrue.

To cancel a paseé hutton grab, usXtUngrabButton .

121

void XtUngrabButtornidget button, modifierg
Widgetwidget
unsigned inbutton;
Modifiersmodifiers

widget Specifies the widget in whose windithe button was grabbed.

button

modifiers Specify arguments t¥UngrabButton ; see Section 12.1 iKlib — C Languge
X Interface

The XtUngrabButton procedure callXUngrabButton specifying the widge$' window as te
ungrab winduw if the widget is realized. The remaining arguments are exactly ¥dJiograb-
Button. If the widget is not realizec&tUngrabButton removes a ceferredXtGrabButton
request, if ap for the specified widget, button, and modifiers.

To ectively grab the pointese XtGrabPointer .

int XtGrabPointenfiidget owner_eventewent_maskpointer_modegkeyboard_mode
confine_tocursor, time)
Widgetwidget
Booleanowner_events
unsigned inevent_mask
int pointer_modekeyboard_mode
Windowconfine_to
Cursorcursor,
Timetime

widget Specifies the widget for whose windthe pointer is to be grabbed. Must be of
class Core or gnsubclass thereof.

owner_events

ewvent_mask

pointer_mode

keyboard_mode

confine_to

cursor

time Specify arguments t&GrabPointer ; see Section 12.1 iKlib — C Languge X
Interface

If the specified widget is realize¥tGrabPointer calls XGrabPointer, specifying the widget’s
window as he grab windw. The remaining arguments and return value are exactly as for
XGrabPointer . If the widget is not realizektGrabPointer immediately return&rab-
NotViewable. No future automatic ungrab is implied ByGrabPointer .

To cancel an actie pointer grab, us&tUngrabPointer .

122

void XtUngrabPointerfidget time)
Widgetwidget
Timetime

widget Specifies the widget that has the ae{inter grab.

time Specifies the time argumentXdJngrabPointer ; see Section 12.1 iXlib — C
Languaye X hterface

XtUngrabPointer calls XUngrabPointer with the specified time.

7.3. Focusing Events on a Child

To redirect lkeyboard input to a normal descendant of a widget without caliBgtinputFocus,
useXtSetKeyboardFocus

void XtSetKeyboardFocusubtree descendgnt
Widgetsubtreg descendant

subtree Specifies the subtree of the hierarébr which the kyboard focus is to be set.
Must be of class Core orysubclass thereof.

descendant Specifies either the normal (non-pop-up) descendasulzifeeto which
keyboard &ents are logically directed, ddone. Itis not an error to specify
None when no input focus was previously set. Must be of class Object or any
subclass thereof.

XtSetKeyboardFocuscausesXtDispatchEvent to remap kyboard &ents occurring within the
specified subtree and dispatch them to the specified descendant widget or to an dhtiestor
descendars’dass is hot a subclass of Core, the descendant is replaced by its closest windowed
ancestor.

When there is no modal cascadeytioard @ents can be dispatched to a widget in one of five
ways. Assumehe server deliered the gent to the windw for widget E (because of X input
focus, ley a keyboard grabs, or pointer position).

» If neither E nor apof E's ancestors hae redirected the é&yboard focus, or if thevent acti-
vated a grab for E as specified by a calKisrabKey with ary value ofowner_eventsor if
the leyboard is actiely grabbed by E witlowner_event&alse via XtGrabKeyboard or
XtGrabKey on a previous &y [ress, theent is dispatched to E.

» Begnning with the ancestor of E closest to the root that has redirectedytimakd focus or
E if no such ancestor exists, if the target of that focus redirection has in turn redirected the
keyboard focus, recungly follow this focus chain to find a widget F that has not redirected
focus.

— If Eis the final focus target widget F or a descendant tiféd~avent is dispatched to E.

- If Eis not F an acestor of For a cescendant of,Fand the gent actvated a grab for E as
specified by a call t&XtGrabKey for E, XtUngrabKeyboard is called.

- If Eis an ancestor of Fand the gent is a ley press, and either
+ E has grabbed thesk with XtGrabKey andowner_eventgalse, or

123

+ Ehas grabbed theek with XtGrabKey andowner_eventdr ue, and the coordinates
of the &ent are outside the rectangle specified byyggometry,
then the eent is dispatched to E.

— Otherwise, define A as the closest common ancestor of E and F:

+ Ifthere is an aote keyboard grab for anwidget via eitheiXtGrabKeyboard or
XtGrabKey on a previous éy press, or if no widget between F and A (noninalesi
has grabbed thesly and modifier combination witiXtGrabKey and ay value of
owner_eventghe event is dispatched to F.

+ Else, the gent is dispatched to the ancestor of F closest to A that has grabbexy the k
and modifier combination witiXtGrabKey .

When there is a modal cascade, if the final destination widget as identifiedi@bothe actve
subset of the cascade, thexd is dispatched; otherwise theesat is remapped to a spring-loaded
shell or discarded. Ryerdless of where it is dispatched, the Intrinsics do not modify the contents
of the event.

Whensubtreeor one of its descendants acquires the X input focus or the pointes mtm the
subtree such thaekboard &ents would nav be cklivered to the subtree,Bocusin event is gen-
erated for the descendanfibécusChangeevents hae keen selected by the descendant. Simi-
larly, whensubtreeloses the X input focus or theyboard focus for one of its ancestors;au-
sOut event is generated for descendanEdcusChangeevents hae keen selected by the descen-
dant.

A widget tree may also aedly manage the X server input focuo do s, a widget class speci-

fies an accept_focus procedure.
The accept_focus procedure pointer is of tifp&cceptFocusProc

typedef Boolean (*XtAcceptFocusProc)(Widget, Time?*);

Widgetw;
Time *time
w Specifies the widget.
time Specifies the X time of thevent causing the accept focus.

Widgets that need the input focus can ¥&ktinputFocus explicitly, pursuant to the restrictions

of thelnter-Client Communication Conventions Manu@b dlow outside agents, such as the
parent, to cause a widget to ¢ake input focus,\eery widget exports an accept_focus procedure.
The widget returns a value indicating whether it actually took the focus or not, so that the parent
can give the focus to another widgetVidgets that need to kmovhen thg lose the input focus

must use the Xlib focus notification mechanism explicitly (typically by specifying translations for
Focusln and FocusOut events). Wdgets classes thatves want the input focus should set the
accept_focusield to NULL.

To call a widgets accept_focus procedure, ul¢CallAcceptFocus.

124

Boolean XtCallAcceptFocus(time)

Widgetw;

Time *time
w Specifies the widget. Must be of class Core grsabclass thereof.
time Specifies the X time of thevent that is causing the focus change.

The XtCallAcceptFocus function calls the specified widgetccept _focus procedure, passing it
the specified widget and time, and returns what the accept_focus procedure returns. If
accept_focuss NULL, XtCallAcceptFocus returnsFalse.

7.3.1. Ewents for Drawables That Are Not a Widget's Window

Sometimes an application must handlengs for dravables that are not associated with widgets
in its widget tree. Examples include handli@gaphicsExposeand NOExposeevents on
Pixmaps, and handlinBropertyNotify events on the root winde.

To regster a dravable with the Intrinsics\ent dispatching, us&tRegisterDrawable.

void XtRegisterDravable(display, drawable widge)
Display *display;
Drawable drawable
Widgetwidget
display Specifies the dreable’s dsplay.
drawable Specifies the draable to register.
widget Specifies the widget to register thewlahle for.

XtRegisterDrawable associates the specified dable with the specified widget so that future
calls toXtwindowToWidget with the dravable will return the widget. The defaultent dis-
patcher will dispatch futurevents that arxie for the dravable to the widget in the same manner
as &ents that contain the widgetivindow.

If the dravable is already registered with another widget, or if thevelote is the windw of a
widget in the client widget tree, the results of callir{fRegisterDrawable are undefined.

To unregister a draable with the Intrinsicsyent dispatching, us&XtUnregisterDrawable.

void XtUnregisterDravable(display, drawablé
Display *display,
Drawable drawable
display Specifies the dveable’s dsplay.
drawable Specifies the dweable to unregister.

XtUnregisterDrawable removes an &sociation created witktRegisterDrawable. If the draw-
able is the winde of a widget in the cliens widget tree the results of callingtUnregister-
Drawable are undefined.

125

7.4. QueryingEvent Sources

The event manager providesal functions to examine and reagbets (including file and
timer events) that are in the queue. The next three functions are Intrinsicslegts of the
XPending, XPeekEvent, and XNextEvent Xlib calls.

To determine if there are grevents on the input queue for asgn goplication, useXtAppPend-
ing.

XtinputMask XtAppPending(pp_context
XtAppContextapp_context

app_context Specifies the application context that identifies the application to check.

The XtAppPending function returns a nonzero value if there arenés pending from the X
servertimer pending, other input sources pending, or signal sources pending. The value returned
is a bit mask that is the OR ¥tIMXEvent , XtIMTimer , XtIMAlternatelnput , and XtIM-

Signal (seeXtAppProcessEven). If there are nowents pendingXtAppPending flushes the

output buffers of each Display in the application context and returns zero.

To return the eent from the head of a\gin goplication’s input queue without removing input
from the queue, usktAppPeekEvent.

Boolean XtAppPeekEvergpp_contextevent_return
XtAppContextapp_context
XEvent *event_return

app_context Specifies the application context that identifies the application.
ewent_return Returns thewent information to the specifiedrent structure.

If there is an X eent in the queueXtAppPeekEvent copies it intoevent_returnand returns
True. If no Xinputis on the queu&tAppPeekEvent flushes the output buffers of each Dis-
play in the application context and blocks until some inputadadle (possibly calling some
timeout callbacks in the interim). If the nexiadable input is an X eent, XtAppPeekEvent fills
in event_returnand returnslr ue. Otherwise, the input is for an input source registered with
XtAppAddIinput , and XtAppPeekEvent returnsFalse.

To remove and return the went from the head of a\gin gpplication’s X event queue, usXtApp-
NextEvent.

The sample implementations provides XtAppPeekEvent as desciiadout callbacks are called
while blocking for input. If some input for an input sourceviilable, XtAppPeekEvent will
return Tr ue without returning anent.

126

void XtAppNextEventépp_contextevent_returr)
XtAppContextapp_context
XEvent *event_return

app_context Specifies the application context that identifies the application.
ewvent_return Returns theent information to the specifiedrent structure.

If the X event queue is emptyKtAppNextEvent flushes the X output buffers of each Display in
the application context and waits for anvemt while looking at the other input sources and time-
out values and calling srcallback procedures triggered by them. This wait time can be used for
background processing; see Section 7.8.

7.5. DispatchingEvents

The Intrinsics provide functions that dispatefergs to widgets or other application code. Every
client interested in X\@nts on a widget usestAddEventHandler to register whichwents it is
interested in and a proceduredet handler) to be called when theset happens in that windo
The translation manager automatically registgentechandlers for widgets that use translation
tables; see Chapter 10.

Applications that need direct control of the processing of different types of input should use
XtAppProcessEvent

void XtAppProcessEverdapp_contextmash
XtAppContextapp_context
XtinputMaskmask

app_context Specifies the application context that identifies the application for which to pro-
cess input.

mask Specifies what types o¥ents to process. The mask is the bitwise inglIS¥R
of ary combination ofXtIMXEvent , XtIMTimer , XtIMAlternatelnput , and
XtIMSignal . As a @nvenience,Intrinsic.h defines the symbolic nanml-
MAIl to be the bitwise inclugé OR of these four eent types.

The XtAppProcessEventfunction processes one timarput source, signal source, or ¥eat.

If there is no eent or input of the appropriate type to process, tkekppProcessEventblocks
until there is. If there is more than one type of inpailable to process, it is undefined which
will get processed. Usuallthis procedure is not called by client applications; &g pMain-
Loop. XtAppProcessEventprocesses timewents by calling ay appropriate timer callbacks,
input sources by calling grappropriate input callbacks, signal source by calling appropriate
signal callbacks, and Xvents by callingXtDispatchEvent.

When an X gent is recefed, it is passed tXtDispatchEvent, which calls the appropriaterent
handlers and passes them the widget, ¥eteand client-specific data registered with each pro-
cedure. Ifno handlers for thatvent are registered, theent is ignored and the dispatcher simply
returns.

127

To dspatch anent returned byXtAppNextEvent, retrieved directly from the Xlib queue, or
synthetically constructed, to anegstered gent filters or @ent handlers, calKtDispatchEvent.

Boolean XtDispatchEverg(eni
XEvent *event

ewent Specifies a pointer to theent structure to be dispatched to the appropriatate
handlers.

The XtDispatchEvent function first callsXFilterEvent with theeventand the windw of the
widget to which the Intrinsics intend to dispatch theng or the gent window if the Intrinsics
would not dispatch thevent to aty handlers. IfXFilterEvent returnsTr ue and the eent acti-
vated a server grab as identified by a previous cafit@rabKey or XtGrabButton , XtDis-
patchEvent calls XtUngrabKeyboard or XtUngrabPointer with the timestamp from thesent
and immediately return®rue. If XFilterEvent returnsTrue and a grab was not agted,
XtDispatchEvent just immediately return3r ue. Otherwise, XtDispatchEvent sends thewent
to the ent handler functions that x@ been previously registered with the dispatch routine.
XtDispatchEvent returnsTrue if XFilterEvent returnedTr ue, or if the event was dispatched
to some handleend False if it found no handler to which to dispatch thesst. XtDis-
patchEvent records the last timestamp inyagvent that contains a timestamp (Sét.ast-
TimestampProcesse} regardless of whether it was filtered or dispatched. If a modal cascade is
active with spring_loadedTr ue, and if the @ent is a remapwent as defined bXtAddGrab ,
XtDispatchEvent may dispatch thevent a second time. If it does s¥tDispatchEvent will

call XFilterEvent again with the winde of the spring-loaded widget prior to the second dis-
patch, and iXFilterEvent returnsTrue, the second dispatch will not be performed.

7.6. TheApplication Input Loop

To process all input from agén goplication in a continuous loop, use the wdrience procedure
XtAppMainLoop .

void XtAppMainLoop@pp_context
XtAppContextapp_context

app_context Specifies the application context that identifies the application.

The XtAppMainLoop function first reads the next incoming Xeat by calling XtAppNex-

tEvent and then dispatches theeat to the appropriate registered procedure by cakitigjs-
patchEvent. This constitutes the main loop of X Toolkit applications. There is nothing special
aboutXtAppMainLoop ; it simply calls XtAppNextEvent and thenXtDispatchEvent in a con-
ditional loop. At the bottom of the loop, it checks to see if the specified application context’s
destry flag is set. If the flag is set, the loop breaks. The whole loop is enclosed between a
matchingXtAppLock and XtAppUnlock .

Applications can provide their own version of this loop, which tests some global termination flag
or tests that the number of topdewidgets is larger than zero before circling back to the call to
XtAppNextEvent.

128

7.7. Settingand Checking the Sensitivity State of a Widget

Many widgets hae a node in which thg assume a different appearance (for example, are grayed
out or stippled), do not respond to usesrgs, and become dormant.

When dormant, a widget is considered to be inseesiti a widget is insensitie, the e/ent man-
ager does not dispatchyasvents to the widget with arnvent type ofKeyPress KeyRelease
ButtonPress, ButtonRelease MotionNotify , EnterNotify , LeaveNotify , Focuslin, or Focu-
sOut.

A widget can be insensrg kecause itsensitivdield is False or because one of its ancestors is
insensitve and thus the widget'ancestor_sensitiviéeld also isFalse. A widget can but does not
need to distinguish thesedawases visually.

Note

Pop-up shells will hae ancestor_sensitivEalse if the parent was insensid when

the shell was created. SinZgSetSensitve on the parent will not modify the

resource of the pop-up child, clients are advised to include a resource specification of
the form “*TransientShell.ancestorSengdi True” in the application defaults

resource file or to otherwise ensure that the parent is senaliten creating pop-up

shells.

To st the sensitivity state of a widget, ustSetSensitize.

void XtSetSensitie(w, sensitivg
Widgetw;,
Booleansensitive

w Specifies the widget. Must be of class RectObj grsabclass thereof.
sensitive Specifies whether the widget should reedeyboard, pointerand focus gents.

The XtSetSensitive function first callsXtSetValueson the current widget with an argument list
specifying the XtNsensite resource and the wevalue. Ifsensitivas False and the widget’s
class is a subclass of Compos¢SetSensitive recursvely propagates the mevalue down the
child tree by callingtSetValueson each child to seincestor_sensitivio False. If sensitivas
True and the widges dass is a subclass of Composite and the widgetestor_sensitivigeld

is True, XtSetSensitive sets theancestor_sensitivef each child tolr ue and then recurgely
calls XtSetValueson each normal descendant that i&/sensitve 1 setancestor_sensitivio
True.

XtSetSensitve calls XtSetValuesto change theensitiveandancestor_sensitivigelds of each
affected widget. Therefore, when one of these changes, the widget/alues procedure should
take whatever display actions are needed (for example, graying out or stippling the widget).

XtSetSensitive maintains the iveriant that, if the parent has eitts@ansitiveor ancestor_sensitive
False, then all children hae ancestor_sensitivEalse.

To check the current sensitivity state of a widget, XfsSensitive.

129

Boolean XtlsSensitig(w)
Widgetw;

w Specifies the object. Must be of class Object graabclass thereof.

The XtlsSensitive function returnsTr ue or False to indicate whether user inputeats are being
dispatched. Ibbjects dass is a subclass of RectObj and ks#hsitiveandancestor_sensitive
areTrue, XtlsSensitive returnsTr ue; otherwise, it returngalse.

7.8. AddingBackground Work Procedures

The Intrinsics hee ©me limited support for background processing. Because most applications
spend most of their time waiting for input, you can register an idle-time work procedure that is
called when the toolkit would otherwise blockXmAppNextEvent or XtAppProcessEvent

Work procedure pointers are of typ@WorkProc .

typedef Boolean (*XtWorkProc)(XtPointer);
XtPointerclient_data

client_ data Passes the client data specified when the work procedure was registered.

This procedure should retuiii ue when it is done to indicate that it should be reedo If the
procedure returnBalse, it will remain registered and called again when the application is next
idle. Work procedures should be very judicious abowt hmch the do. If they run for more
than a small part of a second, intenaeteel is likely to suffer.

To regster a work procedure for avgn gpplication, useXtAppAddWorkProc .

XtWorkProcld XtAppAddWorkPro&pp_contextproc, client_datg
XtAppContextapp_context
XtWorkProcproc;
XtPointerclient_data

app_context Specifies the application context that identifies the application.

proc Specifies the procedure to be called when the application is idle.
client_data Specifies the argument passed to the specified procedure when it is called.

The XtAppAddWorkProc function adds the specified work procedure for the application identi-
fied byapp_contexand returns an opaque unique identifier for this work procedure. Multiple
work procedures can be registered, and the most recently added avayssthe one that is

called. Havever, if a work procedure adds another work procedure, the newly added one has
lower priority than the current one.

To remove a work procedure, either retuffr ue from the procedure when it is called or use
XtRemoveWorkProc outside of the procedure.

130

void XtRemareWorkProc{d)
XtWorkProcldid;

id Specifies which work procedure to remo

The XtRemoveWorkProc function explicitly remwes the specified background work procedure.

7.9. XEvent Filters

The eent manager provides filters that can be applied to specifieids Thefilters, which
screen outents that are redundant or are temporarily unwanted, handle pointer motion compres-
sion, enter/leee mmpression, and exposure compression.

7.9.1. Pinter Motion Compression

Widgets can hae a fard time keeping up with a rapid stream of pointer moti@nts. Further
more, thg usually do not care abouv@y motion eent. To throw out redundant motionvents,
the widget class fieldompress_motioshould beTrue. When a request for awvent would
return a motionent, the Intrinsics check if there areyasther motion gents for the same wid-
get immediately following the current one and, if so, skip all but the last of them.

7.9.2. Enter/Leave Compression

To throw out pairs of enter and lea events that hee ro intervening gents, as can happen when
the user mees the pointer across a widget without stopping in it, the widget clasbaid
press_enterleavehould beTrue. These enter and lea events are not delered to the client if
they are found together in the input queue.

7.9.3. Exposue Compression

Many widgets prefer to process a series of exposumete as a single expose region rather than

as individual rectangleswidgets with compbedisplays might use the expose region as a clip list

in a graphics context, and widgets with simple displays might ignore the region entirely and redis-
play their whole winde or might get the bounding box from the region and redisplay only that
rectangle.

In either case, these widgets do not care about getting partial expasuse &hecom-
press_exposurield in the widget class structure specifies the type and number of exposure
events that are dispatched to the widgeXpose procedure. This field must be initialized to one
of the following values:

#define XtExposeNoCompress ((XtEnum)False)
#define XtExposeCompressSeries ((XtEnum)True)
#define XtExposeCompressMultiple <implementation-defined>
#define XtExposeCompressMaximal <implementation-defined>

optionally ORed with ancombination of the following flags (all with implementation-defined

131

values): XtExposeGraphicsExpose XtExposeGraphicsExposeMerged XtExposeNoExpose
and XtExposeNoRegion

If the compress_exposufield in the widget class structure does not speXtixposeNoCom-
press, the e/ent manager calls the widge&xpose procedure only once for a series of exposure
events. Inthis case, alExposeor GraphicsExposeevents are accumulated into gyien. When
the final @ent is receved, the @ent manager replaces the rectangle in treatewith the bounding
box for the region and calls the widgegkpose procedure, passing the modified expostamt e
and (unlessKtExposeNoRegionis specified) the ggon. For more information on regions, see
Section 16.5 irXlib — C Languge X hterface)

The values ha the following interpretation:

XtExposeNoCompress

No exposure compression is performedsrg selectedwent is individually dispatched to
the expose procedure withregion argument of NULL.

XtExposeCompressSeries

Each series of exposureents is coalesced into a singhest, which is dispatched when
an exposurevent with count equal to zero is reached.

XtExposeCompressMultiple

Consecutre sries of exposurevents are coalesced into a singler®, which is dispatched
when an exposuresent with count equal to zero is reached and either\taet gueue is
empty or the nextvent is not an exposurevent for the same widget.

XtExposeCompressMaximal

All expose series currently in the queue for the widget are coalesced into asingle e
without regard to intervening nonexposureeats. Ifa partial series is in the end of the
queue, the Intrinsics will block until the end of the series isvedei

The additional flags va the following meaning:

XtExposeGraphicsExpose

Specifies thaGraphicsExposeevents are also to be dispatched to the expose procedure.
GraphicsExposeevents are compressed, if specified, in the same manrexmEse
evets.

XtExposeGraphicsExposeMerged

Specifies in the case stExposeCompressMultiple and XtExposeCompressMaximal
that series ofsraphicsExposeand Exposeevents are to be compressed togethéth the
final event type determining the type of theeat passed to the expose procedure. If this
flag is not set, then only series of the san@ntetype as thevent at the head of the queue
are coalesced. This flag also impliég&ExposeGraphicsExpose

XtExposeNoExpose

132

Specifies thaNoExposeevents are also to be dispatched to the expose procebtiaEx-
poseevents are neer coalesced with other exposuneerts or with each other.

XtExposeNoRegion

Specifies that the final region argument passed to the expose procedure is NULL. The rect-
angle in the eent will still contain bounding box information for the entire series of com-
pressed exposur@aents. Thisoption saes processing time when the region is not needed

by the widget.

7.10. Widget Exposure and Visibility

Every primitive widget and some composite widgets display data on the screen by means of direct
Xlib calls. Widgets cannot simply write to the screen and forget whatthe=done. Thg must

keep enough state to redisplay the wiwdmr parts of it if a portion is obscured and then reex-

posed.

7.10.1. Redisplayf a Widget: The expose Procedure
The expose procedure pointer in a widget class is of XyR&poseProc.

typedef void (*XtExposeProc)(Widget, XEvent*, Region);
Widgetw;,
XEvent *event
Regionregion;

w Specifies the widget instance requiring redisplay.
ewent Specifies the exposurgeant giving the rectangle requiring redisplay.
region Specifies the union of all rectangles in this exposure sequence.

The redisplay of a widget upon exposure is the responsibility of the expose procedure in the wid-
get’s dass record. If a widget has no display semantics, it can specify NULL fexibeefield.

Many composite widgets seevnly as containers for their children and/éamo expose proce-

dure.

Note

If the exposeprocedure is NULL XtRealizeWidget fills in a default bit gravity of
NorthWestGravity before it calls the widget'realize procedure.

If the widget'scompress_exposundass field specifieXtExposeNoCompressor XtEx-
poseNoRegionor if the event type isNoOExpose(see Section 7.9.3)gionis NULL. If XtEx-
poseNoCompresss not specified and theant type is notNoExpose the event is the final gent

in the compressed series By, width, and heightcontain the bounding box for all the com-
pressedwents. Theregion is created and destroyed by the Intrinsics, but the widget is permitted
to modify the region contents.

A small simple widget (for example, Label) can ignore the bounding box information indfie e
and redisplay the entire windo A more complicated widget (for examplexd) can use the
bounding box information to minimize the amount of calculation and redisplay it doesry
complex widget uses the region as a clip list in a GC and ignores/éné¢ iaformation. The

133

expose procedure is not chained and is therefore responsible for exposure of all superclass data as
well as its own.

However, it often is possible to anticipate the display needsaraklevels of subclassingFor
example, rather than implement separate display procedures for the widgets Label, Pushbutton,
and Toggle, you could write a single display routine in Label that uses display state fields like

Boolean iwert;
Boolean highlight;
Dimension highlight_width;

Label would hae invertandhighlightalways False andhighlight_widthzero. Pushiton would
dynamically sehighlightandhighlight_width but it would leae invertalways False. Finally,

Toggle would dynamically set all three. In this case, the expose procedures for Pushbutton and
Toggle inherit their superclass&pose procedure; see Section 1.6.10.

7.10.2. Wdget Visibility

Some widgets may use substantial computing resources to produce theydail theplay.
However, this effort is wasted if the widget is not actually visible on the screen, that is, if the wid-
get is obscured by another application or is iconified.

Thevisiblefield in the core widget structure provides a hint to the widget that it need not compute
display data. This field is guaranteed toToee by the time an exposurgent is processed if
ary part of the widget is visible, but Balse if the widget is fully obscured.

Widgets can use or ignore thigible hint. If they ignore it, thg should hae visible_interesin
their widget class record sBalse. In such cases, thésiblefield is initialized Tr ue and neer
changes. I¥isible_interests True, the e/ent manager asks fofisibilityNotify events for the
widget and setsisibleto True on VisibilityUnobscured or VisibilityPartiallyObscured events
and False on VisibilityFullyObscured events.

7.11. XEvent Handlers

Event handlers are procedures called when specifeedseoccur in a widget. Most widgets need
not use eent handlers explicitly Instead, thguse the Intrinsics translation manag&vent han-
dler procedure pointers are of the tygEventHandler .

134

typedef void (*XtEventHandler)(Widget, XtPoinfé¢tEvent*, Boolean*);
Widgetw;
XtPointerclient_data
XEvent *event
Boolean tontinue_to_dispatch

w Specifies the widget for which theeat arrived.
client_data Specifies ay client-specific information registered with theest handler.
ewent Specifies the triggeringvent.

continue_to_dispatch
Specifies whether the remainingeet handlers registered for the currentre
should be called.

After receiving aneent and before calling grevent handlers, the Boolean pointed todmn-
tinue_to_dispatcls initialized toTrue. When an gent handler is called, it may decide that fur-
ther processing of thevent is not desirable and may stdfalse in this Boolean, in which case
ary handlers remaining to be called for thexg are ignored.

The circumstances under which the Intrinsics may addtéandlers to a widget are currently
implementation-dependent. Cliemist therefore benare that storing=alse into thecon-
tinue_to_dispatclargument can lead to portability problems.

7.11.1. Eent Handlers That Select Events
To regster an gent handler procedure with the dispatch mechanismXtaddEventHandler .

void XtAddEventHandlenf, event_masknonmaskableproc, client_datg
Widgetw;
EventMaskevent_mask
Booleannonmaskable
XtEventHandlelproc,
XtPointerclient_data

w Specifies the widget for which thigent handler is being gistered. Musbe of
class Core or ansubclass thereof.

ewent_mask Specifies thevent mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaslkatite e
(GraphicsExpose NoExpose SelectionClear, SelectionRequest Selection-
Notify , ClientMessage and MappingNotify).

proc Specifies the procedure to be called.
client data Specifies additional data to be passed to ¥eetdandler.

The XtAddEventHandler function registers a procedure with the dispatch mechanism that is to
be called when anvent that matches the mask occurs on the specified widget. Each widget has a
single registeredvent handler list, which will contain grprocedure/client_data pair exactly once
regardless of the manner in which it igyistered. Ifthe procedure is already registered with the
sameclient_datavalue, the specified mask augments the existing mask. If the widget is realized,
XtAddEventHandler calls XSelectinput, if necessary The order in which this procedure is

135

called relatve o other handlers registered for the sameneis not defined.

To remove a peviously registeredvent handleruse XtRemoveEventHandler.

void XtRemovreEventHandlery, event_masknonmaskablgproc, client_datg
Widgetw;
EventMaskevent_mask
Booleannonmaskable
XtEventHandlelproc;
XtPointerclient_data

w Specifies the widget for which this procedure gistered. Musbe of class Core
or ary subclass thereof.

event_mask Specifies thevent mask for which to unregister this procedure.

nonmaskable Specifies whether this procedure should be wthon the nonmaskablevents
(GraphicsExpose NoExpose SelectionClear, SelectionRequest Selection-
Notify , ClientMessage and MappingNotify).

proc Specifies the procedure to be resmh
client_data Specifies the registered client data.

The XtRemoveEventHandler function unregisters arvent handler registered witKtAddE-
ventHandler or XtinsertEventHandler for the specifiedwents. Therequest is ignored if
client_datadoes not match the valuevgn when the handler wasgistered. lithe widget is real-

ized and no othervent handler requires theyent, XtRemoveEventHandler calls XSelectin-

put. If the specified procedure has not been registered or if it has been registered with a different
value ofclient_data XtRemoveEventHandler returns without reporting an error.

To gop a procedure registered wiXtAddEventHandler or XtinsertEventHandler from
receiving all selectedvents, callXtRemoveEventHandler with anevent_maslof XtAllEvents
andnonmaskabldrue. The procedure will continue to regeiany gents that hae keen speci-
fied in calls toXtAddRawEventHandler or XtinsertRawEventHandler .

To regster an gent handler procedure that reees events before or after all previously registered
event handlers, usXtinsertEventHandler .

136

typedef enum {XtListHead, XtListTail} XtListPosition;

void XtinsertEventHandlew, event_masknonmaskablgproc, client_data positior)
Widgetw;,
EventMaskevent_mask
Booleannonmaskable
XtEventHandleiproc;
XtPointerclient_data
XtListPositionpositior

w Specifies the widget for which thigaemt handler is being registered. Must be of
class Core or gnsubclass thereof.
ewent_mask Specifies theveent mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskatite e
(GraphicsExpose NoExpose SelectionClear, SelectionRequest Selection-
Notify, ClientMessage and MappingNotify).

proc Specifies the procedure to be called.
client_data Specifies additional data to be passed to the dierght handler.
position Specifies when thevent handler is to be called rehaito other previously regis-

tered handlers.

XtinsertEventHandler is identical toXtAddEventHandler with the additionapositionargu-
ment. Ifpositionis XtListHead , the event handler is registered so that it is called before any
event handlers that were previously registered for the same widgedsitfonis XtListTail , the
event handler is registered to be called after previously registeredvent handlers. If the pro-
cedure is already registered with the safient_datavalue, the specified mask augments the
existing mask and the procedure is repositioned in the list.

7.11.2. Eent Handlers That Do Not Select Events

On occasion, clients need to register anehandler procedure with the dispatch mechanism
without explicitly causing the X server to select for thané To do his, useXtAddRawEven-
tHandler .

137

void XtAddRawEventHandlew(, event_masknonmaskablgeproc, client_datg
Widgetw;
EventMaskevent_mask
Booleannonmaskable
XtEventHandlelproc;
XtPointerclient_data

w Specifies the widget for which thisemt handler is being registered. Must be of
class Core or gnsubclass thereof.

event_mask Specifies thewent mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskaite e
(GraphicsExpose NoExpose SelectionClear, SelectionRequest Selection-
Notify , ClientMessage and MappingNotify).

proc Specifies the procedure to be called.
client_data Specifies additional data to be passed to the dierght handler.

The XtAddRawEventHandler function is similar toXtAddEventHandler except that it does
not affect the widget' event mask and ner causes arXSelectinput for its events. Notethat the
widget might already he those mask bits set because of other nexent handlers registered
on it. If the procedure is already registered with the szlieet_data the specified mask aug-
ments the existing mask. The order in which this procedure is calledediatther handlers
registered for the sameant is not defined.

To remove a peviously registered vaevent handleruse XtRemoveRawEventHandler.

void XtRemoreRawEventHandlew(, event_masknonmaskablgproc, client_datg
Widgetw;,
EventMaskevent_mask
Booleannonmaskable
XtEventHandlelproc,
XtPointerclient_data

w Specifies the widget for which this procedure gisered. Musbe of class Core
or ary subclass thereof.

event_mask Specifies thewent mask for which to unregister this procedure.

nonmaskable Specifies whether this procedure should be xethon he nhonmaskablevents
(GraphicsExpose NoExpose SelectionClear, SelectionRequest Selection-
Notify , ClientMessage and MappingNotify).

proc Specifies the procedure to be registered.
client data Specifies the registered client data.

The XtRemoveRawEventHandler function unregisters arvent handler registered witktAd-
dRawEventHandler or XtinsertRawEventHandler for the specifiedweents without changing
the windav event mask. The request is ignoredtiifient_datadoes not match the valuevgn

when the handler wasgistered. Ifthe specified procedure has not been registered or if it has
been registered with a different valuectiént_data XtRemoveRawEventHandler returns with-
out reporting an error.

138

To gop a procedure registered wiXtAddRawEventHandler or XtinsertRawEventHandler
from receiving all nonselectedents, callXtRemoveRawEventHandler with anevent_maslof
XtAllEvents andnonmaskabldrue. The procedure will continue to regeiany gents that
have keen specified in calls t§tAddEventHandler or XtinsertEventHandler .

To regster an gent handler procedure that reees events before or after all previously registered
event handlers without selecting for theeats, useXtinsertRawEventHandler .

void XtinsertRawEventHandler event_masknonmaskablgproc, client_data position
Widgetw;
EventMaskevent_mask
Booleannonmaskable
XtEventHandlelproc;
XtPointerclient_data
XtListPositionpositior

w Specifies the widget for which thisemt handler is being registered. Must be of
class Core or gnsubclass thereof.
event_mask Specifies thewent mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskaiite e
(GraphicsExpose NoExpose SelectionClear, SelectionRequest Selection-
Notify , ClientMessage and MappingNotify).

proc Specifies the procedure to be registered.
client_data Specifies additional data to be passed to the dierght handler.
position Specifies when thevent handler is to be called rehaito other previously regis-

tered handlers.

The XtinsertRawEventHandler function is similar toXtinsertEventHandler except that it
does not modify the widgetevent mask and ner causes arXSelectinput for the specified
events. Ifthe procedure is already registered with the saimat_datavalue, the specified mask
augments the existing mask and the procedure is repositioned in the list.

7.11.3. Current Event Mask
To retrieve the event mask for a gien widget, usexXtBuildEventMask .

EventMask XtBuildEventMask()
Widgetw;

w Specifies the widget. Must be of class Core grsabclass thereof.

The XtBuildEventMask function returns thevent mask representing the logical OR of aibr&
masks for eent handlers registered on the widget wittAddEventHandler and XtIn-
sertEventHandler and all @ent translations, including accelerators, installed on the widget.
This is the samevent mask stored into thESetWindowAttributes structure byXtRealizeWid-
get and sent to the server wherest handlers and translations are installed or kedhon he
realized widget.

139

7.11.4. Eent Handlers for X11 Protocol Extensions

To regster an gent handler procedure with the Intrinsics dispatch mechanism according to an
event type, useXtinsertEventTypeHandler .

void XtinsertEventTypeHandlerjdget event_typeselect_dataproc, client_data position
Widgetwidget
int event_type
XtPointerselect_data
XtEventHandlelproc;
XtPointerclient_data
XtListPositionposition

widget Specifies the widget for which thisemt handler is being gistered. Musbe of
class Core or gnsubclass thereof.

ewent_type Specifies thewent type for which to call thisvent handler.

select _data Specifies data used to requegdras of the specified type from the senaer

NULL.
proc Specifies thevent handler to be called.
client_data Specifies additional data to be passed to ¥eetdandler.
position Specifies when thevent handler is to be called reladito other previously regis-

tered handlers.

XtinsertEventTypeHandler registers a procedure with the dispatch mechanism that is to be
called when anwent that matches the specifiednt_typds dispatched to the specifiaddget

If event_typespecifies one of the core X protoceksts, therselect_datanust be a pointer to a
value of typeEventMask, indicating the eent mask to be used to select for the desixedte
This event mask is included in the value returnediBuildEventMask . If the widget is real-
ized, XtInsertEventTypeHandler calls XSelectinput if necessary Specifying NULL for
select_datas equvalent to specifying a pointer to amemt mask containing 0. This is similar to
the XtinsertRawEventHandler function.

If event_typespecifies an extensionent type, then the semantics of the data pointed to by
select_datare defined by the extension selector registered for the spevii@dype.

In either case the Intrinsics are not required to/¢bp data pointed to Iselect_dataso he
caller must ensure that it remains valid as long aswviag Bandler remains registered with this
value ofselect_data

Thepositionargument allows the client to control the order ebaation of @ent handlers regis-
tered for the samevent type. If the client does not care about the giitlehould normally spec-
ify XtListTail , which registers thisvent handler after gnpreviously registered handlers for this
event type.

Each widget has a single registergdng handler list, which will contain grproce-
dure/client_data pair exactly once if it is registered WitinsertEventTypeHandler, regadless

of the manner in which it is registered angadless of the value(s) sklect_data If the proce-
dure is already registered with the sastient_datavalue, the specified mask augments the exist-
ing mask and the procedure is repositioned in the list.

140

To remove an event handler registered witktinsertEventTypeHandler , use XtRemoveEvent-
TypeHandler.

void XtRemoreEventTypeHandlewjidget event_typeselect_dataproc, client_datg
Widgetwidget
int event_type
XtPointerselect_data
XtEventHandlelproc;
XtPointerclient_data

widget Specifies the widget for which theeat handler was gistered. Musbe of class
Core or ag subclass thereof.
ewent_type Specifies thevent type for which the handler was registered.

select data Specifies data used to deseleanés of the specified type from the senaer
NULL.

proc Specifies thewent handler to be remved.
client_data Specifies the additional client data with which the procedure was registered.

The XtRemoveEventTypeHandler function unregisters arvent handler registered witKtIn-
sertEventTypeHandler for the specifiedwent type. The request is ignorectifent_datadoes
not match the value ¥gn when the handler was registered.

If event_typespecifies one of the core X protocuksts,select_datanust be a pointer to a value
of type EventMask,indicating mask to be used to deselect for the appropriate. elf the wid-
get is realizedXtRemoveEventTypeHandler calls XSelectinput if necessary Specifying

NULL for select datas equvalent to specifying a pointer to amemt mask containing 0. This is
similar to theXtRemoveRawEventHandler function.

If event_typespecifies an extensionent type, then the semantics of the data pointed to by
select_datare defined by the extension selector registered for the speviigdype.

To regster a procedure to select extensivengs for a widget, usXtRegisterExtensionSelec-
tor .

141

void XtRegisterExtensionSelectdigplay, min_event_typanax_event_typeroc,
client_datg
Display*display;,
int min_event_type
int max_event_type
XtExtensionSelectProgroc;
XtPointerclient_data

display Specifies the display for which the extension selector is to be registered.
min_event_type

max_event_type Specifies the range ofent types for the extension.

proc Specifies the extension selector procedure.

client_data Specifies additional data to be passed to the extension selector.

The XtRegisterExtensionSelectorfunction registers a procedure to arrange for theatgliof
extension gents to widgets.

If min_event_typandmax_event_typeatch the parameters to a previous caKtBegisterEx-
tensionSelectorfor the samalisplay, thenproc andclient_datareplace the previously registered
vaues. Ifthe range specified byin_event_typandmax_event_typeverlaps the range of the
parameters to a previous call for the same displayyiroter way an eror results.

When a widget is realized, after tbererealize method is called, the Intrinsics check to see if
ary event handler specifies awent type within the range of a registered extension selelfteo,
the Intrinsics call each such selecttfran event type handler is added or rewed, the Intrinsics
check to see if thevent type falls within the range of a registered extension sejeoibif it

does, calls the selectom dther case the Intrinsics pass a list of all the widgaent types that
are within the select@’range. Theorresponding select data are also passed. The selector is
responsible for enabling the dediy of extension eents required by the widget.

An extension selector is of typ&@ExtensionSelectProc

typedef void (*XtExtensionSelectProc)(Widget, int *, XtPointer *, int, XtPaointer);
Widgetwidget
int *event_types
XtPointer *select_data
int count
XtPointerclient_data

widget Specifies the widget that is being realized or is havingremt @andler added or
removed.
ewent_types Specifies a list ofvent types that the widget has registereehe handlers for.

select_data Specifies a list of the select_data parameters specifistdrisertEventType-
Handler.

count Specifies the number of entries in thent_typesandselect_datdists.
client_data Specifies the additional client data with which the procedure was registered.

Theewent_typesndselect_datdists will always hare the same number of elements, specified by

142

count Each eent type/select data pair represents one caflttosertEventTypeHandler .

To regster a procedure to dispatcherts of a specific type withiXtDispatchEvent, use
XtSetEventDispatcher.

XtEventDispatchProc XtSetEventDispatchisplay, event_typeproc)
Display *display,
int event_type
XtEventDispatchProproc;

display Specifies the display for which theeat dispatcher is to be registered.
ewent_type Specifies thevent type for which the dispatcher should beoked.
proc Specifies thevent dispatcher procedure.

The XtSetEventDispatcherfunction registers thevent dispatcher procedure specifieddrgc
for events with the typeevent_type The previously registered dispatcher (or the default dis-
patcher if there was no previously registered dispatcher) is returngabc 1§ NULL, the default
procedure is restored for the specified type.

In the future, wherXtDispatchEvent is called with anent type ofevent_typethe specified
proc (or the default dispatcher) isvivked to determine a widget to which to dispatch tivers.

The default dispatcher handles the Intrinsics modal cascadeymhkd focus mechanisms,
handles the semantics @dmpress_enterleaadcompress_motigrand discards all extension
evants.

An event dispatcher procedure pointer is of tygEventDispatchProc.

typedef Boolean (*XtEventDispatchProc)(XEvent*)
XEvent *event

ewent Passes thewent to be dispatched.

The event dispatcher procedure should determine whetherbig & of a type that should be
dispatched to a widget.

If the event should be dispatched to a widget, thenedispatcher procedure should determine the
appropriate widget to reaa the event, call XFilterEvent with the windav of this widget, or

None if the event is to be discarded, andXfFilterEvent returnsFalse, dispatch the went to the
widget usingXtDispatchEventToWidget. The procedure should retufimue if either XFil-
terEvent or XtDispatchEventToWidget returnedTr ue and False otherwise.

If the event should not be dispatched to a widget, Nentdispatcher procedure should attempt
to dispatch thewvent elsewhere as appropriate and reflirne if it successfully dispatched the
event andFalse otherwise.

Some dispatchers for extensioregts may wish to forwardvents according to the Intrinsics’
keyboard focus mechanisnio determine which widget is the end result effkoard @ent for-
warding, useXtGetKeyboardFocusWidget

143

Widget XtGetkeyboardFocusWidgeifidge)
Widgetwidget

widget Specifies the widget to get forwarding information for.

The XtGetKeyboardFocusWidget function returns the widget that would be the end result of
keyboard &ent forwarding for a kyboard @ent for the specified widget.

To dspatch anent to a specified widget, uséDispatchEventToWidget.

Boolean XtDispatchEventToWidgetidget eveni
Widgetwidget
XEvent *event

widget Specifies the widget to which to dispatch thene
ewent Specifies a pointer to theent to be dispatched.

The XtDispatchEventToWidget function scans the list of registeredbet handlers for the speci-
fied widget and calls each handler that has been registered for the speeiftagpe, subject to
thecontinue_to_dispatctialue returned by each handlérhe Intrinsics behea &s if event han-

dlers were registered at the head of the lisExpose NoExpose GraphicsExpose and Visi-
bilityNotify events to irvoke the widgets expose procedure according to the exposure compres-
sion rules and to update the widgefisiblefield if visible_interests True. These internalvent
handlers neer setcontinue_to_dispatcto False.

XtDispatchEventToWidget returnsTr ue if any event handler was called ariehlse otherwise.

7.12. Usingthe Intrinsics in a Multi-Threaded Environment

The Intrinsics may be used in environments that offer multiple threadsaftion within the
context of a single procesé multi-threaded application using the Intrinsics must explicitly ini-
tialize the toolkit for mutually excluse access by callingKtToolkitThreadinitialize .

7.12.1. Initializing a Multi-Threaded Intrinsics Application

To test and initialize Intrinsics support for mutually excheshread access, caltToolkit-
Threadlnitialize .

Boolean XtToolkitThreadinitialize()

XtToolkitThreadlnitialize returnsTrueif the Intrinsics support mutually exclusi thread
access, otherwise it returRalse XtToolkitThreadInitialize must be called befor&tCre-
ateApplicationContext, XtApplnitialize , XtOpenApplication, or XtSetLanguageProcis
called.XtToolkitThreadInitialize may be called more than once; hearethe application writer
must ensure that it is not called simultaneously iy dwmore threads.

144

7.12.2. LockingX Toolkit Data Structures

The Intrinsics employs twlevds of locking: application context and process. Locking an appli-
cation context ensures mutually excleseccess by a thread to the state associated with the appli-
cation context, including all displays and widgets associated with it. Locking a process ensures
mutually exclusie access by a thread to Intrinsics process global data.

A client may acquire a lock multiple times and the effect is cunwvelafihe client must ensure
that the lock is released an equal number of times in order for the lock to be acquired by another
thread.

Most application writers will hze little need to use locking as the Intrinsics performs the neces-
sary locking internally Resource corerters are anx@eption. Thg require the application con-
text or process to be locked before the application can safely call them dimatiyample:

XtAppLock(app_context);
XtCvtStringToPixel(dy, args, num_args, fromVal, toVal, closure_ret);
XtAppUnlock(app_context);

When the application relies upattConvertAndStore or a cowerter to provide the storage for
the results of a camrsion, the application should acquire the process lock before calling out and
hold the lock until the results i been copied.

Application writers who write their own utility functions, such as one which vesitie
being_destroyed field from a widget instance, must lock the application context before accessing
widget internal dataFor example:

#include <X11/CoreP.h>

Boolean BeingDestroyed (widget)
Widget widget;

{

Boolean ret;
XtAppLock(XtWidgetToApplicationContext(widget));
ret = widget->core.being_destroyed,;
XtAppUnlock(XtWidgetToApplicationContext(widget));
return ret;

}

A client that wishes to atomically call onor nmore Intrinsics functions must lock the application
contt. For example:

XtAppLock(XtWidgetToApplicationContext(widget));
XtUnmanageChild (widgetl);

XtManageChild (widget?2);
XtAppUnlock(XtWidgetToApplicationContext(widget));

7.12.2.1. Lockingthe Application Context

To ensure mutual exclusion of application context, disptayidget internal state, us&tAp-
pLock.

145

void XtAppLock(@app_context
XtAppContextapp_context

app_context Specifies the application context to lock.

XtAppLock blocks until it is able to acquire the lock. Locking the application context also
ensures that only the thread holding the lock makes Xlib calls from within Xt. An application
that makes its own direct Xlib calls must either lock the application context areemyccall or
enable thread locking in Xlib.

To wnlock a locked application context, useAppUnlock.

void XtAppUnlock@pp_context
XtAppContextapp_context

app_context Specifies the application context that was previously locked.

7.12.2.2. Lockingthe Process

To ensure mutual exclusion of X Toolkit process global data, a widget writer muXtiBss
cessLock.

void XtProcessLock()

XtProcessLockblocks until it is able to acquire the locWidget writers may use XtProcessLock
to guarantee mutually exclusi access to widget static data.

To unlock a locked process, u¥gProcessUnlock

void XtProcessUnlock()

To lock both an application context and the process at the same timétAqgdlock first and
then XtProcessLock To release both locks, calltProcessUnlockfirst and thenXtAppUn-
lock. The order is important tovaid deadlock.

7.12.3. Eent Management in a Multi-Threaded Environment

In a nonthreaded environment an application writer could reasonably assume that it is safe to exit
the application from a quit callback. This assumption may no longer hold true in a multi-threaded
environment; therefore it is desirable to provide a mechanism to terminaten&ipecessing

loop without necessarily terminating its thread.

To indicate that thevent loop should terminate after the currevire dispatch has completed,
useXtAppSetExitFlag .

146

void XtAppSetExitFlagapp_context
XtAppContextapp_context

app_context Specifies the application context.

XtAppMainLoop tests the value of the flag and will return if the flagrise.

Application writers who implement their own main loop may test the value of the exit flag with
XtAppGetExitFlag .

Boolean XtAppGetExitFlagpp_context
XtAppContextapp_context

app_context Specifies the application context.

XtAppGetExitFlag will normally returnFalse, indicating that eent processing may continue.
When XtAppGetExitFlag returnsTr ue, the loop must terminate and return to the calidich
might then destrpthe application context.

Application writers should bensare that, if a thread is blocked KtAppNextEvent,
XtAppPeekEvent, or XtAppProcessEventand another thread in the same application context
opens a ne display, adds an alternate input, or a timeouty aew urce(s) will not normally be
"noticed" by the blocked thread. gumew urces are "noticed" the next time one of these func-
tions is called.

The Intrinsics manage access verds on a last-in, first-out basis. If multiple threads in the same
application context block iXtAppNextEvent, XtAppPeekEvent, or XtAppProcessEvent the
last thread to call one of these functions is the first thread to return.

147

Chapter 8

Callbacks

Applications and other widgets often need to register a procedure with a widget that gets called
under certain prespecified conditiortsor example, when a widget is destroyedery procedure
on the widget'slestroy_callbacksst is called to notify clients of the widgetmpending doom.

Every widget has an XtNdestroyCallbacks callback list resolidgets can define additional
callback lists as thesee fit. For example, the Pushbutton widget has a callback list to notify
clients when the button has been\atéd.

Except where otherwise noted, it is the intent that all Intrinsics functions may be called at any
time, including from within callback procedures, action routines, aeat dandlers.

8.1. UsingCallback Procedure and Callback List Definitions
Callback procedure pointers for use in callback lists are ofX¢@allbackProc.

typedef void (*XtCallbackProc)(Widget, XtPoiniettPointer);
Widgetw;,
XtPointerclient_data
XtPointercall_datg

w Specifies the widget owning the list in which the callback is registered.

client_ data Specifies additional data supplied by the client when the procedure was regis-
tered.

call_data Specifies ap callback-specific data the widget wants to pass to the clieont.

example, wherScrollbar eecutes its XtNthumbChanged callback list, it passes
the nev position of the thumb.

Theclient_dataargument provides a way for the client registering the callback procedure also to
register client-specific data, for example, a pointer to additional information about the widget, a
reason for isoking the callback, and so on. Thient_datavalue may be NULL if all necessary
information is in the widget. Theall _dataargument is a caenience to woid having simple

cases where the client could otherwisgagbk call XtGetValues or a widget-specific function to
retrieve data from the widgetWidgets should generallyaid putting complg state information

in call_data The client can use the more general data x@tneethods, if necessary.

Whenever a dient wants to pass a callback list as an argument Kt@neateWidget, XtSetVal-
ues, or XtGetValues call, it should specify the address of a NULL-terminated array of type
XtCallbackList .

148

typedef struct {
XtCallbackProc callback;
XtPointer closure;

} X tCallbackRec, *XtCallbackList;

For example, the callback list for procedures A and B with client data clientDataA and client-
DataB, respectgly, is

static XtCallbackRec callbacks[] = {
{A, (XtPointer) clientDataA},
{B, (XtPointer) clientDataB},
{(XtCallbackProc) NULL, (XtPointer) NULL}

3

Although callback lists are passed by address in arglists and varargs lists, the Intrinsics recognize
callback lists through the widget resource list and willyahie contents when necessawidget

initialize and set_values procedures should not allocate memory for the callback list contents.
The Intrinsics automatically do this, potentially using a different structure for their internal repre-
sentation.

8.2. Identifying Callback Lists

Wheneer a widget contains a callback list for use by clients, it also exports in its public .h file the
resource name of the callback list. Applications and client widgets aecess callback list

fields directly Instead, theaways identify the desired callback list by using the exported
resource name. All the callback manipulation functions described in this chapter ¥tCalbt
CallbackList check to see that the requested callback list is indeed implemented by the widget.

For the Intrinsics to find and correctly handle callback listsy thest be declared with a resource
type of XtRCallback. The internal representation of a callback list is implementation-depen-
dent; widgets may ma&kno asumptions about the value stored in this resource if it is non-NULL.
Except to compare the value to NULL (which is eglént to XtCallbackStatus XtCallback-
HasNone), access to callback list resources must be made through other Intrinsics procedures.

8.3. AddingCallback Procedures
To add a callback procedure to a widgatallback list, useXtAddCallback .

149

void XtAddCallbackgv, callback_namegcallback client_datg
Widgetw;
Stringcallback_namg
XtCallbackProcacallback
XtPointerclient_data

w Specifies the widget. Must be of class Object grsaclass thereof.
callback_nameSpecifies the callback list to which the procedure is to be appended.
callback Specifies the callback procedure.

client_data Specifies additional data to be passed to the specified procedure when it is
invoked, or NULL.

A callback will be ivoked as mary times as it occurs in the callback list.

To add a list of callback procedures to aami widget's allback list, useXtAddCallbacks .

void XtAddCallbacksg, callback_namgcallback9
Widgetw;
Stringcallback_namg
XtCallbackListcallbacks

w Specifies the widget. Must be of class Object grsabclass thereof.

callback_nameSpecifies the callback list to which the procedures are to be appended.

callbacks Specifies the null-terminated list of callback procedures and corresponding client
data.

8.4. Remwing Callback Procedures
To celete a callback procedure from a widgetiliback list, useXxtRemoveCallback.

void XtRemoreCallback{v, callback_namgcallback client_datg
Widgetw;
Stringcallback_namg
XtCallbackProacallback
XtPointerclient_data

w Specifies the widget. Must be of class Object grsaclass thereof.
callback_nameSpecifies the callback list from which the procedure is to be deleted.
callback Specifies the callback procedure.

client_data Specifies the client data to match with the registered callback entry.

The XtRemoveCallback function remees a @llback only if both the procedure and the client
data match.

To delete a list of callback procedures from eegiwidget’s callback list, useXtRemoveCall-
backs.

150

void XtRemaveCallbacksy, callback_namgcallbackg
Widgetw;
Stringcallback_namg
XtCallbackListcallbacks

w Specifies the widget. Must be of class Object grsabclass thereof.

callback_nameSpecifies the callback list from which the procedures are to be deleted.

callbacks Specifies the null-terminated list of callback procedures and corresponding client
data.

To delete all callback procedures from &egi widget's allback list and free all storage associ-
ated with the callback list, usé&RemoveAllCallbacks.

void XtRemaoveAllCallbacksv, callback_namg

Widgetw;

Stringcallback_namg
w Specifies the widget. Must be of class Object grsabclass thereof.
callback_nameSpecifies the callback list to be cleared.

8.5. ExecutingCallback Procedures

To execute the procedures in avgn widget's allback list, specifying the callback list by
resource name, uséCallCallbacks.

void XtCallCallbacks{, callback namgcall_datg

Widgetw;,

Stringcallback_namg

XtPointercall_datg
w Specifies the widget. Must be of class Object grsabclass thereof.
callback_nameSpecifies the callback list to breeuted.

call_data Specifies a callback-list-specific data value to pass to each of the callback proce-
dure in the list, or NULL.

XtCallCallbacks calls each of the callback procedures in the list nameshliyack _namén the
specified widget, passing the client data registered with the proceduelbdata

To execute the procedures in a callback list, specifying the callback list by addre3&Qadie
CallbackList .

151

void XtCallCallbackListvidget callbacks call_datg
Widgetwidget
XtCallbackListcallbacks
XtPointercall_datg

widget Specifies the widget instance that contains the callback list. Must be of class
Object or ag subclass thereof.

callbacks Specifies the callback list to breeuted.

call_data Specifies a callback-list-specific data value to pass to each of the callback proce-

dures in the list, or NULL.

Thecallbacksparameter must specify the contents of a widget or object resource declared with
representation typ¥tRCallback . If callbacksis NULL, XtCallCallbackList returns immedi-
ately; otherwise it calls each of the callback procedures in the list, passing the client data and
call_data

8.6. Checkingthe Status of a Callback List
To find out the status of avgn widget’s aallback list, useXtHasCallbacks.

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome} XtCallbackStatus;

XtCallbackStatus XtHasCallbacks(callback _nampg
Widgetw;,
Stringcallback_namg

w Specifies the widget. Must be of class Object grsabclass thereof.
callback_nameSpecifies the callback list to be checked.

The XtHasCallbacks function first checks to see if the widget has a callback list identified by
callback_name If the callback list does not exis{tHasCallbacks returnsXtCallbackNoList .

If the callback list exists but is emptyreturnsXtCallbackHasNone. If the callback list exists
and has at least one callback registered, it rett@allbackHasSome

152

Chapter 9

Resource Management

A resource is a field in the widget record with a corresponding resource entryaadheedist

of the widget or ayof its superclasses. This means that the field is settab{¢CreateWidget

(by naming the field in the argument list), by an entry in a resource file (by using either the name
or class), and btSetValues. In addition, it is readable bXtGetValues. Not all fields in a

widget record are resources. Some are for bookkeeping use by the generic routinesndike

aged andbeing_destroyed Otherscan be for local bookkeeping, and still others arevegri

from resources (magraphics contexts and pixmaps).

Widgets typically need to obtain a large set of resources at widget creation time. Some of the
resources come from the argument list supplied in the c&liGoeateWidget, some from the

resource database, and some from the internal defaults specified by the widget. Resources are
obtained first from the argument list, then from the resource database for all resources not speci-
fied in the argument list, and last, from the internal default, if needed.

9.1. Resouce Lists

A resource entry specifies a field in the widget, the textual name and class of the field that argu-
ment lists and external resource files use to refer to the field, and a default value that the field
should get if no value is specified. The declaration foidtigesource structure is

typedef struct {
String resource_name;
String resource_class;
String resource_type;
Cardinal resource_size;
Cardinal resource_offset;
String default_type;
XtPointer default_addr;

} XtResource, *XtResourcelList;

When the resource list is specified as@weClassPart ObjectClassPart, RectObjClass-

Part , or ConstraintClassPart resourcedield, the strings pointed to bgsource_name
resource_clasgesource_typeand default_typanust be permanently allocated prior to or during
the eecution of the class initialization procedure and must not be subsequently deallocated.

Theresource_naméeld contains the name used by clients to access the field in the widget. By
corvention, it starts with a lowercase letter and is spelled exac#ytifield name, except all
underscores (_) are deleted and the next letter is replaced by its uppercase couRte gpa-

ple, the resource name for background_pixel becomes backgroahdResourc@ames begin-

ning with the two-character sequence “xt”, and resource classes beginning with the two-character
sequence “Xt'are reserved to the Intrinsics for future standard and implementation-dependent

153

uses. Vilget header files typically contain a symbolic name for each resource name. All
resource names, classes, and types used by the Intrinsics are naidgdl/BtrngDefs.h>. The
Intrinsics’s ymbolic resource names begin with “XtNind are followed by the string name (for
example, XtNbackgroundPixel for backgroundPixel).

Theresource_clas§ield contains the class string used in resource specification files to identify
the field. A resource class providesaunctions:

. It isolates an application from different representations that widgets can use for a similar
resource.
. It lets you specify values forvaal actual resources with a single nameresource class

should be chosen to span a group of closely related fields.

For example, a widget can i@ ®veaal pixel resources: background, foreground, bofdeck

cursor pointer cursorand so on. Typically, the background defaults to white anergthing else

to black. The resource class for each of these resources in the resource list should be chosen so
that it takes the minimal number of entries in the resource databaseadhmakckgroundsory

and &erything else darkblue.

In this case, the background pixel shouldeha esource class of “Backgroundnd all the other
pixel entries a resource class of “Foreground@hen,the resource file needs onlydwnes to
change all pixels tosory or darkblue:

*Background: vory
*Foreground: darkblue

Similarly, a widget may hee sveaal font resources (such as normal and bold), but all fonts
should hae te class ént. Thuschanging all fonts simply requires only a single line in the
default resource file:

*Font: 6x13

By corvention, resource classes are/als spelled starting with a capital letter to distinguish
them from resource names. Their symbolic names are preceded with (¥iGxample,
XtCBackground).

Theresource_typdield gives the physical representation type of the resource and also encodes
information about the specific usage of the field. Byention, it starts with an uppercase letter

and is spelled identically to the type name of the field. The resource type is used when resources
are fetched to caert from the resource database format (usu@thyng) or the format of the

resource default value (almost anything, but ofséring) to the desired physical representation

(see Section 9.6). The Intrinsics define the following resource types:

Resource yipe Structurer Field Type
XtRAcceleratorTable XtAccelerators
XtRAtom Atom

XtRBitmap Pixmap, depth=1
XtRBoolean Boolean

XtRBool Bool

XtRCallback XtCallbackList
XtRCardinal Cardinal

154

Resource ype

Structurer Field Type

XtRColor XColor
XtRColormap Colormap
XtRCommandArgArray String*
XtRCursor Cursor
XtRDimension Dimension
XtRDirectoryString String
XtRDisplay Display*
XtREnum XtEnum
XtREnvironmentArray String*
XtRFile FILE*
XtRFloat float
XtRFont Font
XtRFontSet XFontSet
XtRFontStruct XFontStruct*
XtRFunction ™0
XtRGeometry char*, format as defined byParseGe-
ometry
XtRGravity int
XtRInitialState int
XtRInt int
XtRLongBoolean long
XtRObject Object
XtRPixel Pixel
XtRPixmap Pixmap
XtRPointer XtPointer
XtRPosition Position
XtRRestartStyle unsigned char
XtRScreen Screen*
XtRShort short
XtRSmcConn XtPointer
XtRString String
XtRStringArray String*
XtRStringTable String*
XtRTranslationTable XtTranslations
XtRUnsignedChar unsigned char
XtRVisual Visual*
XtRWidget Widget
XtRWidgetClass WidgetClass
XtRWidgetList WidgetList
XtRWindow Window

<X11/stringDefs.h> dso defines the following resource types as aemignce for widgets,
although thg do ot have any orresponding data type assignedREditMode , XtRJustify ,
and XtROrientation .

Theresource_sizdield is the size of the physical representation in bytes; you should specify it as
sizeof(type so that the compiler fills in thealue. Theaesource_offséfield is the offset in bytes

155

of the field within the widgetYou should use theXtOffsetOf macro to retriee tis value. The
default_typdield is the representation type of the default resouatieev Ifdefault_typas differ-
ent fromresource_typand the default value is needed, the resource managkesra onver-

sion procedure frordefault_typeo resource_type Wheneer possible, the default type should
be identical to the resource type in order to minimize widget creation time. vidoteere are
sometimes no values of the type that the program can easily sgedifys case, it should be a
value for which the coverter is guaranteed to work (for exampDefaultForeground for a

pixel resource). Thdefault_addrfield specifies the address of the default resoualieey Asa
special case, idlefault_typds XtRString , then the value in théefault_addfield is the pointer

to the string rather than a pointer to the poinfiére default is used if a resource is not specified
in the argument list or in the resource database or if theaion from the representation type
stored in the resource database fails, which can happen for various reasons (for example, a mis-
spelled entry in a resource file).

Two special representation types (XtRImmediate and XtRCallProc) are usable only as default
resource types. XtRImmediate indicates that the value iddfailt_addfield is the actual value
of the resource rather than the address ofdhesv Thevalue must be in the correct representa-
tion type for the resource, coerced toXdRointer. No corversion is possible, since there is no
source representation type. XtRCallProc indicates that the valuedeftndt addrfield is a
procedure pointerThis procedure is automaticallywivked with the widgetyesource_offsetand

a pointer to anXrmValue in which to store the result. XtRCallProc procedure pointers are of
type XtResourceDefaultProc

typedef void (*XtResourceDefaultProc)(Widget, int, XrmValue*);

Widgetw;

int offset

XrmValue *value
w Specifies the widget whose resource value is to be obtained.
offset Specifies the offset of the field in the widget record.
value Specifies the resource value descriptor to return.

The XtResourceDefaultProcprocedure should fill in thealue->addrfield with a pointer to the
resource value in its correct representation type.

To get the resource list structure for a particular classXtGetResourcelist

void XtGetResourcelist{ass resources_returnnum_resources_retujn
WidgetClas<lass
XtResourcelist tesources_return
Cardinal num_resources_return

class Specifies the object class to be queried. It musidpectClassor any
subclass thereof.
resources_return Returns the resource list.

num_resources_returnReturns the number of entries in the resource list.

If XtGetResourcelListis called before the class is initialized, it returns the resource list as speci-
fied in the class record. Ifitis called after the class has been initiakr&dfResourceList

156

returns a merged resource list that includes the resources for all superclasses. The list returned by
XtGetResourceList should be freed usingtFree when it is no longer needed.

To get the constraint resource list structure for a particular widget clasXi@s¢ConstraintRe-
sourcelList.

void XtGetConstraintResourceListlss resources_returnnum_resources_retuyn
WidgetClas<lass
XtResourceList fesources_retumn
Cardinal num_resources_return

class Specifies the object class to be queried. It musitijectClassor any
subclass thereof.

resources_return Returns the constraint resource list.
num_resources_returnReturns the number of entries in the constraint resource list.

If XtGetConstraintResourceListis called before the widget class is initialized, the resource list
as specified in the widget class Constraint part is returnextGiétConstraintResourceList is
called after the widget class has been initialized, the merged resource list for the class and all
Constraint superclasses is returned. If the specified class is not a subclasstiaintWidget-
Class, *resources_returris set to NULL and ium_resources_retutis set to zero. The list
returned byXtGetConstraintResourceList should be freed usingtFree when it is no longer
needed.

The routinesXtSetValues and XtGetValues also use the resource list to set and get widget state;
see Sections 9.7.1 and 9.7.2.

Here is an abbreviated version of a possible resource list for a Label widget:

/* Resources specific to Label */

static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffsetOf(LabelRec, label.foreground), XtRString, XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
XtOffsetOf(LabelRec, label.font), XtRString, XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffsetOf(LabelRec, label.label), XtRString, NULL},

}

The complete resource name for a field of a widget instance is the concatenation of the applica-
tion shell name (fronXtAppCreateShell), the instance names of all the widggfirents up to

the top of the widget tree, the instance name of the widget itself, and the resource name of the
specified field of the widget. Similarlthe full resource class of a field of a widget instance is the
concatenation of the application class (fretppCreateShell), the widget class names of all

the widgets parents up to the top of the widget tree, the widget class name of the widget itself,
and the resource class of the specified field of the widget.

157

9.2. ByteOffset Calculations
To determine the byte offset of a field within a structure type Xi€dfsetOf .

Cardinal XtOffsetOfgtructure_typefield _namg
Type structure_type
Field field_namg

structure_type Specifies a type that is declared as a structure.
field_name Specifies the name of a member within the structure.

The XtOffsetOf macro expands to a constant expression thes ¢iie offset in bytes to the spec-
ified structure member from the beginning of the structure. Itis normally used to statically ini-
tialize resource lists and is more portable tXa@ffset, which serves the same function.

To determine the byte offset of a field within a structure pointer typext@éset.

Cardinal XtOffsetpointer_typefield_namég
Type pointer_typge
Field field_namg

pointer_type Specifies a type that is declared as a pointer to a structure.
field_name Specifies the name of a member within the structure.

The XtOffset macro expands to a constant expression thes giie offset in bytes to the speci-
fied structure member from the beginning of the structure. It may be used to statically initialize
resource lists XtOffset is less portable thaKtOffsetOf .

9.3. Supeclass-to-Subclass Chaining of Resource Lists

The XtCreateWidget function gets resources as a superclass-to-subclass chained operation.
That is, the resources specified in tigectClassresource list are fetched, then thosedatOb-
jClass, and so on down to the resources specified for this wisigass. Within a class, resources
are fetched in the order there declared.

In general, if a widget resource field is declared in a superclass, that field is included in the super-
classs resource list and need not be included in the subslessiurce list.For example, the
Core class contains a resource entrybfckground_pixel Consequentlythe implementation of
Label need not also @ a esource entry fdpackground_pixel Howeve, a sibclass, by specify-
ing a resource entry for that field in its own resource list, garmide the resource entry for any
field declared in a superclass. This is most often doneetode the defaults provided in the
superclass with meones. Atclass initialization time, resource lists for that class are scanned
from the superclass down to the class to look for resources with the $aate Aimatching
resource in a subclass will be reorderedvanide the superclass entrif reordering is neces-
sary a aopy of the superclass resource list is madevtmdaaffecting other subclasses of the
superclass.

Also at class initialization time, the Intrinsics produce an internal representation of the resource
list to optimize access time when creating widgets. In ordenvmrsamory the Intrinsics may
oveawrite the storage allocated for the resource list in the class record; therefore, widgets must

158

allocate resource lists in writable storage and must not access the list contents directly after the
class_initialize procedure has returned.

9.4. Subesources

A widget does not do anything to retréeits own resources; insteaxtCreateWidget does this
automatically before calling the class initialize procedure.

Some widgets hee sibparts that are not widgets but for which the widget woudtbikietch
resources. Suchidgets callXtGetSubresourcesto accomplish this.

void XtGetSubresources(base name class resourcesnum_resourcesrgs, hum_args
Widgetw;,
XtPointerbase
Stringname
Stringclass
XtResourcelListesources
Cardinalnum_resources
ArgList args
Cardinalnum_args

w Specifies the object used to qualify the subpart resource name and class. Must be
of class Object or gmsubclass thereof.

base Specifies the base address of the subpart data structure into which the resources
will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list tgepride ary other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtGetSubresourcesfunction constructs a name and class list from the application name and
class, the names and classes of all the objautestors, and the object itself. Then it appends to
this list thenameandclasspair passed in. The resources are fetched from the argument list, the
resource database, or the default values in the resource list. Tharetisepied into the subpart
record. Ifargsis NULL, num_argganust be zero. Hower, if num_argds zero, the argument

list is not referenced.

XtGetSubresourcesmay oerwrite the specified resource list with an eglént representation

in an internal format, which optimizes access time if the list is used repeaibeélyesource list

must be allocated in writable storage, and the caller must not modify the list contents after the call
if the same list is to be usedadyg. Resourcefetched byXtGetSubresourcesare reference-

counted as if thewere referenced by the specified object. Subresources might therefore be freed
from the comersion cache and destroyed when the object is destroyed, but not before then.

To fetch resources for widget subparts using varargs lists{tVs&setSubresources

159

void XtVaGetSubresources(base name class resourcesnum_resources..)
Widgetw;
XtPointerbase
Stringname
Stringclass
XtResourcelListesources
Cardinalnum_resources

w Specifies the object used to qualify the subpart resource name and class. Must be
of class Object or gmsubclass thereof.

base Specifies the base address of the subpart data structure into which the resources
will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resourcesspecifies the number of entries in the resource list.
Specifieshe variable argument list tov@ride ary other resource specifications.

XtVaGetSubresourcesis identical in function toXtGetSubresourceswith theargsand
num_arggarameters replaced by a varargs list, as described in Section 2.5.1.

9.5. Obtaining Application Resources

To retrieve resources that are not specific to a widget but apply tovilwalbapplication, use
XtGetApplicationResources

void XtGetApplicationResources(base resourcesnum_resourcesargs, num_args
Widgetw;
XtPointerbase
XtResourcelListesources
Cardinalnum_resources
ArglList args
Cardinalnum_args

w Specifies the object that identifies the resource database to search (the database is
that associated with the display for this object). Must be of class Object or any
subclass thereof.

base Specifies the base address into which the resource values will be written.
resources Specifies the resource list.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list teapride ary other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtGetApplicationResourcesfunction first uses the passed object, which is usually an appli-
cation shell widget, to construct a resource name and class list. The full name and class of the
specified object (that is, including its ancestors, if any) is logically added to the front of each

160

resource name and class. Then it reésdhe resources from the argument list, the resource
database, or the resource list defaalties. Afteradding base to each addrextGetApplica-
tionResourcescopies the resources into the addresses obtained by dddietg eachoffsetin

the resource list. l&rgsis NULL, num_argsmust be zero. Hower, if num_argss zero, the
argument list is not referenced. The portable way to specify application resources is to declare
them as members of a structure and pass the address of the structubassattggiment.

XtGetApplicationResourcesmay orerwrite the specified resource list with an eglént repre-
sentation in an internal format, which optimizes access time if the list is used repeabedly

resource list must be allocated in writable storage, and the caller must not modify the list contents
after the call if the same list is to be useding Ary per-display resources fetched ByGetAp-
plicationResourceswill not be freed from the resource cache until the display is closed.

To retrieve resources for theverall application using varargs lists, ux&/aGetApplicationRe-
sources

void XtVaGetApplicationResources(base resourcesnum_resources..)
Widgetw;
XtPointerbase
XtResourcelListesources
Cardinalnum_resources

w Specifies the object that identifies the resource database to search (the database is
that associated with the display for this object). Must be of class Object or any
subclass thereof.

base Specifies the base address into which the resource values will be written.
resources Specifies the resource list for the subpart.
num_resourcesspecifies the number of entries in the resource list.

Specifieshe variable argument list taoverride ary other resource specifications.

XtVaGetApplicationResourcesis identical in function toXtGetApplicationResourceswith the
argsandnum_argarameters replaced by a varargs list, as described in Section 2.5.1.

9.6. Resouce Corversions

The Intrinsics provide a mechanism for registering representatiomertens that are automati-
cally invoked by the resource-fetching routines. The Intrinsics additionally provide and register
several commonly used ceerters. Thisresource corersion mechanism serves/ssl purposes:

. It permits user and application resource files to contain textual representations of nontextual
vaues.
. It allows textual or other representations of default resource values that are dependent on

the displayscreen, or colormap, and thus must be computed at runtime.

. It caches coversion source and result data. @ersions that require much computation or
space (for example, string-to-translation-table) or that require round-trips to the server (for
example, string-to-font or string-to-color) are performed only once.

161

9.6.1. Pedefined Resource Corerters

The Intrinsics define all the representations used in the Object, RectObj, Core, Composite, Con-
straint, and Shell widget classes. The Intrinsics register the following resouvestemthat
accept input values of representation tyfiRString .

Target Representation Cuoerter Name Additional Args
XtRAcceleratorTable XtCvtStringToAcceleratorTable

XtRAtom XtCvtStringToAtom Display*
XtRBoolean XtCvtStringToBoolean

XtRBool XtCvtStringToBool

XtRCommandArgArray XtCvtStringToCommandArgArray

XtRCursor XtCvtStringToCursor Display*
XtRDimension XtCvtStringToDimension

XtRDirectoryString XtCvtStringToDirectoryString

XtRDisplay XtCvtStringToDisplay

XtRFile XtCvtStringToFile

XtRFloat XtCvtStringToFloat

XtRFont XtCvtStringToFont Display*
XtRFontSet XtCvtStringToFontSet Display*, Stringlocale
XtRFontStruct XtCvtStringToFontStruct Display*
XtRGravity XtCvtStringToGravity

XtRInitialState XtCvtStringTolnitialState

XtRInt XtCvtStringTolnt

XtRPixel XtCvtStringToPixel colorConvertArgs
XtRPosition XtCvtStringToPosition

XtRRestartStyle XtCvtStringToRestartStyle

XtRShort XtCvtStringToShort

XtRTranslationTable XtCvtStringToTranslationTable

XtRUnsignedChar XtCvtStringToUnsignedChar

XtRVisual XtCvtStringToVisual Screen*, Cardinalepth

The String-to-Pixel corersion has tw predefined constants that are guaranteed to work and con-
trast with each otheXtDefaultForeground and XtDefaultBackground. They evaluate to the

black and white pixel values of the widgegreen, respeatély. If the application resource
reverseVideo isTr ue, they evaluate to the white and black pixel values of the widget'een,
respectrely. Similarly, the String-to-Font and String-to-FontStruct wenters recognize the con-
stantXtDefaultFont and @aluate this in the following manner:

. Query the resource database for the resource whose full name is “xtDefaultFont”, class
“ XtDefaultFont’ (that is, no widget name/class prefixes), and use aXyp8tring value
returned as the font name or a tyfRFont or XtRFontStruct value directly as the
resource value.

. If the resource database does not contain a value for xtDefaultFont, class XtDefaultFont, or
if the returned font name cannot be successfully opened, an implementation-defined font in
ISO8859-1 character set encoding is opened. (One possible algorithm is to perform an
XListFonts using a wildcard font name and use the first font in the list. This wildcard font
name should be as broad as possible to maximize the probability of locating a useable font;
for example, "-*-*-*-R-*-*-*.120-*-*-*-*.|SO8859-1".)

162

. If no switable 1ISO8859-1 font can be found, issue a warning message andHag&n

The String-to-FontSet cwarter recognizes the constaXtDefaultFontSet and &auate this in
the following manner:

. Query the resource database for the resource whose full name is “xtDefaultFontSet”, class
“ XtDefaultFontSet'(that is, no widget name/class prefixes), and use aX{R8tring
value returned as the base font name list or a Kfg-ontSet value directly as the
resource value.

. If the resource database does not contain a value for xtDefaultFontSet, class XtDefault-
FontSet, or if a font set cannot be successfully created from this resource, an implementa-
tion-defined font set is created. (One possible algorithm is to perfodCesateFontSet
using a wildcard base font name. This wildcard base font name should be as broad as pos-
sible to maximize the probability of locating a useable font; for example,
"_*_*_*_R_*_*_*_lzo_*_*_*_*".)

. If no awitable font set can be created, issue a warning message and-adsarn

If a font set is created buiissing_charset_liss not emptya warning is issued and the partial
font set is returned. The Intrinsics register the String-to-FontSeé&tenwith a comersion
argument list that extracts the current process locale at the time tleeteois irvoked. This
ensures that the cearter is irvoked again if the same corersion is required in a different locale.

The String-to-Gravity carersion accepts string values that are the names of wiadd bit grav-
ities and their numerical eqalents, as defined iKlib — C Languge X hterface ForgetGrav-
ity , UnmapGravity , NorthWestGravity , NorthGravity , NorthEastGravity , WestGravity ,
CenterGravity , EastGravity, SouthWestGravity, SouthGravity , SouthEastGravity, and
StaticGravity . Alphabetic case is not significant in the wamsion.

The String-to-CommandArgArray ceersion parses a String into an array of strings. White
space characters separate elements of the command line. Vheezaecognizes the backslash
character “\' as an scape character to alche following white space character to be part of the
array element.

The String-to-DirectoryString cerrsion recognizes the string “XtCurrentDirectdrghd returns
the result of a call to the operating system to get the current directory.

The String-to-RestartStyle cearsion accepts the valu€estartifRunning , RestartAnyway,
Restartimmediately, and RestartNever as defined by th¥ Session Mangement Protocal

The String-to-InitialState carrsion accepts the valu®rmalState or IconicState as defined
by thelnter-Client Communication Conventions Manual

The String-to-Visual corersion callsXMatchVisuallnfo using thescreenanddepthfields from

the core part and returns the first matching Visual on the list. The widget resource list must be
certain to specify anresource of typ&XtRVisual after the depth resource. The allowed string
values are the visual class names definedi Window System Protocdbection 8;StaticGray,
StaticColor, TrueColor, GrayScale, PseudoColor, and DirectColor .

The Intrinsics register the following resource water that accepts an input value of representa-
tion type XtRColor .

Target Representation Coearter Name Additional Args

XtRPixel XtCvtColorToPixel

163

The Intrinsics register the following resource waters that accept input values of representation
type XtRInt .

Target Representation Coater Name Additional Args
XtRBoolean XtCvtintToBoolean

XtRBool XtCvtintToBool

XtRColor XtCwvtintToColor colorCon vertArgs
XtRDimension XtCvtIntToDimension

XtRFloat XtCvtintToFloat

XtRFont XtCvtintToFont

XtRPixel XtCvtIntToPixel

XtRPixmap XtCvtintToPixmap

XtRPosition XtCvtintToPosition

XtRShort XtCvtintToShort

XtRUnsignedChar XtCvtintToUnsignedChar

The Intrinsics register the following resource water that accepts an input value of representa-
tion type XtRPixel.

Target Representation Cuoerter Name Additional Args

XtRColor XtCvtPixelToColor

9.6.2. NewResource Conerters

Type cowerters use pointers tdirmValue structures (defined inX11/Xresource.h>; see Sec-
tion 15.4 inXlib — C Languge X hterfacg for input and output values.

typedef struct {
unsigned int size;
XPointer addr;

} X rmValue, *XrmValuePtr;

Theaddrfield specifies the address of the data, andittedield gives the total number of signifi-
cant bytes in the datdor values of typeString, addris the address of the first character size
includes the NULL-terminating byte.

A resource corerter procedure pointer is of typ&TypeConverter .

164

typedef Boolean (*XtTypeCaerter)(Display*, XrmValue*, Cardinal*,
XrmValue*, XrmValue*, XtPointer*);
Display *display;
XrmValue *args
Cardinal num_args
XrmValue *from;
XrmValue *o;
XtPointer *converter_data

display Specifies the display connection with which thisvasion is associated.

args Specifies a list of additiona{rmValue arguments to the cwerter if additional
context is needed to perform the eension, or NULL. For example, the String-
to-Font comerter needs the widgetdisplay, and the String-to-Pixel caerter
needs the widget'screenandcolormap

num_args Specifies the number of entriesamgs
from Specifies the value to ceart.
to Specifies a descriptor for a location into which to store theectad value.

converter_data
Specifies a location into which the eerter may store corerter-specific data
associated with this cearsion.

Thedisplayargument is normally used only when generating error messages, to identify the
application context (with the functioxtDisplayToApplicationContext).

Theto argument specifies the size and location into which theedein should store the con-

verted \alue. Iftheaddrfield is NULL, the comerter should allocate appropriate storage and

store the size and location into tiwedescriptor If the type cowerter allocates the storage, it

remains under the ownership of thewater and must not be modified by the call€he type
corverter is permitted to use static storage for this purpose, and therefore the caller must immedi-
ately coyy the data upon return from the eerter. If theaddrfield is not NULL, the cowverter

must check thsizefield to ensure that sufficient space has been allocated before storing the con-
verted \alue. Ifinsufficient space is specified, the eemer should update trazefield with the
number of bytes required and retlralse without modifying the data at the specified location.

If sufficient space was allocated by the callee cowerter should update thezefield with the

number of bytes actually occupied by thewted \alue. For corverted values of type

XtRString , the size should include the NULL-terminating byte, if.amhe cowerter may store

ary value in the location specified @onverter_datathis value will be passed to the destrugitor

ary, when the resource is freed by the Intrinsics.

The cowerter must returnfr ue if the corversion was successful aréhise otherwise. Itthe con-
version cannot be performed because of an improper source value, a warning message should also
be issued witlXtAppWarningMsg .

Most type cowerters just tak the data described by the specifies argument and return data
by writing into the location specified in theargument. Afew need other information, which is
available inargs A type cowerter can inoke another type coverter, which allows differing
sources that may ceert into a common intermediate result to reakaximum use of the type
corverter cache.

165

Note that if an address is written irtte>addr, it cannot be that of a local variable of the con-
verter because the data will not be valid after theveider returns. Static variables may be used,
as in the following eample. Ifthe cowerter modifies the resource database, the changes affect
ary in-progress widget creatioXtGetApplicationResources or XtGetSubresourcesin an
implementation-defined manner; haxge insertion of ne entries or changes to existing entries
is allowed and will not directly cause an error.

The following is an example of a cgmter that takes atring and conerts it to aPixel. Note
that thedisplayparameter is used only to generate error messageSctaencorversion argu-
ment is still required to inform the Intrinsics that thewvated value is a function of the particu-
lar display (and colormap).

#define done(type, value) \

{ \
if (toVal->addr '= NULL) { \
if (toVal->size < sizeof(type)) { \
toVal->size = sizeof(type); \
return Rlse; \
} \
(type)(toVal->addr) = (\alue); \
\
else { \
static type static al; \
static_val = (alue); \
toVal->addr = (XPointer)&static al; \
} \
toVal->size = sizeof(type); \
return Tue; \
}
static Boolean CvtStringToPixel(gdpargs, num_args, fromVal, toVal, ceerter_data)
Display *dpy;

XrmValue *ags;

Cardinal *num_ags;
XrmValue *from\al;
XrmValue *to\al;
XtPointer *cowverter_data;

{
static XColor screenColor;
XColor exactColor;
Screen *screen;
Colormap colormap;
Status status;

if (*num_args != 2)
XtAppWarningMsg(XtDisplay ToApplicationContext(dpy),
"wrongParameters", "cvtStringToPixel", "XtToolkitError",
"String to pixel comersion needs screen and colormap arguments”,
(String *)NULL, (Cardinal *)NULL);

166

screen = *((Screen**) args[0].addr);
colormap = *((Colormap *) args[1].addr);

if (ComparelSOLatinl(stXtDefaultBackground) == 0) {
*closure_ret = False;
done(Pixel, WhitePixelOfScreen(screen));

}

if (ComparelSOLatinl(stiXtDefaultForeground) == 0) {
*closure_ret = False;
done(Pixel, BlackPixelOfScreen(screen));

status = XAllocNamedColor(DisplayOfScreen(screen), colormap, (char*)fromVal->addr,
&screenColor&exactColor);

if (status == 0) {
String params[1];
Cardinal num_params = 1;
params|[0] = (String)fromVal->addr;
XtAppWarningMsg(XtDisplayToApplicationContext(dpy),
"noColormap”, "cvtStringToPixel", "XtToolkitError",
"Cannot allocate colormap entry for \"%s\"", params, &num_params);
*converter_data = (char *) False;
return False;
}else {
*converter_data = (char *) True;
done(Pixel, &screenColor.pixel);

}

All type corverters should define some set of wasion values for which tlyeare guaranteed to
succeed so these can be used in the resour@altdefThisssue arises only with ceersions,

such as fonts and colors, where there is no string representation that all server implementations
will necessarily recognizef-or resources lig these, the cormerter should define a symbolic con-
stant in the same mannerXéefaultForeground, XtDefaultBackground, and XtDefault-

Font.

To dlow the Intrinsics to deallocate resources produced by typeters, a resource destructor

procedure may also be provided.
A resource destructor procedure pointer is of tffeestructor .

167

typedef void (*XtDestructor) (XtAppContext, XrmValue*, XtPointXrmValue*, Cardinal*);
XtAppContextapp;
XrmValue *o;
XtPointerconverter_data
XrmValue *args
Cardinal hum_args

app Specifies an application context in which the resource is being freed.

to Specifies a descriptor for the resource produced by the typertan

converter_data
Specifies the carerter-specific data returned by the type\cster.

args Specifies the additional ceerter arguments as passed to the typeater when
the cowersion was performed.

num_args Specifies the number of entriesargs.

The destructor procedure is responsible for freeing the resource specifieddgrthement,
including aly auxiliary storage associated with that resource, but not the memory directly
addressed by the size and location intth@rgument or the memory specifieddogs

9.6.3. IssuingConversion Warnings

The XtDisplayStringConversionWarning procedure is a casnience routine for resource type
corwverters that covert from string values.

void XtDisplayStringComersionWarningdisplay, from_valugto_typég
Display *display,
Stringfrom_valueto_type

display Specifies the display connection with which theveosion is associated.
from_value Specifies the string that could not be wsted.
to_type Specifies the target representation type requested.

The XtDisplayStringConversionWarning procedure issues a warning message ustdgp-
WarningMsg with name" corversionError”, type“ string”, class* XtToolkitError”, and the
default message “Cannot ogant "from_valué to typeto_typé€ .

To issue other types of warning or error messages, the typersrshould us&tAppWarn-
ingMsg or XtAppErrorMsg .

To retrieve the application context associated witheegidisplay connection, usktDisplay-
ToApplicationContext.

168

XtAppContext XtDisplayToApplicationContextlisplay)
Display *display,

display Specifies an open and initialized display connection.

The XtDisplayToApplicationContext function returns the application context in which the spec-
ified displaywas initialized. Ifthe display is not known to the Intrinsics, an error message is
issued.

9.6.4. Registeringa New Resource Cowerter

When registering a resource wgerter, the client must specify the manner in which thevesion
cache is to be used when there are multiple calls to theerten Corversion cache control is
specified via arXtCacheType

argument.

typedef int XtCacheType;

An XtCacheType field may contain one of the following values:

XtCacheNone

Specifies that the results of a previousveosion may not be reused to satisfy ather
resource requests; the specifiedventer will be called each time the canted value is
required.

XtCacheAll

Specifies that the results of a previousveosion should be reused foryaresource request
that depends upon the same source value angrson arguments.

XtCacheByDisplay

Specifies that the results of a previousveosion should be used as f&tCacheAll but
the destructor will be called, if specified XfCloseDisplay is called for the display con-
nection associated with the e@rted value, and the value will be remed from the cower-
sion cache.

The qualifierXtCacheRefCountmay be ORed with grof the abee values. IfXtCacheRef-
Count is specified, calls tXtCreateWidget, XtCreateManagedWidget, XtGetApplication-
Resources and XtGetSubresourcesthat use the caerted value will be counted. When a wid-
get using the carerted value is destroyed, the count is decremented, and, if the count reaches
zero, the destructor procedure will be called and theectmd value will be remeed from the
corversion cache.

To regster a type corerter for all application contexts in a process, X$8etTypeCorverter ,
and to register a type ceater in a single application context, USAppSetTypeCorverter .

169

void XtSetTypeCowerter(from_typeto_type converter convert_argsnum_args

cache_typedestructo)

Stringfrom_type
Stringto_type

XtTypeCorverter converter
XtCorwvertArgList convert_args
Cardinalnum_args
XtCacheTypecache_type
XtDestructordestructor

from_type
to_type
converter
convert_args
num_args
cache_type

destructor

Specifies the source type.

Specifies the destination type.

Specifies the resource type werer procedure.
Specifies additional cemlrsion arguments, or NULL.
Specifies the number of entriescionvert_args

Specifies whether or not resources produced by thisdenare sharable or dis-
play-specific and when tiieshould be freed.

Specifies a destyqrocedure for resources produced by thisvesion, or
NULL if no additional action is required to deallocate resources produced by the
corverter.

void XtAppSetTypeCowverter(@pp_contextfrom_typeto_type converter convert_args

num_argscache_typgedestructo)

XtAppContextapp_context
Stringfrom_type
Stringto_type

XtTypeCorverter converter
XtCorvertArgList convert_args
Cardinalnum_args
XtCacheTypecache_type
XtDestructordestructor

app_context
from_type
to_type
converter
convert_args
num_args
cache_type

destructor

Specifies the application context.

Specifies the source type.

Specifies the destination type.

Specifies the resource type werer procedure.
Specifies additional cerrsion arguments, or NULL.
Specifies the number of entriescionvert_args

Specifies whether or not resources produced by thigtenare sharable or dis-
play-specific and when tiieshould be freed.

Specifies a destyqrocedure for resources produced by thisvemsion, or
NULL if no additional action is required to deallocate resources produced by the
corverter.

XtSetTypeCorverter registers the specified type eerter and destructor in all application con-
texts created by the calling process, includingfature application contexts that may be created.
XtAppSetTypeCorverter registers the specified type eerter in the single application context

170

specified. Ifthe samdrom_typeandto_typeare specified in multiple calls to either function, the
most recenterrides the previous ones.

For the fav type cowerters that need additional arguments, the Intrinsicgeesion mechanism
provides a method of specifyingwdhese arguments should be computed. The enumerated type
XtAddressMode and the structurXtConvertArgRec specify hav each argument is desd.

These are defined i 1/Intrinsic.h >.

typedef enum {

[* address mode parameter representation */

XtAddress, [*address */
XtBaseOfset, /* offset */
Xtimmediate, [*constant */
XtResourceString, [fesource name string */
XtResourceQuark, /tesource name quark */
XtWidgetBaseOEet, [* offset */
XtProcedureAg * procedure to call */

} X tAddressMode;

typedef struct {

XtAddressMode address_mode;
XtPointer address_id;
Cardinal size;

} X tCorvertArgRec, *XtCorvertArgList;

Thesizefield specifies the length of the data in bytes. dthdress _modgeld specifies ho the
address_idield should be interpreted{tAddress causesddress_ido be interpreted as the
address of the dataXtBaseOffsetcauseaddress_ido be interpreted as the offset from the wid-
get base. Xtimmediate causesddress_ido be interpreted as a constamtResourceString
causesddress_ido be interpreted as the name of a resource that is to bertechinto an offset
from the widget baseXtResourceQuark causesaddress_ido be interpreted as the result of an
XrmStringToQuark corversion on the name of a resource, which is to beeted into an off-
set from the widget baseXtWidgetBaseOffsetis similar to XtBaseOffsetexcept that it

searches for the closest windowed ancestor if the object is not of a subclass of Core (see Chapter
12). XtProcedureArg specifies thaaddress_ids a pointer to a procedure to beadked to

return the coversion agument. IfXtProcedureArg is specifiedaddress_idnust contain the
address of a function of typ&ConvertArgProc .

171

typedef void (*XtConertArgProc)(Widget, Cardinal*, XrmValue?*);

Widgetobject
Cardinal *size
XrmValue *value
object Passes the object for which the resource is beingertad, or NULL if the con-
verter was inoked by XtCallConverter or XtDirectConvert .
size Passes a pointer to treizefield from theXtConvertArgRec .
value Passes a pointer to a descriptor into which the procedure must store ¥lee con

sion argument.

When irvoked, the XtConvertArgProc procedure must dee a onversion argument and store
the address and size of the argument in the location pointedvaduy

In order to permit reentrapcthe XtConvertArgProc should return the address of storage whose
lifetime is no shorter than the lifetime olbject If objectis NULL, the lifetime of the corersion
argument must be no shorter than the lifetime of the resource with which treesgam argument

is associated. The Intrinsics do not guarantee tg top storage but do guarantee not to refer-
ence it if the resource is renreal from the cowersion cache.

The following example illustrates o regster the CvtStringToPixel routinevgh earlier:

static XtCowertArgRec colorCowertArgs[] = {
{XtWidgetBaseOffset, (XtPointer)XtOffset(Widget, core.screen), sizeof(Screen*)},
{XtWidgetBaseOffset, (XtPointer)XtOffset(Widget, core.colormap),sizeof(Colormap)}

I3

XtSetTypeCouerter(XtRString, XtRPixel, CvtStringToPixel,
colorCorvertArgs, XtNumber(colorCovertArgs), XtCacheByDisplayNULL);

The cowersion argument descriptoc®lorConvertArgs andscreenCorvertArg are predefined

by the Intrinsics. Both takthe values from the closest windowed ancestor if the object is not of a
subclass of Core. ThecreenCowertArg descriptor puts the widgetsreerfield intoargq0].

The colorConvertArgs descriptor puts the widgetsreerfield intoargq0], and the widget’s
colormapfield intoargq1].

Corversion routines should not just put a descriptor for the address of the base of the widget into
argq0], and use that in the routine. ®hshould pass in the actual values on which theveen

sion depends. By keeping the dependencies of thesion procedure specific, it is more likely
that subsequent ceersions will find what the need in the corersion cache. This way the cache

is smaller and has fewer and more widely applicable entries.

If any conversion arguments of typEtBaseOffset, XtResourceString, XtResourceQuark, and
XtWidgetBaseOffsetare specified for caarsions performed bXtGetApplicationResources
XtGetSubresources XtVaGetApplicationResources or XtVaGetSubresources the argu-

ments are computed with respect to the specified widget, not the base address or resource list
specified in the call.

If the XtConvertArgProc modifies the resource database, the changes affeit-pnogress
widget creationXtGetApplicationResources or XtGetSubresourcesin an implementation-
defined manner; hower, insertion of ne entries or changes to existing entries are allowed and
will not directly cause an error.

172

9.6.5. Resouce Corverter In vocation

All resource-fetching routines (for exampyé&tGetSubresources XtGetApplicationResources
and so on) call resource a@rters if the resource database or varargs list specifies a value that
has a different representation from the desired representation or if the svitigetlt resource
value representation is different from the desired representation.

To invake eplicit resource coversions, useXtConvertAndStore or XtCallConverter .

typedef XtPointer XtCacheRef;

Boolean XtCallCowerter(display, converter conversion_argshnum_argsfrom, to_in_out
cache_ref_returp
Display* display,
XtTypeCorverter converter
XrmValuePtrconversion_args
Cardinalnum_args
XrmValuePtrfrom;
XrmValuePtrto_in_out
XtCacheRef tache ref return

display Specifies the display with which the e@rsion is to be associated.

converter Specifies the carsion procedure to be called.

conversion_args Specifies the additional ceersion arguments needed to perform the con-
version, or NULL.

num_args Specifies the number of entriesconversion_args

from Specifies a descriptor for the source value.

to_in_out Returns the carerted value.

cache_ref _return Returns a corersion cache id.

The XtCallConverter function looks up the specified type werter in the application context
associated with the display and, if the water was not registered or was registered with cache
type XtCacheAll or XtCacheByDisplay, looks in the coversion cache to see if this a@nsion
procedure has been called with the specified@sion aguments. Ifso, it checks the success
status of the prior call, and if the a@msion failed,XtCallConverter returnsFalse immediately;
otherwise it checks the size specified intthargument, and, if it is greater than or equal to the
size stored in the cache, copies the information stored in the cache into the location specified by
to->addr, gores the cache size ini@->size and returnsTr ue. If the size specified in the
argument is smaller than the size stored in the cati@gllConverter copies the cache size into
to->sizeand returng-alse. If the cowerter was registered with cache tygCacheNoneor no
vaue was found in the coarsion cacheXtCallConverter calls the cowerter, and if it was not
registered with cache typ&CacheNoneg enters the result in the cach&tCallConverter then
returns what the cemrter returned.

Thecache_ref_returffield specifies storage allocated by the caller in which an opaque value will
be stored. If the type cuearter has been registered with tkECacheRefCount modifier and if

the value returned ibache_ref returtis non-NULL, then the caller should store the

cache_ref returwalue in order to decrement the reference count when therted value is no
longer required. Theache_ref_returmrgument should be NULL if the caller is unwilling or

173

unable to store the value.

To explicitly decrement the reference counts for resources obtained{tGallConverter , use
XtAppReleaseCacheRefs

void XtAppReleaseCacheReégip_contextrefs)
XtAppContextapp_context
XtCacheRef tefs;

app_context Specifies the application context.
refs Specifies the list of cache references to be released.

XtAppReleaseCacheRefslecrements the reference count for thevemion entries identified by
therefsamgument. Thisargument is a pointer to a NULL-terminated lisbaCacheRefvalues.

If any reference count reaches zero, the destructmy, will be called and the resource reved
from the comersion cache.

As a comenience to clients needing to explicitly decrement reference counts via a callback func-
tion, the Intrinsics define wvcallback procedures{tCallbackReleaseCacheReand XtCall-
backReleaseCacheRefList

void XtCallbackReleaseCacheRalhject client_data call_datg
Widgetobject
XtPointerclient_data
XtPointercall_datg

object Specifies the object with which the resource is associated.
client data Specifies the camersion cache entry to be released.
call_data Is ignored.

This callback procedure may be added to a callback list to release a previously returned
XtCacheRefvalue. Whenadding the callback, the callbackent_dataargument must be speci-
fied as the value of thétCacheRefdata cast to typ&tPointer .

void XtCallbackReleaseCacheRefLisject client_data call_datg
Widgetobject
XtPointerclient_data
XtPointercall_datg

object Specifies the object with which the resources are associated.
client_data Specifies the camrsion cache entries to be released.
call_data Is ignored.

This callback procedure may be added to a callback list to release a list of previously returned
XtCacheRefvaues. Wheradding the callback, the callbackent_dataargument must be spec-
ified as a pointer to a NULL-terminated list tCacheRef values.

174

To lookup and call a resource arter, copy the resulting value, and free a cached resource
when a widget is destroyed, useConvertAndStore .

Boolean XtComertAndStorefpbject from_typefrom, to_typeto_in_ou}
Widgetobject
Stringfrom_type
XrmValuePtrfrom;
Stringto_type
XrmValuePtrto_in_out

object Specifies the object to use for additional argumentsyitisnneeded, and the
destrqy callback list. Must be of class Object oryasubclass thereof.

from_type Specifies the source type.

from Specifies the value to be a@nted.
to_type Specifies the destination type.
to_in_out Specifies a descriptor for storage into which thevetad value will be returned.

The XtConvertAndStore function looks up the type coerter registered to carrt from_typeto
to_type computes aypadditional arguments needed, and then cétlSallConverter (or XtDi-
rectConvert if an old-style cowerter was registered witkKtAddConverter or XtAppAddCon-
verter ; see Appendix C) with thGomandto_in_outarguments. Théo_in_outargument speci-
fies the size and location into which thewated value will be stored and is passed directly to
the cowerter. If the location is specified as NULL, it will be replaced with a pointer t@ieri
storage and the size will be returned in the descriftoe caller is expected to cpthis private
storage immediately and must not modify it ity avay. If a non-NULL location is specified, the
caller must allocate sufficient storage to hold theveded value and must also specify the size of
that storage in the descriptorhesizefield will be modified on return to indicate the actual size
of the conerted data. If the carersion succeeds{tConvertAndStore returnsTr ue; otherwise,

it returnsFalse.

XtConvertAndStore addsXtCallbackReleaseCacheRefo the destroyCallback list of the spec-
ified object if the coversion returns aiXtCacheRefvalue. Theresulting resource should not be
referenced after the object has been destroyed.

XtCreateWidget performs processing egalent to XtConvertAndStore when initializing the
object instance. Because there is extra memashead required to implement reference count-
ing, clients may distinguish those objects that avenrdestroyed before the application exits
from those that may be destroyed and whose resources should be deallocated.

To gecify whether reference counting is to be enabled for the resources of a particular object
when the object is created, the client can specify a value f@dbkeanresource XtNinitialRe-
sourcesPersistent, class XtClnitialResourcesPersistent.

When XtCreateWidget is called, if this resource is not specifiedratse in either the arglist or

the resource database, then the resources referenced by this object are not reference-counted,
regardless of hw the type cowerter may hae keen rgistered. Theffective default value is

Tr ue; thus clients that expect to destrmne or more objects and want resources deallocated must
explicitly specify False for XtNinitialResourcesPersistent.

The resources are still freed and destructors called WiheloseDisplay is called if the cower-
sion was registered adCacheByDisplay.

175

9.7. Readingand Writing Widget State

Any resource field in a widget can be read or written by a client. On a write operation, the widget
decides what changes it will actually alland updates all dened fields appropriately.

9.7.1. ObtainingWidget State
To retrieve the current values of resources associated with a widget instancé&Get®alues.

void XtGetValuesfbject args num_arg$
Widgetobject
ArgList args
Cardinalnum_args

object Specifies the object whose resource values are to be returned. Must be of class
Object or ag subclass thereof.

args Specifies the argument list of name/address pairs that contain the resource names
and the addresses into which the resource values are to be stored. The resource
names are widget-dependent.

num_args Specifies the number of entries in the argument list.

The XtGetValues function starts with the resources specified for the Object class and proceeds
down the subclass chain to the class of the object.valefield of a passed argument list must
contain the address into which to gdpe contents of the corresponding object instance field. If
the field is a pointer type, the lifetime of the pointed-to data is defined by the objectdiatse
Intrinsics-defined resources, the following lifetimes apply:

* Not valid following ary operation that modifies the resource:
— XtNchildren resource of composite widgets.
— All resources of representation type XtRCallback.
* Remain valid at least until the widget is destroyed:
- XtNaccelerators, XtNtranslations.
* Remain valid until the Display is closed:
— XtNscreen.

It is the callers responsibility to allocate and deallocate storage for the copied data according to
the size of the resource representation type used within the object.

If the class of the objestlparent is a subclass obnstraintWidgetClass, XtGetValues then
fetches the values for yonstraint resources requested. It starts with the constraint resources
specified forconstraintWidgetClassand proceeds down the subclass chain to the pauent
straint resources. If the argument list contains a resource nhame that is not foyndfithan
resource lists searched, the value at the corresponding address is not modifigdetif\ai-
ues_hook procedures in the objedass or superclass records are non-NULLy #re called in
superclass-to-subclass order after all the resource valvuesden fetched byXtGetValues.

Finally, if the object parent is a subclass obnstraintWidgetClass, and if ary of the parent’s
class or superclass recordydakclaredConstraintClassExtensionrecords in the Constraint
class parexensionfield with a record type olULLQ UARK , and if theget_values_hookeld in

the extension record is non-NULKtGetValues calls the get_values_hook procedures in super-
class-to-subclass ordefhis permits a Constraint parent to provide nonresource data via

176

XtGetValues.

Get values_hook procedures may modify the data stored at the location addressedlng the
field, including (but not limited to) making a gopf data whose resource representation is a
pointer None of the Intrinsics-defined object classesyatgia in this mannerAny operation
that modifies the queried object resource maglilate the pointed-to data.

To retrieve the current values of resources associated with a widget instance using varargs lists,
useXtVaGetValues.

void XtVaGetValuesgbject ...)
Widgetobject

object Specifies the object whose resource values are to be returned. Must be of class
Object or ag subclass thereof.

Specifieshe variable argument list for the resources to be returned.

XtVaGetValues is identical in function toXtGetValues with theargsandnum_arggarameters
replaced by a varargs list, as described in Section 2.5.1. All value entries in the list must specify
pointers to storage allocated by the caller to which the resource value will be copied. Itis the
caller’s responsibility to ensure that sufficient storage is allocatedt\MaTypedArg is speci-

fied, thetypeargument specifies the representation desired by the calléreside argument
specifies the number of bytes allocated to store the result of thersion. Ifthe size is insuffi-

cient, a warning message is issued and the list entry is skipped.

9.7.1.1. Wdget Subpart Resource Data: The get_values_hook Procedure

Widgets that hae sibparts can return resource values from them throtiGetValues by sup-
plying a get_values_hook procedure. The get_values_hook procedure pointer is of type
XtArgsProc.

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widgetw;,
ArglList args
Cardinal num_args
w Specifies the widget whose subpart resource values are to beetetrie

args Specifies the argument list that was passedt@etValues or the transformed
varargs list passed tdtVaGetValues.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources should BabetSubvaluesin the get values_hook proce-
dure and pass in its subresource list anditgpgandnum_arggparameters.

177

9.7.1.2. Wdget Subpart State

To retrieve the current values of subpart resource data associated with a widget instance, use
XtGetSubvalues. For a discussion of subpart resources, see Section 9.4.

void XtGetSulvaluespase resourcesnum_resourcesargs, num_args
XtPointerbase
XtResourcelListesources
Cardinalnum_resources
ArgList args
Cardinalnum_args

base Specifies the base address of the subpart data structure for which the resources
should be retrieed.

resources Specifies the subpart resource list.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list of name/address pairs that contain the resource names

and the addresses into which the resource values are to be stored.
num_args Specifies the number of entries in the argument list.

The XtGetSubvalues function obtains resource values from the structure identifidiaby The
valuefield in each argument entry must contain the address into which to store the corresponding
resource &lue. ltis the callers responsibility to allocate and deallocate this storage according to

the size of the resource representation type used within the subpart. If the argument list contains
a resource name that is not found in the resource list, the value at the corresponding address is not
modified.

To retrieve the current values of subpart resources associated with a widget instance using varargs
lists, useXtVaGetSubvalues.

void XtVaGetSulbaluesfpase resourcesnum_resources..)
XtPointerbase
XtResourceListesources
Cardinalnum_resources

base Specifies the base address of the subpart data structure for which the resources
should be retrieed.

resources Specifies the subpart resource list.

num_resourcesspecifies the number of entries in the resource list.

Specifies variable argument list of name/address pairs that contain the resource
names and the addresses into which the resource values are to be stored.

XtVaGetSubvalues s identical in function toXtGetSubvalues with theargsandnum_args
parameters replaced by a varargs list, as described in Section2t8alllypedArg is not sup-
ported forXtVaGetSubvalues. If XtVaTypedArg is specified in the list, a warning message is
issued and the entry is then ignored.

178

9.7.2. SettingWidget State
To modify the current values of resources associated with a widget instancéSesealues.

void XtSetValuesgbject args num_arg$
Widgetobject
ArgList args
Cardinalnum_args

object Specifies the object whose resources are to be modified. Must be of class Object
or ary subclass thereof.

args Specifies the argument list of name/value pairs that contain the resources to be
modified and their v values.

num_args Specifies the number of entries in the argument list.

The XtSetValuesfunction starts with the resources specified for the Object class fields and pro-
ceeds down the subclass chain to the object. At each stage, it replamgiethresource fields

with ary values specified in the argument listtSetValuesthen calls the set_values procedures

for the object in superclass-to-subclass ordliethe object has gmon-NULL set_values_hook

fields, these are called immediately after the corresponding set_values procedure. This procedure
permits subclasses to set subpart datXv&etValues.

If the class of the objestparent is a subclass obnstraintWidgetClass, XtSetValuesalso

updates the objestonstraints. Istarts with the constraint resources specifiecfmstrain-
tWidgetClass and proceeds down the subclass chain to the padads. Ateach stage, it

replaces the constraint resource fields withhaiues specified in the argument list. It then calls

the constraint set_values procedures fanstraintWidgetClass down to the parerd’dass.

The constraint set_values procedures are called with widget arguments, as for all set_values pro-
cedures, not just the constraint records, so thgtddne male aljustments to the desired values

based on full information about the widget. yarguments specified that do not match a resource
list entry are silently ignored.

If the object is of a subclass of RectOX{SetValuesdetermines if a geometry request is needed

by comparing the old object to thewnebject. Ifany geometry changes are requiredSetVal-
uesrestores the original geometry and makes the request on behalf of the widget. If the geometry
manager returnXtGeometryYes, XtSetValuescalls the objecs resize procedure. If the geom-

etry manager returnstGeometryDone, XtSetValuescontinues, as the objestiesize procedure
should hae keen called by the geometry managiéthe geometry manager returiiGeome-

tryNo , XtSetValuesignores the geometry request and continues. If the geometry manager
returnsXtGeometryAlmost, XtSetValuescalls the set_values_almost procedure, which deter-
mines what should be don&tSetValuesthen repeats this process, deciding once more whether
the geometry manager should be called.

Finally, if any of the set_values procedures returifede, and the widget is realizeXtSetVal-
uescauses the widgeatexpose procedure to bevisked by alling XClearArea on the widget's
window.

To modify the current values of resources associated with a widget instance using varargs lists,
useXtVaSetValues.

179

void XtVaSetValuesgbject ...)
Widgetobject

object Specifies the object whose resources are to be modified. Must be of class Object
or ary subclass thereof.

Specifieshe variable argument list of name/value pairs that contain the resources
to be modified and their mevalues.

XtVaSetValuesis identical in function toXtSetValueswith theargsandnum_argparameters
replaced by a varargs list, as described in Section 2.5.1.

9.7.2.1. Wdget State: The set_values Procedure
The set_values procedure pointer in a widget class is oMipetValuesFunc

typedef Boolean (*XtSetValuesFunc)(Widget, Widget, Widget, ArgList, Cardinal*);
Widgetcurrent
Widgetrequest
Widgetnew
ArglList args
Cardinal num_args

current Specifies a copof the widget as it was before thkeSetValuescall.

request Specifies a copof the widget with all values changed as asked for byXti$et-
Values call before an class set_values proceduresdéeen called.

new Specifies the widget with thewevalues that are actually allowed.

args Specifies the argument list passet8etValuesor the transformed argument
list passed tXtVaSetValues.

num_args Specifies the number of entries in the argument list.

The set_values procedure should recompuwdiatd derved from resources that are changed (for
example, map GCs depend on foreground and backgrounelp)x Ifno recomputation is neces-
sary and if none of the resources specific to a subclass require thewode edisplayed

when their values are changed, you can specify NULL fos¢hevaluedield in the class record.

Like the initialize procedure, set_values mostly deals only with the fields defined in the subclass,
but it has to resolg conflicts with its superclass, especially conflictsravidth and height.

Sometimes a subclass may wantverarite values filled in by its superclass. In particusiazre
calculations of a superclass are often incorrect for a subclass, and, in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass.disytaig case, the width and

height calculated by the superclass set_values procedure are too small and need to be incremented
by the size of the surround. The subclass needs tw ints superclass’sze was calculated by

the superclass or was specified explicityl widgets must place themselves into whetesize is

explicitly given, but thg should compute a reasonable size if no size is requestes.dbls a

subclass knw the difference between a specified size and a size computed by a superclass?

Therequestandnewparameters provide the necessary information. rétpeestwidget is a copy
of the widget, updated as originally requested. Adwwidget starts with the values in the

180

request, but it has additionally been updated by all superclass set_values procedures called so far.
A subclass set_values procedure can compare these tasole any potential conflicts. The
set_values procedure need not refer ta¢qaestwidget unless it must res@wonflicts between
thecurrentandnewwidgets. Aty changes the widget needs to make, including geometry

changes, should be made in tesvwidget.

In the aboe example, the subclass with the visual surround can seewithie andheightin the
requestwidget are zero. If so, it adds its surround size tontidéh andheightfields in thenew
widget. Ifnot, it must ma& do with the size originally specified. In this case, zero is a special
vaue defined by the class to permit the applicationvoka tis behavior.

Thenewwidget is the actual widget instance record. Therefore, the set_values procedure should
do all its work on th@mewwidget; therequestwidget should neer be nodified. Ifthe set values
procedure needs to callyaroutines that operate on a widget, it should spewfyas the widget
instance.

Before calling the set_values procedures, the Intrinsics modify the resourcesegiswidget
according to the contents of the arglist; if the widget names all its resources in the class resource
list, it is never necessary to examine the contentargs.

Finally, the set_values procedure must return a Boolean that indicates whether the widget needs to
be redisplayed. Note that a change in the geometry fields alone does not require the set_values
procedure to returiir ue; the X server will gentually generate akxposeevent, if necessary.

After calling all the set_values procedursSetValuesforces a redisplay by callingClear-

Area if any of the set_values procedures returiiede. Therefore, a set_values procedure

should not try to do its own redisplaying.

Set_values procedures should not dpwaark in response to changes in geometry because
XtSetValues eventually will perform a geometry request, and that request might be denied. If
the widget actually changes size in response to a cAliSetValues, its resize procedure is
called. Wdgets should do argeometry-related work in their resize procedure.

Note that it is permissible to cafltSetValuesbefore a widget is realized. Therefore, the set_val-
ues procedure must not assume that the widget is realized.

9.7.2.2. Wdget State: The set_values_almost Procedure
The set_values_almost procedure pointer in the widget class record is stApostProc.

typedef void (*XtAlmostProc)(Widget, Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widgetold;

Widgetnew
XtwWidgetGeometry fequest
XtWidgetGeometry feply;
old Specifies a copof the object as it was before thgSetValuescall.
new Specifies the object instance record.
request Specifies the original geometry request that was sent to the geometry manager
that causeKtGeometryAlmost to be returned.
reply Specifies the compromise geometry that was returned by the geometry manager

with XtGeometryAlmost.

Most classes inherit the set_values_almost procedure from their superclass by specifying

181

XtinheritSetValuesAlmost in the class initialization. The set_values_almost procedurecin
tObjClass accepts the compromise suggested.

The set_values_almost procedure is called when a client tries to set asagdgetétry by

means of a call tXtSetValuesand the geometry manager cannot satisfy the request but instead
returnsXtGeometryNo or XtGeometryAlmost and a compromise geometryhe newobject is

the actual instance record. Tk, width, height and border_widthfields contain the original
values as thgwere before thXtSetValuescall, and all other fields contain thewnealues. The
requestparameter contains themgeometry request that was made to the parent.répig
parameter containeply->request_modequal to zero if the parent return&tiGeometryNo and
contains the parestoompromise geometry otherwise. The set_values_almost procedure takes
the original geometry and the compromise geometry and determines if the compromise is accept-
able or whether to try a different compromise. It returns its results iedhiestparameter,

which is then sent back to the geometry manager for anothéfaigccept the compromise, the
procedure must cgpthe contents of theeply geometry into theequestgeometry; to attempt an
alternatve geometrythe procedure may modify wpart of therequestargument; to terminate the
geometry negotiation and retain the original geom#te/procedure must set
request->request_mode zero. The geometry fields of thil andnewinstances must not be
modified directly.

9.7.2.3. Wdget State: The ConstraintClassPart set_values Procedure

The constraint set_values procedure pointer is of KtgetValuesFunc The values passed to
the parens mnstraint set_values procedure are the same as those passed to thdagsld’
set_values procedurd class can specify NULL for theet valuedield of theConstraintPart

if it need not compute anything.

The constraint set_values procedure should recomputenastraint fields devied from con-

straint resources that are changed. Furthermore, it may modify other widget fields as appropriate.
For example, if a constraint for the maximum height of a widget is changed to a value smaller

than the widge$ aurrent height, the constraint set_values procedure may redsitfefield in

the widget.

9.7.2.4. \Wdget Subpart State

To et the current values of subpart resources associated with a widget instand§etSeb-
values. For a discussion of subpart resources, see Section 9.4.

182

void XtSetSulvaluespase resourcesnum_resourcesargs num_args
XtPointerbase
XtResourcelListesources
Cardinalnum_resources
ArglList args
Cardinalnum_args

base Specifies the base address of the subpart data structure into which the resources
should be written.
resources Specifies the subpart resource list.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list of name/value pairs that contain the resources to be
modified and their e values.

num_args Specifies the number of entries in the argument list.

The XtSetSubvalues function updates the resource fields of the structure identifibddgy Any
specified arguments that do not match an entry in the resource list are silently ignored.

To =t the current values of subpart resources associated with a widget instance using varargs
lists, useXtVaSetSubvalues.

void XtVaSetSubauespase resourcesnum_resources..)
XtPointerbase
XtResourceListesources
Cardinalnum_resources

base Specifies the base address of the subpart data structure into which the resources
should be written.

resources Specifies the subpart resource list.

num_resourcesspecifies the number of entries in the resource list.

Specifieshe variable argument list of name/value pairs that contain the resources
to be modified and their mevalues.

XtVaSetSubvaluesis identical in function toXtSetSubvalues with theargsandnum_args
parameters replaced by a varargs list, as described in Section2t8alllypedArg is not sup-
ported forXtVaSetSubvalues. If an entry containingXtVaTypedArg is specified in the list, a
warning message is issued and the entry is ignored.

9.7.2.5. Wdget Subpart Resource Data: The set_values_hook Procedure

183

Note

The set_values_hook procedure is obsolete, as the same informatiaraisiteble
to the set_values procedure. The procedure has been retained for those widgets that
used it in versions prior to Release 4.

Widgets that hae a sibpart can set the subpart resource values thrgtgétValues by supply-
ing a set_values_hook procedure. The set_values _hook procedure pointer in a widget class is of
type XtArgsFunc.

typedef Boolean (*XtArgsFunc)(Widget, Arglist, Cardinal*);
Widgetw;
Arglist args
Cardinal num_args
w Specifies the widget whose subpart resource values are to be changed.

args Specifies the argument list that was passedt&etValuesor the transformed
varargs list passed t§tVaSetValues.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources may edfbetValuesfrom the set values_hook procedure
and pass in its subresource list andaigsandnum_arggparameters.

184

Chapter 10

Translation Management

Except under unusual circumstances, widgets do not hardwire the mapping oEnteingo
widget behavior by using thee@nt manager Instead, thg provide a default mapping ofents
into behavior that you carverride.

The translation manager provides an interface to specify and manage the mappingmf X e
sequences into widget-supplied functionality example, calling procedufdcwhen they key
is pressed.

The translation manager use®tknds of tables to perform translations:

. The action tables, which are in the widget class structure, specify the mapping of externally
available procedure name strings to the corresponding procedure implemented by the wid-
get class.

. A translation table, which is in the widget class structure, specifies the mappirgtof e
sequences to procedure name strings.

You can werride the translation table in the class structure for a specific widget instance by sup-
plying a different translation table for the widget instance. The resources XtNtranslations and
XtNbaseTranslations are used to modify the class default translation table; see Section 10.3.

10.1. ActionTables

All widget class records contain an action table, an arra§tAftionsRec entries. Inaddition,

an application can register its own action tables with the translation manager so that the transla-
tion tables it provides to widget instances can access application functionality diféetlfrans-

lation action procedure pointer is of tyg#ActionProc .

185

typedef void (*XtActionProc)(Widget, XEvent*, String*, Cardinal*);
Widgetw;
XEvent *event
String *params
Cardinal num_params

w Specifies the widget that caused the action to be called.

ewent Specifies thewent that caused the action to be called. If the action is called after
a £quence ofwents, then the lastvent in the sequence is used.

params Specifies a pointer to the list of strings that were specified in the translation table
as arguments to the action, or NULL.

num_params Specifies the number of entriesparams

typedef struct _XtActionsRec {
String string;
XtActionProc proc;

} X tActionsRec, *XtActionList;

Thestringfield is the name used in translation tables to access the procedungrodfield is a
pointer to a procedure that implements the functionality.

When the action list is specified as thereClassPartactionsfield, the string pointed to by
string must be permanently allocated prior to or during tteewion of the class initialization
procedure and must not be subsequently deallocated.

Action procedures should not assume that the widget in whigratbénvoked is realized; an
accelerator specification can cause an action procedure to be called for a widget that does not yet
have a wndow. Widget writers should also note which of a widgetiliback lists are woked

from action procedures and warn clients not to assume the widget is realized in those callbacks.

For example, a Pushbutton widget has procedures wttakfollowing actions:
. Set the button to indicate it is azdted.

. Unset the button back to its normal mode.

. Highlight the button borders.

. Unhighlight the button borders.

. Notify any callbacks that the button has beenattid.

The action table for the Pushbutton widget class makes these funetidalsla to translation

tables written for Pushbutton oryasubclass. Theatring entry is the name used in translation
tables. Therocedure entry (usually spelled identically to the string) is the name of the C proce-
dure that implements that function:

XtActionsRec actionTable[] = {
{"Set", Set},
{"Unset", Unset},
{"Highlight", Highlight},
{"Unhighlight", Unhighlight}
{"Notify", Notify},

186

The Intrinsics reseevdl action names and parameters starting with the characterd 6xfuture
standard enhancements. Users, applications, and widgets should not declare action names or pass
parameters starting with these characters exceptakdrgpecified built-in Intrinsics functions.

10.1.1. ActionTable Registration

Theactionsandnum_actiondields of CoreClassPartspecify the actions implemented by a wid-
get class. These are automatically registered with the Intrinsics when the class is initialized and
must be allocated in writable storage prior to Core class_part initialization, \eerdleallocated.

To savememory and optimize access, the Intrinsics magwrite the storage in order to compile

the list into an internal representation.

To declare an action table within an application and register it with the translation maisager
XtAppAddActions .

void XtAppAddActions@pp_contextactions num_actions
XtAppContextapp_context
XtActionList actions
Cardinalnum_actions
app_context Specifies the application context.
actions Specifies the action table to register.

num_actions Specifies the number of entries in this action table.

If more than one action is registered with the same name, the most recently registered action is
used. Ifduplicate actions exist in an action table, the first is used. The Intrinsics register an
action table containintMenuPopup and XtMenuPopdown as part ofXtCreateApplication-
Context.

10.1.2. ActionNames to Procedue Translations

The translation manager uses a simple algorithm to $wwname of a procedure specified in a
translation table into the actual procedure specified in an action table. When the widget is real-
ized, the translation manager performs a search for the name in the following tables, in order:

. The widgets dass and all superclass action tables, in subclass-to-superclass order.

. The parens dass and all superclass action tables, in subclass-to-superclasshemien
up the ancestor tree.

. The action tables registered wi¥tAppAddActions and XtAddActions from the most
recently added table to the oldest table.

As soon as it finds a name, the translation manager stops the search. If it cannot find a name, the
translation manager generates a warning message.

10.1.3. ActionHook Registration

An application can specify a procedure that will be called just beferg action routine is dis-
patched by the translation managéo do 9, the application supplies a procedure pointer of type
XtActionHookProc .

187

typedef void (*XtActionHookProc)(Widget, XtPointe®tring, XEvent*, String*, Cardinal*);
Widgetw;
XtPointerclient_data
Stringaction_name

XEvent* event,
String* params
Cardinal*num_params
w Specifies the widget whose action is about to be dispatched.
client data Specifies the application-specific closure that was passethppAddAction-
Hook.
action_name Specifies the name of the action to be dispatched.
ewent Specifies thevent argument that will be passed to the action routine.
params Specifies the action parameters that will be passed to the action routine.

num_params Specifies the number of entriesparams

Action hooks should not modify grof the data pointed to by the arguments other than the
client_dataargument.

To add an action hook, usstAppAddActionHook .

XtActionHookld XtAppAddActionHook&pp, proc, client_datg
XtAppContextapp;
XtActionHookProcproc,
XtPointerclient_data

app Specifies the application context.

proc Specifies the action hook procedure.
client_ data Specifies application-specific data to be passed to the action hook.

XtAppAddActionHook adds the specified procedure to the front of a list maintained in the
application contet. In the future, when an action routine is about to beked for ary widget in
this application context, either through the translation manager &it@iallActionProc , the
action hook procedures will be called iveese order of registration just prior tovoking the
action routine.

Action hook procedures are rewed automatically and th&tActionHookld is destroyed when
the application context in which thavere added is destroyed.

To remove an action hook procedure without destroying the application context, use
XtRemoveActionHook .

188

void XtRemoveActionHook(d)
XtActionHookldid;

id Specifies the action hook id returnedXwyAppAddActionHook .

XtRemoveActionHook remores the specified action hook procedure from the list in which it
was regstered.

10.2. Translation Tables

All widget instance records contain a translation table, which is a resource with a default value
specified elsewhere in the class recokdranslation table specifies what action procedures are
invoked for an @ent or a sequence ofents. Atranslation table is a string containing a list of
translations from anvent sequence into one or more action procedure calls. The translations are
separated from one another by newline characters (ASCII LF). The complete syntax of transla-
tion tables is specified in Appendix B.

As an example, the default behavior of Pushbutton is

. Highlight on enter winde.

. Unhighlight on exit winduwv.

. Invet on left button down.

. Call callbacks and reumrt on left button up.

The following illustrates Pushbutt@ndefault translation table:

static String defaultTranslations =
"<EnterWindow>:Highlight()\n\
<LeaveWindow>:Unhighlight()\n\
<Btn1lDown>: Set()\n\
<BtnlUp>: Notify()Unset()";

Thetm_tablefield of theCoreClassPartshould be filled in at class initialization time with the
string containing the classtefault translations. If a class wants to inherit its superddssisla-
tions, it can store the special vald@nheritTranslations into tm_table In Core’s dass part ini-
tialization procedure, the Intrinsics compile this translation table into an efficient internal form.
Then, at widget creation time, this default translation table is combined with the XtNtranslations
and XtNbaseTranslations resources; see Section 10.3.

The resource coersion mechanism automatically compiles string translation tables that are
specified in the resource database. If a client uses translation tables that are vt vidree
resource corersion, it must compile them itself usingfParseTranslationTable.

The Intrinsics use the compiled form of the translation table to register the necesstaywih
the eent manager Widgets need do nothing other than specify the action and translation tables
for events to be processed by the translation manager.

10.2.1. Eent Sequences

An event sequence is a comma-separated list ofedtedescriptions that describes a specific
sequence of Xwents to map to a set of program actions. Eaclveditedescription consists of
three parts: The Xvent type, a prefix consisting of the X modifier bits, andamespecific suf-
fix.

189

Various abbreviations are supported to m@iknslation tables easier to read. Thenés must
match incomingeents in left-to-right order to trigger the action sequence.

10.2.2. ActionSequences

Action sequences specify what program or widget actions ¢oitaksponse to incoming X

events. An action sequence consists of space-separated action procedure call specifications. Each
action procedure call consists of the name of an action procedure and a parenthesized list of zero
or more comma-separated string parameters to pass to that procedure. The actioolsdna in
left-to-right order as specified in the action sequence.

10.2.3. Multi-Click Time

Translation table entries may specify actions that are taken whesr twore identical eents

occur consecutely within a short time interval, called the multi-click time. The multi-click time
value may be specified as an application resource with name “multiClickTame:'class “Mul-
tiClickTime” and may also be modified dynamically by the application. The multi-click time is
unique for each Display value and is ratetfrom the resource database Xtpisplaylnitial-

ize. If no value is specified, the initial value is 200 milliseconds.

To =t the multi-click time dynamicallyse XtSetMultiClickTime .

void XtSetMultiClick Time(isplay, time)

Display *display,
int time;
display Specifies the display connection.
time Specifies the multi-click time in milliseconds.

XtSetMultiClickTime sets the time interval used by the translation manager to determine when
multiple events are interpreted as a repeateeghe Whena repeat count is specified in a transla-
tion entry the interval between the timestamps in each pair of repeatets ¢e.g., between two
ButtonPress events) must be less than the multi-click time in order for the translation actions to
be taken.

To read the multi-click time, us¥tGetMultiClick Time .

int XtGetMultiClickTime(display)
Display *display;

display Specifies the display connection.

XtGetMultiClickTime returns the time in milliseconds that the translation manager uses to
determine if multiple eents are to be interpreted as a repeatedtdor purposes of matching a
translation entry containing a repeat count.

190

10.3. Translation Table Management

Sometimes an application needs to merge its own translations with a widgetlations. 6r
example, a winde manager provides functions to m@a wndow. The windav manager wishes
to bind this operation to a specific pointer button in the title bar without the possibility of user
overide and bind it to other buttons that may berndden by the user.

To accomplish this, the wind® manager should first create the title bar and then should merge
the two translation tables into the title bauttanslations. On&anslation table contains the trans-
lations that the windes manager wants only if the user has not specified a translation for a partic-
ular event or event sequence (i.e., those that may berridden). Theother translation table con-
tains the translations that the windmanager wants gardless of what the user has specified.

Three Intrinsics functions support this merging:

XtParseTranslationTable Compiles a translation table.

XtAugmentTranslations Merges a compiled translation table into a widgetmpiled
translation table, ignoring gmew translations that conflict
with existing translations.

XtOverrideTranslations Merges a compiled translation table into a widgetmpiled
translation table, replacing aexisting translations that con-
flict with new translations.

To compile a translation table, us@ParseTranslationTable.

XtTranslations XtParseTranslationTalbéd]e)
Stringtable

table Specifies the translation table to compile.

The XtParseTranslationTable function compiles the translation table, provided in the format
given in Appendix B, into an opaque internal representation of Xtpeanslations. Note that if
an empty translation table is required foy @arpose, one can be obtained by callifarse-
TranslationTable and passing an empty string.

To merge additional translations into an existing translation tableXtsegmentTranslations.

void XtAugmentTranslationsy, translationg
Widgetw;,
XtTranslationdranslations

w Specifies the widget into which thew&anslations are to be ngerd. Muste
of class Core or gnsubclass thereof.
translations Specifies the compiled translation table to merge in.

The XtAugmentTranslations function merges the metranslations into the existing widget
translations, ignoring argreplace, #augment, or #override directive that may hee been speci-
fied in the translation string. The translation table specifigamglationsis not altered by this
process. XtAugmentTranslations logically appends the string representation of the new

191

translations to the string representation of the widgatrent translations and reparses the result
with no warning messages about duplicate left-hand sides, then stores the result back into the
widget instance; i.e., if the metranslations contain arvent or event sequence that already exists
in the widgets franslations, the metranslation is ignored.

To overwrite existing translations with metranslations, us&tOverrideTranslations .

void XtOverrideTranslationg(, translationg
Widgetw;,
XtTranslationdranslations

w Specifies the widget into which thew&anslations are to be merged. Must be of
class Core or gnsubclass thereof.

translations Specifies the compiled translation table to merge in.

The XtOverrideTranslations function merges the metranslations into the existing widget
translations, ignoring angreplace, #augment, or #override directive that may hee keen speci-

fied in the translation string. The translation table specifigdamglationsis not altered by this
process. XtOverrideTranslations logically appends the string representation of the widget’s
current translations to the string representation of thetramslations and reparses the result with

no warning messages about duplicate left-hand sides, then stores the result back into the widget
instance; i.e., if the metranslations contain arvent or e/zent sequence that already exists in the
widget's ranslations, the metranslation gerrides the widgesg translation.

To replace a widged'ranslations completelyse XtSetValueson the XtNtranslations resource
and specify a compiled translation table as the value.

To make it possible for users to easily modify translation tables in their resource files, the string-
to-translation-table resource type eenter allows the string to specify whether the table should
replace, augment, orverride ary existing translation table in the widgeto gecify this, a pound

sign (#) is gven as he first character of the table followed by one of tagwords “replace”,
“augment”, or “override” to indicate whether to replace, augment,\@riade the existing table.

The replace or merge operation is performed during the Core instance initialization. Each merge
operation produces awdranslation resource value; if the original tables were shared by other
widgets, thg are unafected. Ifno directve is ecified, “#replace’is assumed.

At instance initialization the XtNtranslations resource is first fetched. Then, if it was not speci-
fied or did not contain “#replace”, the resource database is searched for the resource XtNbase-
Translations. IXtNbaseTranslations is found, it is merged into the widget class translation table.
Then the widgetranslationsfield is merged into the result or into the class translation table if
XtNbaseTranslations was not found. This final table is then stored into the wadggations

field. If the XtNtranslations resource specified “#replace”, no merge is done. If neither
XtNbaseTranslations or XtNtranslations are specified, the class translation table is copied into the
widget instance.

To completely remwae edsting translations, usktUninstallTranslations .

192

void XtUninstallTranslationsy)
Widgetw;

w Specifies the widget from which the translations are to bevamoMustbe of
class Core or gnsubclass thereof.

The XtUninstallTranslations function causes the entire translation table for the widget to be
removed.

10.4. UsingAccelerators

It is often desirable to be able to bingkets in one widget to actions in anothém particular it

is often useful to be able toviske menu actions from theggboard. Thdntrinsics provide a

facility, called accelerators, that lets you accomplish this. An accelerator table is a translation ta-
ble that is bound with its actions in the context of a particular widgesotimeewidget. The
accelerator table can then be installed on one or destnationwidgets. Wheran event

sequence in the destination widget would cause an accelerator action to be taken, and if the
source widget is senai#, the actions arexecuted as though triggered by the sawvene

sequence in the accelerator source widget. Vhat és passed to the action procedure without
modification. Theaction procedures used within accelerators must not assume that the source
widget is realized nor that wafields of the eent are in reference to the source widg@fndow if

the widget is realized.

Each widget instance contains that widgetported accelerator table as a resource. Each class

of widget exports a method that takes a displayable string representation of the accelerators so
that widgets can display their current accelerators. The representation is the accelerator table in
canonical translation table form (see Appendix B). The display_accelerator procedure pointer is
of type XtStringProc .

typedef void (*XtStringProc)(Widget, String);

Widgetw;
Stringstring;
w Specifies the source widget that supplied the accelerators.
string Specifies the string representation of the accelerators for this widget.

Accelerators can be specified in resource files, and the string representation is the same as for a
translation table. Hower, the interpretation of th#éaugmentand#override directives gplies

to what will happen when the accelerator is installed; that is, whether or not the accelerator trans-
lations will override the translations in the destination widget. The defagdaigyment which

means that the accelerator translationsHawer priority than the destination translations. The
#replacedirective is ignored for accelerator tables.

To parse an accelerator table, v&ParseAcceleratorTable.

193

XtAccelerators XtParseAcceleratorTalse(rcg
Stringsource

source Specifies the accelerator table to compile.

The XtParseAcceleratorTable function compiles the accelerator table into an opaque internal
representation. Thelient should set the XtNaccelerators resource of each widget that is to be
activated by these translations to the returned value.

To install accelerators from a widget on another widget XibestallAccelerators.

void XtinstallAcceleratorsiestination sourcg
Widgetdestination
Widgetsource

destination Specifies the widget on which the accelerators are to be installed. Must be of
class Core or amnsubclass thereof.

source Specifies the widget from which the accelerators are to come. Must be of class
Core or ag subclass thereof.

The XtInstallAccelerators function installs thecceleratorgesource value frorsourceonto
destinationby merging the source accelerators into the destination translations. If thedisurce
play_acceleratofield is non-NULL, XtInstallAccelerators calls it with the source widget and a
string representation of the accelerator table, which indicates that its accelenstdrscima
installed and that it should display them appropriaté&lye string representation of the accelera-
tor table is its canonical translation table representation.

As a conenience for installing all accelerators from a widget and all its descendants onto one
destination, us&tinstallAllAccelerators .

void XtInstallAllAcceleratorsdestination source
Widgetdestination
Widgetsource

destination Specifies the widget on which the accelerators are to be installed. Must be of
class Core or ansubclass thereof.

source Specifies the root widget of the widget tree from which the accelerators are to
come. Musbe of class Core or grsubclass thereof.

The XtInstallAllAccelerators function recursiely descends the widget tree rootedatirceand
installs the accelerators resource value of each widget encounteretdstimation A common
use is to calXtinstallAllAccelerators and pass the application main wimdas tie source.

10.5. KeyCode-to-KeySym Cowuersions

The translation manager provides support for automatically translagiyigades in incoming
key events into KeySyms. KeyCode-to-KeySym translator procedure pointers are of type
XtKeyProc.

194

typedef void (*XtkeyProc)(Display*, kyCode, Maodifiers, Modifiers*, EySym?®*);
Display *display,
KeyCodekeycode
Modifiersmodifiers
Modifiers *modifiers_return
KeySym *keysym_return

display Specifies the display that theyCode is from.
keycode Specifies the KyCode to translate.
modifiers Specifies the modifiers to theeyCode.

modifiers_returnSpecifies a location in which to store a mask that indicates the subset of all
modifiers that are examined by theykranslator for the specifiecicode.

keysym_return Specifies a location in which to store the resultiey3ym.

This procedure takes eeCode and modifiers and producesey8ym. For ary given key tans-
lator function and &yboard encodingnodifiers_returrwill be a constant perdé§Code that indi-
cates the subset of all modifiers that are examined byetheanslator for that KyCode.

The KeyCode-to-KeySym translator procedure must be implemented such that multiple calls with
the samalisplay, keycode and modifiersreturn the same result until either anese cowerter,
an XtCaseProc, is installed or aMappingNotify event is receved.

The Intrinsics maintain tables internally to magyRodes to kySyms for each open display.
Translator procedures and other clients may share a singl®ttis table to perform the same
mapping.

To return a pointer to thed¢Sym-to-KeyCode mapping table for a particular displase
XtGetKeysymTable.

KeySym *XtGetKeysymTabledisplay, min_leycode_returnkeysyms_per_dycode_returi
Display *display,
KeyCode "'min_leycode_return
int *keysyms_per _dycode_return

display Specifies the display whose table is required.

min_leycode_return
Returns the minimum &yCode valid for the display.

keysyms_per_dycode_return
Returns the number ofdySyms stored for eachegCode.

XtGetKeysymTable returns a pointer to the Intrinsics’ gopf the serves KeyCode-to-keySym
table. Thigable must not be modified. There &ggsyms_per dycode_returrkKeySyms associ-
ated with each ByCode, located in the table with indices starting at index

(test_leycode - min_kycode return) * kysyms_per_&ycode_return

for KeyCodetest_leycode Any entries that hee o KeySyms associated with them contain the
value NoSymbol. Clients should not cache thee¥Sym table but should call
XtGetKeysymTable each time the value is needed, as the table may change prior to dispatching

195

each gent.
For more information on this table, see Section 12 Xlibh — C Languge X hterface

To regster a lkey translatoy use XtSetKeyTranslator .

void XtSetKeyTranslatordisplay, proc)
Display *display,
XtKeyProcproc,

display Specifies the display from which to translate thents.
proc Specifies the procedure to perforeykranslations.

The XtSetKeyTranslator function sets the specified procedure as the curesntdnslator The
default translator iXtTranslateKey, an XtKeyProc that uses the Shift, Lock, numlock, and
group modifiers with the interpretations defineXiMndow System Protocdbection 5. It is
provided so that metranslators can call it to get defaukyCode-to-keySym translations and so
that the default translator can be reinstalled.

To invoke the currently registereddfCode-to-KeySym translatqruse XtTranslateKeycode.

void XtTranslatekeycodeglisplay, keycode modifiers modifiers_returpkeysym_returip
Display *display,
KeyCodekeycode
Modifiersmodifiers
Modifiers *modifiers_return
KeySym *keysym_return

display Specifies the display that theyCode is from.

keycode Specifies the EyCode to translate.

modifiers Specifies the modifiers to theeyCode.

modifiers_returnReturns a mask that indicates the modifiers actually used to generate the
KeySym.

keysym_return Returns the resultingd¢Sym.

The XtTranslateKeycode function passes the specified arguments directly to the currently regis-
tered keyCode-to-keySym translator.

To handle capitalization of nonstandardysyms, the Intrinsics alo clients to register case con-
version routines. Case coarter procedure pointers are of tyg&CaseProc.

196

typedef void (*XtCaseProc)(Display*,d¢Sym, KeySym*, KeySym®*);
Display *display,
KeySymkeysym
KeySym *ower_return
KeySym *upper_return
display Specifies the display connection for which theveosion is required.
keysym Specifies the BySym to comert.
lower_return Specifies a location into which to store the lowercasevdeui for the kKeySym.
upper_return Specifies a location into which to store the uppercaseaepi for the KeySym.

If there is no case distinction, this procedure should storedf®yh into both return values.

To regster a case comrter, use XtRegisterCaseConerter .

void XtRegisterCaseCawmrrter(display, proc, start, stop
Display *display,
XtCaseProgroc;
KeySymstart,
KeySymstop

display Specifies the display from which theykerents are to come.
proc Specifies theXtCaseProcto do the cowversions.

start Specifies the first &/Sym for which this coverter is valid.
stop Specifies the lasté§Sym for which this coverter is valid.

The XtRegisterCaseConerter registers the specified case water. Thestartandstopargu-
ments provide the inclug range of KySyms for which this corerter is to be called. The new
converter overrides ai previous comerters for KeySyms in that range. No interface exists to
remove @nverters; you need to register an identity water. When a ne cornverter is registered,
the Intrinsics refresh theelgboard state if necessaryhe default coverter understands case con-
version for all Latin kySyms defined itX Window System ProtocoAppendix A.

To determine uppercase and lowercase\algmts for a KySym, usexXtConvertCase.

197

void XtCorvertCasedlisplay, keysym lower_return upper_return
Display *display,
KeySymkeysym
KeySym *lower_return
KeySym *upper_return

display Specifies the display that theySym came from.
keysym Specifies the BySym to comert.

lower_return Returns the lowercase euaient of the keySym.
upper_return Returns the uppercase egaiént of the kKeySym.

The XtConvertCase function calls the appropriate onter and returns the resulté. user-sup-
plied XtKeyProc may need to use this function.

10.6. Obtaininga KeySym in an Action Procedure

When an action procedure ivaked on aKeyPressor KeyReleaseevant, it often has a need to
retrieve the KeySym and modifiers corresponding to tierg that caused it to bevioked. In

order to &oid repeating the processing that was just performed by the Intrinsics to match the
translation entrythe KeySym and modifiers are stored for the duration of the action procedure
and are madevailable to the client.

To retrieve the KeySym and modifiers that matched the finadrg specification in the translation
table entryuse XtGetActionKeysym.

KeySym XtGetActionkeysym(event modifiers_returin
XEvent *event
Modifiers *modifiers_return

event Specifies thevent pointer passed to the action procedure by the Intrinsics.
modifiers_return Returns the modifiers that caused the match, if non-NULL.

If XtGetActionKeysym is called after an action procedure has beeoked by the Intrinsics and
before that action procedure returns, and if treatepointer has the same value as tene

pointer passed to that action routine, and if themieis aKeyPressor KeyReleaseevent, then
XtGetActionKeysym returns the l€ySym that matched the finalant specification in the trans-
lation table and, imodifiers_returris non-NULL, the modifier state actually used to generate this
KeySym; otherwise, if thevent is aKeyPressor KeyReleaseevent, thenXtGetActionKeysym

calls XtTranslateKeycode and returns the results; else it retuN®Symbol and does not exam-

ine modifiers_return

Note that if an action procedurevoked by the Intrinsics imokes a sibsequent action procedure
(and so on) viXtCallActionProc , the nested action procedure may also X&BetAction-
Keysym to retrieve the Intrinsics’ kySym and modifiers.

10.7. KeySym-to-KeyCode Cowmersions

To return the list of i€yCodes that map to a particulaeySym in the kyboard mapping table
maintained by the Intrinsics, ud#KeysymToKeycodeList.

198

void XtKeysymTokeycodelListflisplay, keysym keycodes_returnkeycount_returi
Display *display,
KeySymkeysym
KeyCode **keycodes_retumn
Cardinal *keycount_return

display Specifies the display whose table is required.
keysym Specifies the BySym for which to search.

keycodes_return Returns a list of KyCodes that hae keysymassociated with them, or NULL
if keycount_returns 0.

keycount_return Returns the number ofd¢Codes in the &ycode list.

The XtKeysymToKeycodeList procedure returns all theeCodes that hae keysymin their

entry for the keyboard mapping table associated witbplay For each entry in the table, the first
four KeySyms (groups 1 and 2) are interpreted as specified\Wipdow System Protocdbec-

tion 5. If no KeyCodes map to the specifie@ysym,keycount_returris zero and
*keycodes_returis NULL.

The caller should free the storage pointed t&dygodes_returmsing XtFree when it is no
longer useful. If the caller needs to examine tleg@ode-to-keySym table for a particular
KeyCode, it should calKtGetKeysymTable.

10.8. RegisteringButton and Key Grabs for Actions

To regster button anddy gabs for a widge$ window according to theent bindings in the
widget's ranslation table, us¥tRegisterGrabAction.

void XtRegisterGrabActiorgction_pro¢ owner_eventewent_maskpointer_modekeyboard_modg
XtActionProcaction_pro¢
Booleanowner_events
unsigned inevent_mask
int pointer_modekeyboard_mode

action_proc Specifies the action procedure to search for in translation tables.

owner_events
event_mask
pointer_mode
keyboard_mode
Specify arguments t¥tGrabButton or XtGrabKey .

XtRegisterGrabAction adds the specifiegction_procto a list known to the translation man-

ager When a widget is realized, or when the translations of a realized widget or the accelerators
installed on a realized widget are modified, its translation table anidstalled accelerators are
scanned for action procedures on this list. if a® invoked on ButtonPressor KeyPress

evants as the only or finalvent in a sequence, the Intrinsics will cXiGrabButton or

XtGrabKey for the widget with eery button or KeyCode which maps to theent detail field,

passing the specifiamlvner_eventevent_maskpointer_modeand keyboard_mode For But-
tonPressevents, the modifiers specified in the grab are determined directly from the translation

199

specification andonfine_taandcursorare specified aslone. For KeyPressevents, if the trans-
lation table entry specifies colon (:) in the modifier list, the modifiers are determined by calling
the lkey ranslator procedure registered for the display and cali@yabKey for every combi-
nation of standard modifiers which map they®ode to the specifiedrent detail KeySym, and
ORing aty modifiers specified in the translation table engnd event_masks ignored. If the
translation table entry does not specify colon in the modifier list, the modifiers specified in the
grab are those specified in the translation table entry GolybothButtonPressand KeyPress
events, don't-care modifiers are ignored unless the translation entry explicitly spée&ifigsin
themodifiersfield.

If the specifiedaction_procis already registered for the calling process, thre vedues will
replace the previously specified values foy aidgets that become realized following the call,
but existing grabs are not altered on currently realized widgets.

When translations or installed accelerators are modified for a realized widgpteanus lkey a
button grabs registered as a result of the old bindings are releasgddbthat appear in the new
bindings and are not explicitly grabbed by the client WitGrabKey or XtGrabButton .

10.9. Invoking Actions Directly

Normally action procedures aresaked by the Intrinsics when arvent or e/ent sequence awues
for a widget. © invoke an action procedure directlwithout generating (or synthesizing)eats,
use XtCallActionProc .

void XtCallActionProcgvidget action event, params num_paramys
Widgetwidget
Stringactior
XEvent *event
String *params
Cardinalnum_paramys

widget Specifies the widget in which the action is to heked. Mustbe of class Core
or ary subclass thereof.

action Specifies the name of the action routine.

ewent Specifies the contents of thegntpassed to the action routine.

params Specifies the contents of tharamspassed to the action routine.

num_params Specifies the number of entriesparams

XtCallActionProc searches for the named action routine in the same manner and order as trans-
lation tables are bound, as described in Section 10.1.2, except that application action tables are
searched, if necessags of he time of the call ttCallActionProc . If found, the action rou-

tine is invoked with the specified widgetyent pointer and parameters. It is the responsibility of

the caller to ensure that the contents ofeemt params and num_paramsrguments are appro-
priate for the specified action routine and, if neces#aay the specified widget is realized or sen-
sitive. If the named action routine cannot be foustCallActionProc generates a warning mes-
sage and returns.

200

10.10. Obtaininga Widget's Action List

Occasionally a subclass will require the pointers to one or more of its superatties’ proce-
dures. Thisvould be needed, for example, in order teabop the superclassaction. To retrieve
the list of action procedures registered in the superclassansfield, usexXtGetActionList .

void XtGetActionListfvidget classactions_returnnum_actions_retum
WidgetClassvidget_class
XtActionList *actions_return
Cardinal num_actions_return

widget_class Specifies the widget class whose actions are to be returned.

actions_return Returns the action list.
num_actions_return Returns the number of action procedures declared by the class.

XtGetActionList returns the action table defined by the specified widget class. This table does
not include actions defined by the superclassesidifet classs not initialized, or is not
coreWidgetClassor a subclass thereof, or if the class does not defynecéions,

*actions_returrwill be NULL and *num_actions_returmill be zero. If *actions_returris non-
NULL the client is responsible for freeing the table uskigree when it is no longer needed.

201

Chapter 11

Utility Functions

The Intrinsics provide a number of utility functions that you can use to
. Determine the number of elements in an array.
. Translate strings to widget instances.

. Manage memory usage.

. Share graphics contexts.

. Manipulate selections.

. Merge exposurevents into a region.

. Translate widget coordinates.

. Locate a widget gen a window id.

. Handle errors.

. Set the WM_COLORMAP_WINDOWS property.
. Locate files by name with string substitutions.

. Regster callback functions for external agents.

. Locate all the displays of an application context.

11.1. Determiningthe Number of Elements in an Array
To determine the number of elements in a fixed-size aussXtNumber .

Cardinal XtNumberray)
ArrayType array

array Specifies a fixed-size array of arbitrary type.

The XtNumber macro returns the number of elements allocated to the array.

11.2. Translating Strings to Widget Instances
To translate a widget name to a widget instance XislameToWidget.

202

Widget XtNameToWidgetéference name}
Widgetreference
Stringnames

reference Specifies the widget from which the search is to start. Must be of class Core or
ary subclass thereof.
names Specifies the partially qualified name of the desired widget.

The XtNameToWidget function searches for a descendant ofréfierencewidget whose name
matches the specified names. Tlaenegparameter specifies a simple object name or a series of
simple object name components separated by periods or astefidlameToWidget returns the
descendant with the shortest name matching the specification according to the following rules,
where child is either a pop-up child or a normal child if the widg#d5s is a subclass of Com-
posite :

. Enumerate the object subtree rooted at the reference widget in breadth-firsfuoatifgr
ing the name of each object with the names of all its ancestors up to, but not including, the
reference widget. The ordering between children of a common parent is not defined.

. Return the first object in the enumeration that matches the specified name, where each com-
ponent olnamegnatches exactly the corresponding component of the qualified object
name and asterisk matchey aeries of components, including none.

. If no match is found, return NULL.

Since breadth-first tvarsal is specified, the descendant with the shortest matching name (i.e., the
fewest number of components), ifyamill always be returned. Hower, snce the order of enu-
meration of children is undefined and since the Intrinsics do not require that all children of a wid-
get hae wique namesxXtNameToWidget may return ay child that matches if there are multi-

ple objects in the subtree with the same name. Congecmfiarators (periods or asterisks)
including at least one asterisk are treated as a single asterisk. Caesgmiads are treated as a
single period.

11.3. ManagingMemory Usage

The Intrinsics memory management functions provide uniform checking for null pointers and
error reporting on memory allocation errors. These functions are completely compatible with
their standard C language runtime counterpadtioc, calloc, realloc, and free with the fol-
lowing added functionality:

. XtMalloc , XtCalloc, and XtRealloc give an eror if there is not enough memory.
. XtFree simply returns if passed a NULL pointer.
. XtRealloc simply allocates ne storage if passed a NULL pointer.

See the standard C library documentatiomm@lloc, calloc, realloc, and free for more informa-
tion.

To dlocate storage, usktMalloc .

203

char *XtMalloc(size
Cardinalsize

size Specifies the number of bytes desired.

The XtMalloc function returns a pointer to a block of storage of at least the spexednytes.
If there is insufficient memory to allocate thevia@ock, XtMalloc calls XtErrorMsg .

To dlocate and initialize an arrayse XtCalloc.

char *XtCallocfium siz@
Cardinalnum
Cardinalsize

num Specifies the number of array elements to allocate.
size Specifies the size of each array element in bytes.

The XtCalloc function allocates space for the specified number of array elements of the specified
size and initializes the space to zero. If there is insufficient memory to allocatevtbiocle,
XtCalloc calls XtErrorMsg . XtCalloc returns the address of the allocated storage.

To change the size of an allocated block of storage XtRealloc.

char *XtReallocptr, num

char *ptr;
Cardinalnum
ptr Specifies a pointer to the old storage allocated XiMalloc , XtCalloc, or
XtRealloc, or NULL.
num Specifies number of bytes desired imvrstorage.

The XtRealloc function changes the size of a block of storage, possibly moving it. Then it
copies the old contents (or as much as will fit) into thve lleck and frees the old block. If there
is insufficient memory to allocate themeblock, XtRealloc calls XtErrorMsg . If ptris NULL,
XtRealloc simply callsXtMalloc . XtRealloc then returns the address of thevrisock.

To free an allocated block of storage, b&Eree.

void XtFreeftr)
char *ptr;

ptr Specifies a pointer to a block of storage allocated ¥XiMalloc , XtCalloc, or
XtRealloc, or NULL.

The XtFree function returns storage, allowing it to be reusedtiis NULL, XtFree returns
immediately.

204

To dlocate storage for a meinstance of a type, usé&New.

type*XtNew(type
type t
type Specifies a previously declared type.

XtNew returns a pointer to the allocated storage. If there is insufficient memory to allocate the
new block, XtNew calls XtErrorMsg . XtNew is a conenience macro that calstMalloc
with the following arguments specified:

((type *) XtMalloc((unsigned) sizeof(type)))

The storage allocated tNew should be freed usingtFree.

To ocopy an instance of a string, us&NewString .

String XtNewStringétring)
Stringstring;

string Specifies a previously declared string.

XtNewsString returns a pointer to the allocated storage. If there is insufficient memory to allo-
cate the ne block, XtNewsString calls XtErrorMsg . XtNewString is a cowenience macro
that callsXtMalloc with the following arguments specified:

(strepy(XtMalloc((unsigned)strlen(str) + 1), str))

The storage allocated B¥tNewString should be freed usingtFree.

11.4. SharingGraphics Contexts

The Intrinsics provide a mechanism whereby cooperating objects can share a graphics context
(GC), thereby reducing both the number of GCs created and the total number of server calls in
ary given goplication. Themechanism is a simple caching scheme and allows for clients to
declare both modifiable and nonmodifiable fields of the shared GCs.

To obtain a shareable GC with modifiable fields, X$&llocateGC.

205

GC XtAllocateGCyidget depth value_maskvalues dynamic_maskinused_magk
Widgetobject
Cardinaldepth
XtGCMaskvalue _mask
XGCValues walues
XtGCMaskdynamic_mask
XtGCMaskunused_mask

object Specifies an object, giving the screen for which the returned Galids Wust
be of class Object or grsubclass thereof.

depth Specifies the depth for which the returned GC is valid, or O.

value_mask Specifies fields of the GC that are initialized freatues

values Specifies the values for the initialized fields.

dynamic_maskSpecifies fields of the GC that will be modified by the caller.
unused_mask Specifies fields of the GC that will not be needed by the caller.

The XtAllocateGC function returns a shareable GC that may be modified by the client. The
screerfield of the specified widget or of the nearest widget ancestor of the specified object and
the specifiedlepthargument supply the root and ahable depths for which the GC is to be valid.

If depthis zero, the depth is taken from tthepthfield of the specified widget or of the nearest
widget ancestor of the specified object.

Thevalue_maslargument specifies fields of the GC that are initialized with the respeatim-

ber of thevaluesstructure. Thelynamic_maskrgument specifies fields that the caller intends to
modify during programecution. Thecaller must ensure that the corresponding GC field is set
prior to each use of the GC. Thaused masirgument specifies fields of the GC that are of no
interest to the callerThe caller may makno asumptions about the contents of éields speci-
fied inunused_maskThe caller may assume that at all times all fields not specified in either
dynamic_maskr unused_maskave teir default value if not specified tralue_maslor the

value specified byalues If a field is specified in bothalue_maslanddynamic_maskhe effect

is as if it were specified only ilynamic_masknd then immediately set to the valuezalues If

a field is set irunused_masénd also in eitheralue_maslor dynamic_maskhe specification in
unused_masis ignored.

XtAllocateGC tries to minimize the number of unique GCs created by comparing the arguments
with those of previous calls and returning an existing GC when there are no conftislie-
cateGC may modify and return an existing GC if it was allocated with a nonzareed _mask

To obtain a shareable GC with no modifiable fields, XigeetGC.

206

GC XtGetGCébject value_maskvalueg
Widgetobject
XtGCMaskvalue _mask
XGCValues walues

object Specifies an object, giving the screen and depth for which the returned GC is
valid. Mustbe of class Object or grsubclass thereof.

value_mask Specifies which fields of thealuesstructure are specified.

values Specifies the actual values for this GC.

The XtGetGC function returns a shareable, read-only GC. The parameters to this function are
the same as those fiiCreateGC except that an Object is passed instead of a Display.
XtGetGC is equvalent to XtAllocateGC with depth dynamic_maskand unused_maséll zero.

XtGetGC shares only GCs in which all values in the GC returned®seateGC are the same.

In particular it does not use thealue_maslprovided to determine which fields of the GC a wid-
get considers relant. Thevalue_maslks used only to tell the server which fields should be filled
in from valuesand which it should fill in with default values.

To deallocate a shared GC when it is no longer neededtikeleaseGC

void XtReleaseGQybject gc)

Widgetobject
GCggc;
object Specifies apabject on the Display for which the GC was created. Must be of
class Object or ansubclass thereof.
gc Specifies the shared GC obtained with eitkgllocateGC or XtGetGC.

References to shareable GCs are counted and a free request is generated to the server when the
last user of a gen GC rleases it.

11.5. ManagingSelections

Arbitrary widgets in multiple applications can communicate with each other by means of the
Intrinsics global selection mechanism, which conforms to the specificationslimeh€lient
Communication Conventions Manudrhe Intrinsics supply functions for providing and receiv-

ing selection data in one logical piece (atomic transfers) or in smaller logical segments (incremen-
tal transfers).

The incremental interface is provided for a selection owner or selection requestor that cannot or
prefers not to pass the selection value to and from the Intrinsics in a singléccatistance,

either an application that is running on a machine with limited memory may not be able to store
the entire selection value in memory or a selection owner may alreagljhbaselection value
available in discrete chunks, and it would be more efficient notue badlocate additional stor-

age to cop the pieces contiguoushAny owner or requestor that prefers to deal with the selec-
tion value in segments can use the incremental interfaces to do so. The transfer between the
selection owner or requestor and the Intrinsics is not required to match the underlying transport
protocol between the application and the X server; the Intrinsics will break too large a selection
into smaller pieces for transport if necessary and will coalesce a selection transmitted

207

incrementally if the value was requested atomically.

11.5.1. Settingand Getting the Selection Timeout Value
To st the Intrinsics selection timeout, usEAppSetSelectionTimeout

void XtAppSetSelectionTimeowtpp_contexttimeou)
XtAppContextapp_context
unsigned longimeout

app_context Specifies the application context.

timeout__ Specifies the selection timeout in milliseconds.

To get the current selection timeout value, X¢&ppGetSelectionTimeout

unsigned long XtAppGetSelectionTimeapp_context
XtAppContextapp_context

app_context Specifies the application context.

The XtAppGetSelectionTimeout function returns the current selection timeout value in millisec-
onds. Theselection timeout is the time within which theotaommunicating applications must
respond to one anothefhe initial timeout value is set by the selectionTimeout application
resource as retwed by XtDisplaylnitialize . If selectionTimeout is not specified, the default is
five sconds.

11.5.2. UsingAtomic Transfers

When using atomic transfers, the owner will completely process one selection request at a time.
The owner may consider each request individusihge there is no possibility foverlap
between ealuation of two requests.

11.5.2.1. AtomicTr ansfer Procedures

The following procedures are used by the selection owner when providing selection data in a sin-
gle unit.

The procedure pointer specified by the owner to supply the selection data to the Intrinsics is of
type XtConvertSelectionProc.

208

typedef Boolean (*XtCovertSelectionProc)(Widget, Atom*, Atom*, Atom*,
XtPointer*, unsigned long*, int*);
Widgetw;
Atom *selection
Atom *targdt;
Atom *type_return
XtPointer *value_return
unsigned long tength_return
int *format_return

w Specifies the widget that currently owns this selection.

selection Specifies the atom naming the selection requested (for exaxX#l®RIMARY
or XA_SECONDARY).

target Specifies the target type of the selection that has been requested, which indicates
the desired information about the selection (for example, File Nagwe Win-
dow).

type_return Specifies a pointer to an atom into which the property type of therted value
of the selection is to be storeBor instance, either File Name oext might have
property typeXA STRING.

value_return Specifies a pointer into which a pointer to thevenied value of the selection is
to be stored. The selection owner is responsible for allocating this storage. If the
selection owner has provided ZtSelectionDoneProcfor the selection, this
storage is owned by the selection owner; otherwise, it is owned by the Intrinsics
selection mechanism, which frees it by callXigrree when it is done with it.

length_return Specifies a pointer into which the number of elementsilime_return each of
size indicated byormat_return is to be $ored.

format_return Specifies a pointer into which the size in bits of the data elements of the selection
value is to be stored.

This procedure is called by the Intrinsics selection mechanism to get the value of a selection as a
given type from the current selection owndt returnsTr ue if the owner successfully ceerted

the selection to the target typefealse otherwise. Ifthe procedure returrsalse, the values of

the return arguments are undefined. EXtBonvertSelectionProc should respond to target

value TARGETS by returning a value containing the list of the targets into which it is prepared

to corvert the selection. The value returneddnmat_returnmust be one of 8, 16, or 32 to allow

the server to byte-swap the data if necessary.

This procedure does not need to worry about responding to the MULTIPLE or the TIMESTAMP
target values (see Section 2.6.2 inlttiter-Client Communication Conventions Manuah

selection request with the MULTIPLE target type is transparently transformed into a series of
calls to this procedure, one for each target type, and a selection request with the TIMESTAMP
target value is answered automatically by the Intrinsics using the time specified in the call to
XtOwnSelection or XtOwnSelectionIincremental.

To retrieve the SelectionRequesevent that triggered th&XtConvertSelectionProc procedure,
useXtGetSelectionRequest

209

XSelectionRequestEvent *XtGetSelectionReqwestélectionrequest_id
Widgetw;
Atom selection
XtRequestldequest_id

w Specifies the widget that currently owns this selection. Must be of class Core or
ary subclass thereof.
selection Specifies the selection being processed.

request_id Specifies the requestor id in the case of incremental selections, or NULL in the
case of atomic transfers.

XtGetSelectionRequesimay be called only from within atConvertSelectionProc procedure
and returns a pointer to ttfgelectionRequesevent that caused the cesrsion procedure to be
invoked. Request_idpecifies a unique id for the individual request in the case that multiple
incremental transfers are outstandif@r atomic transferstequest_idmust be specified as
NULL. If no SelectionRequesevent is being processed for the specifiddget selection and
request_id XtGetSelectionRequesteturns NULL.

The procedure pointer specified by the owner when it desires notification upon losing ownership
is of typeXtLoseSelectionProc

typedef void (*XtLoseSelectionProc)(Widget, Atom?*);
Widgetw;
Atom *selection

w Specifies the widget that has lost selection ownership.
selection Specifies the atom naming the selection.

This procedure is called by the Intrinsics selection mechanism to inform the specified widget that
it has lost the gen slection. Notehat this procedure does not ask the widget to relinquish the
selection ownership; it is merely informasti

The procedure pointer specified by the owner when it desires notification of receipt of the data or
when it manages the storage containing the data is oMfeectionDoneProc

typedef void (*XtSelectionDoneProc)(Widget, Atom*, Atom*);
Widgetw;
Atom *selection
Atom *targdt;

w Specifies the widget that owns the wented selection.
selection Specifies the atom naming the selection that wagecieal.
target Specifies the target type to which thewrion was done.

This procedure is called by the Intrinsics selection mechanism to inform the selection owner that
a ®lection requestor has successfully retiea ®lection alue. Ifthe selection owner has regis-
tered anXtSelectionDoneProg it should expect it to be called once for eachversion that it

210

performs, after the coprted value has been successfully transferred to the requidtoe selec-
tion owner has registered afSelectionDoneProg it also owns the storage containing the con-
verted selection value.

11.5.2.2. Gettinghe Selection Value

The procedure pointer specified by the requestor toveete selection data from the Intrinsics is
of type XtSelectionCallbackProc.

typedef void (*XtSelectionCallbackProc)(Widget, XtPoin&tom*, Atom*, XtPointer unsigned long*, int*);
Widgetw;
XtPointerclient_data
Atom *selection
Atom *type
XtPointervalue
unsigned long tength

int *format
w Specifies the widget that requested the selection value.
client_data Specifies a value passed in by the widget when it requested the selection.
selection Specifies the name of the selection that was requested.
type Specifies the representation type of the selection value (for example,

XA _STRING). Notethat it is not the target that was requested (which the client
must remember for itself), but the type that is used to representgbe t@he
special symbolic constatT_CONVERT_FAIL is used to indicate that the
selection cowversion failed because the selection owner did not respond within
the Intrinsics selection timeout interval.

value Specifies a pointer to the selectiaiue. Theequesting client owns this storage
and is responsible for freeing it by calliXgFree when it is done with it.

length Specifies the number of elementvaiue

format Specifies the size in bits of the data in each elemergloé

This procedure is called by the Intrinsics selection mechanism terdbi requested selection
to the requestor.

If the SelectionNotify event returns a property dflone, meaning the corersion has been

refused because there is no owner for the specified selection or the owner carenbthmn
selection to the requested target foy egason, the procedure is called with a value of NULL and
a length of zero.

To dbtain the selection value in a single logical unit, ¥§8etSelectionValueor XtGetSelec-
tionValues.

211

void XtGetSelectionValuey, selectiontarget, callback client_data time)
Widgetw;
Atom selection
Atom target;
XtSelectionCallbackProcallback
XtPointerclient_data

Timetime
w Specifies the widget making the request. Must be of class Corg sulzsiass
thereof.
selection Specifies the particular selection desired; for exam{te,PRIMARY .
target Specifies the type of information needed about the selection.
callback Specifies the procedure to be called when the selection value has been obtained.

Note that this is he the selection value is communicated back to the client.
client_data Specifies additional data to be passed to the specified procedure when it is called.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of theat that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuefunction requests the value of the selectiorverdad to the target
type. Thespecified callback is called at some time aK#BetSelectionValueis called, when
the selection value is reged from the X serverlt may be called before or afteitGetSelec-
tionValue returns. Br more information abowelectiontarget, andtime, see Section 2.6 in the
Inter-Client Communication Conventions Manual

212

void XtGetSelectionValues(, selectiontargets, count callback client_datatime)

Widgetw;

Atom selection
Atom *targds,

int count

XtSelectionCallbackProcallback
XtPointer *client_data

Timetime

w

selection
targes
count
callback

client_data

time

Specifies the widget making the request. Must be of class Corg aulzsiass
thereof.

Specifies the particular selection desired (that is, primary or secondary).
Specifies the types of information needed about the selection.
Specifies the length of tharges andclient_datalists.

Specifies the callback procedure to be called with each selection value obtained.
Note that this is he the selection values are communicated back to the client.

Specifies a list of additional data values, one for each target type, that are passed
to the callback procedure when it is called for that target.

Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of thesrat that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuesfunction is similar to multiple calls t¥tGetSelectionValueexcept

that it guarantees that no other client can assert ownership between requests and therefore that all
the cowersions will refer to the same selecticalwe. Thecallback is inoked once for each tar-

get value with the corresponding client dafar more information abowgelection target, and

timeg see Section 2.6 in thater-Client Communication Conventions Manual

11.5.2.3. Settinghe Selection Owner

To =t the selection owner and indicate that the selection value will be provided in one piece, use
XtOwnSelection.

213

Boolean XtOwnSelectiomn(, selectiontime, convert_proc¢lose_selectiondone_prog
Widgetw;
Atom selection
Timetime
XtCorvertSelectionProconvert_pro¢
XtLoseSelectionPromse_selection
XtSelectionDoneProdone_pro¢

w Specifies the widget that wishes to become the owMesst be of class Core or
ary subclass thereof.
selection Specifies the name of the selection (for examyke, PRIMARY).
time Specifies the timestamp that indicates when the ownership request was initiated.

This should be the timestamp of theert that triggered ownership; the value
CurrentTime is not acceptable.

convert_proc Specifies the procedure to be called wiena dient requests the current value
of the selection.

lose_selection Specifies the procedure to be called whenthe widget has lost selection own-
ership, or NULL if the owner is not interested in being called back.

done_proc Specifies the procedure called after the requestor hagegtiee selection value,
or NULL if the owner is not interested in being called back.

The XtOwnSelection function informs the Intrinsics selection mechanism that a widget wishes

to own a selection. It returnf ue if the widget successfully becomes the owner Balde oth-

erwise. Thewidget may fail to become the owner if some other widget has asserted ownership at
a time later than this widget. The widget can lose selection ownership either because some other
widget asserted later ownership of the selection or because the widget voluatazilp gwner-

ship of the selection. The lose_selection procedure is not called if the widget fails to obtain selec-
tion ownership in the first place.

If a done_proc is specified, the client owns the storage allocated for passing the value to the
Intrinsics. Ifdone_prods NULL, the cowert_proc must allocate storage usiXtMalloc ,
XtRealloc, or XtCalloc, and the value specified is freed by the Intrinsics when the transfer is
complete.

Usually, a lection owner maintains ownership indefinitely until some other widget requests
ownership, at which time the Intrinsics selection mechanism informs the previous owner that it
has lost ownership of the selection. Hewrein response to some user actions (for example,
when a user deletes the information selected), the application may wish to explicitly inform the
Intrinsics by usingXtDisownSelectionthat it no longer is to be the selection owner.

214

void XtDisownSelectiong, selectiontime)
Widgetw;
Atom selection
Timetime

w Specifies the widget that wishes to relinquish ownership.

selection Specifies the atom naming the selection beirgngip.

time Specifies the timestamp that indicates when the request to relinquish selection
ownership was initiated.

The XtDisownSelectionfunction informs the Intrinsics selection mechanism that the specified
widget is to lose ownership of the selection. If the widget does not currently own the selection,
either because it lost the selection or becauseér had the selection to begin witKiDis-
ownSelectiondoes nothing.

After a widget has calleXtDisownSelection its comvert procedure is not calledven if a request
arrives later with a timestamp during the period that this widget owned the selectionvédowe
its done procedure is called if a gersion that started before the callXtDisownSelectionfin-
ishes after the call t¥tDisownSelection

11.5.3. Usingncremental Transfers

When using the incremental interface, an owner mag kmgprocess more than one selection
request for the same selection, wated to the same target, at the same time. The incremental
functions tak arequest_idargument, which is an identifier that is guaranteed to be unique among
all incremental requests that are aetoncurrently.

For example, consider the following:
. Upon receiving a request for the selection value, the owner sends the first segment.

. While waiting to be called to provide the next segment value but before sending it, the
owner receies another request from a different requestor for the same selection value.

. To distinguish between the requests, the owner uses the requedtiad Yhisallows the
owner to distinguish between the first requesitrich is asking for the second segment,
and the second requestahich is asking for the first segment.

11.5.3.1. Incemental Transfer Procedures

The following procedures are used by selection owners who wish to provide the selection data in
multiple segments.

The procedure pointer specified by the incremental owner to supply the selection data to the
Intrinsics is of typeXtConvertSelectionincrProc.

215

typedef XtPointer XtRequestld;

typedef Boolean (*XtCovertSelectionincrProc)(Widget, Atom*, Atom*, Atom*, XtPointer*,
unsigned long*, int*, unsigned long*, XtPointé{tRequestld*);
Widgetw;
Atom *selection
Atom *targdt;
Atom *type_return
XtPointer *value_return
unsigned long fength_return
int *format_return
unsigned long fax_length
XtPointerclient_data
XtRequestld request _id

w Specifies the widget that currently owns this selection.
selection Specifies the atom that names the selection requested.
target Specifies the type of information required about the selection.

type_return Specifies a pointer to an atom into which the property type of therted value
of the selection is to be stored.

value_return Specifies a pointer into which a pointer to theveoted value of the selection is
to be stored. The selection owner is responsible for allocating this storage.

length_return Specifies a pointer into which the number of elementsilme_return each of
size indicated byjormat_return is to be $ored.

format_return Specifies a pointer into which the size in bits of the data elements of the selection
value is to be stored so that the server may byte-swap the data if necessary.

max_length Specifies the maximum number of bytes which may be transferrey et@n
time.

client data Specifies the value passed in by the widget when it took ownership of the selec-
tion.

request_id Specifies an opaque identification for a specific request.

This procedure is called repeatedly by the Intrinsics selection mechanism to get the next incre-
mental chunk of data from a selection owner who has cali@dvnSelectionincremental. It

must returnTr ue if the procedure has succeeded inventiing the selection data étalse other-

wise. Onthe first call with a particular request id, the owner must begimvan@emental trans-

fer for the requested selection andyer Onsubsequent calls with the same request id, the owner
may assume that the previously supplied value is no longer needed by the Intrinsics; that is, a
fixed transfer area may be allocated and returngdlire_returnfor each segment to be trans-
ferred. Thisprocedure should store a non-NULL valueraiue_returnand zero irlength_return

to indicate that the entire selection has beewdeli. Afterreturning this final segment, the
request id may be reused by the Intrinsics to begimwanaasfer.

To retrieve the SelectionRequesevent that triggered the selection egrsion procedure, use
XtGetSelectionRequestdescribed in Section 11.5.2.1.

The procedure pointer specified by the incremental selection owner when it desires notification
upon no longer having ownership is of ty}t.oseSelectionincrProc.

216

typedef void (*XtLoseSelectionincrProc)(Widget, Atom*, XtPointer);
Widgetw;
Atom *selection
XtPointerclient_data

w Specifies the widget that has lost the selection ownership.

selection Specifies the atom that names the selection.

client data Specifies the value passed in by the widget when it took ownership of the selec-
tion.

This procedure, which is optional, is called by the Intrinsics to inform the selection owner that it
no longer owns the selection.

The procedure pointer specified by the incremental selection owner when it desires notification of
receipt of the data or when it manages the storage containing the data isXiSg[@etion-
DonelncrProc.

typedef void (*XtSelectionDonelncrProc)(Widget, Atom*, Atom*, XtRequestld*, XtPointer);
Widgetw;
Atom *selection
Atom *targdt;
XtRequestld tequest _id
XtPointerclient_data

w Specifies the widget that owns the selection.
selection Specifies the atom that names the selection being transferred.
target Specifies the target type to which thewweion was done.

request_id Specifies an opaque identification for a specific request.

client_data Specified the value passed in by the widget when it took ownership of the selec-
tion.

This procedure, which is optional, is called by the Intrinsics after the requestor hasddee

final (zero-length) segment of the incremental transfer to indicate that the entire transfer is com-
plete. Ifthis procedure is not specified, the Intrinsics will free only the final value returned by the
selection owner usintFree.

The procedure pointer specified by the incremental selection owner to notify it if a transfer should
be terminated prematurely is of typgCancelCorvertSelectionProc.

217

typedef void (*XtCancelCarertSelectionProc)(Widget, Atom*, Atom*, XtRequestld*, XtPointer);
Widgetw;
Atom *selection
Atom *targd;
XtRequestld request _id
XtPointerclient_data

w Specifies the widget that owns the selection.
selection Specifies the atom that names the selection being transferred.
target Specifies the target type to which thewrion was done.

request_id Specifies an opaque identification for a specific request.

client data Specifies the value passed in by the widget when it took ownership of the selec-
tion.

This procedure is called by the Intrinsics when it has been determined by means of a timeout or
other mechanism that wnemaining segments of the selection no longer need to be transferred.
Upon receiving this callback, the selection request is considered complete and the owner can free
the memory and aother resources that babeen allocated for the transfer.

11.5.3.2. Gettinghe Selection Value Incrementally

To dbtain the value of the selection using incremental transfers{t@etSelectionValuelncre-
mental or XtGetSelectionValuesincremental

void XtGetSelectionValuelncremental(selectiontarget, selection_callbackclient_datatime)
Widgetw;,
Atom selection
Atom target;
XtSelectionCallbackProselection_callback
XtPointerclient_data

Timetime
w Specifies the widget making the request. Must be of class Corg sutzniass
thereof.
selection Specifies the particular selection desired.
target Specifies the type of information needed about the selection.

selection_callback
Specifies the callback procedure to be called tove@atch data segment.

client data Specifies client-specific data to be passed to the specified callback procedure
when it is ivoked.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of therat that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuelncrementalfunction is similar toXtGetSelectionValueexcept that
the selection_callback procedure will be called repeatedly uparegedif multiple segments of
the selection @lue. Theend of the selection value is indicated wisetection_callbacks called

218

with a non-NULL value of length zero, which must still be freed by the client. If the transfer of
the selection is aborted in the middle of a transfer (for example, because of a timeout), the selec-
tion_callback procedure is called with a type value equal to the symbolic cod$taBON-
VERT_FAIL so that the requestor can dispose of the partial selection value it has collected up
until that point. Upon receivingkT_CONVERT_FAIL , the requesting client must determine

for itself whether or not a partially completed data transfer is meaningbuinore information
aboutselectiontargd, andtime, see Section 2.6 in thater-Client Communication Conventions
Manual

void XtGetSelectionValuesincrementa|(selectiontargets, count selection_callbackclient_datatime)
Widgetw;,
Atom selection
Atom *targes,
int count
XtSelectionCallbackProselection_callback
XtPointer *client_data

Timetime
w Specifies the widget making the request. Must be of class Corg sulzsiass
thereof.
selection Specifies the particular selection desired.
targes Specifies the types of information needed about the selection.
count Specifies the length of thargets andclient_datalists.

selection_callback
Specifies the callback procedure to be called tove@atch selection value.

client data Specifies a list of client data (one for each target type) values that are passed to
the callback procedure when it izaked for the corresponding target.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of therat that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuesincrementalfunction is similar toXtGetSelectionValuelncremen-

tal except that it takes a list of targets and client da¢eGetSelectionValuesincrementalis

equialent to callingXtGetSelectionValuelncrementalsuccessiely for eachtarget/client_data

pair except thaKtGetSelectionValuesincrementaldoes guarantee that all the eersions will

use the same selection value because the ownership of the selection cannot change in the middle
of the list, as would be possible when callXigsetSelectionValuelncrementalrepeatedly For

more information aboidelectiontarget, andtime, see Section 2.6 in thater-Client Communi-

cation Conventions Manual

11.5.3.3. Settinghe Selection Owner for Incremental Transfers
To st the selection owner when using incremental transfers{t@®&nSelectionincremental.

219

Boolean XtOwnSelectionlincremental(selectiontime, convert_callbacklose_callback
done_callbackcancel_callbackclient_datg
Widgetw;
Atom selection
Timetime
XtCornvertSelectionincrProconvert_callback
XtLoseSelectionIncrProlose_callback
XtSelectionDonelncrProdone_callback
XtCancelComertSelectionProcancel_callback
XtPointerclient_data

w Specifies the widget that wishes to become the owvest be of class Core
or ary subclass thereof.
selection Specifies the atom that names the selection.
time Specifies the timestamp that indicates when the selection ownership request

was initiated. Thisshould be the timestamp of theeet that triggered own-
ership; the valu€urrentTime is not acceptable.

convert_callback Specifies the procedure to be called whenthe current value of the selec-
tion is requested.

lose_callback Specifies the procedure to be called wienthe widget has lost selection
ownership, or NULL if the owner is not interested in being notified.

done_callback Specifies the procedure called after the requestor hagagde entire
selection, or NULL if the owner is not interested in being notified.

cancel_callback Specifies the callback procedure to be called when a selection request aborts
because a timeout expires, or NULL if the owner is not interested in being
notified.

client_data Specifies the argument to be passed to each of the callback procedures when
they are called.

The XtOwnSelectionincremental procedure informs the Intrinsics incremental selection mecha-
nism that the specified widget wishes to own the selection. It refuuesif the specified widget
successfully becomes the selection ownedfalse otherwise. Br more information abowgelec-

tion, target, andtime, see Section 2.6 in thater-Client Communication Conventions Manual

If a done_callback procedure is specified, the client owns the storage allocated for passing the
value to the Intrinsics. l8one_callbacks NULL, the cowert_callback procedure must allocate
storage usintMalloc , XtRealloc, or XtCalloc, and the final value specified is freed by the
Intrinsics when the transfer is complete. After a selection transfer has started, only one of the
done_callback or cancel_callback proceduresvigkigd to indicate completion of the transfer.

The lose_callback procedure does not indicate completioryahasrogress transfers; it is
invoked at he time aSelectionClearevent is dispatched gerdless of ap active ransfers, which
are still expected to continue.

A widget that becomes the selection owner uti@wnSelectionincremental may usextDis-
ownSelectionto relinquish selection ownership.

220

11.5.4. Settingand Retrieving Selection Target Parameters

To ecify target parameters for a selection request with a single targettSetSelectionPa-
rameters.

void XtSetSelectionParameterfuestor selectiontype valueg length formaf)
Widgetrequestor
Atom selection
Atom type
XtPointervalue
unsigned londength

int format

requestor Specifies the widget making the request. Must be of class Corg sulzsiass
thereof.

selection Specifies the atom that names the selection.

type Specifies the type of the property in which the parameters are passed.

value Specifies a pointer to the parameters.

length Specifies the number of elements containing dataliue each element of a size
indicated byformat

format Specifies the size in bits of the data in the elementaloé

The specified parameters are copied and stored iw aroperty of the specified type and format

on the requesta’window. To initiate a selection request with a target and these parameters, a
subsequent call t¥tGetSelectionValueor to XtGetSelectionValuelncrementalspecifying the

same requestor widget and selection atom will gener@enaertSelection request referring to

the property containing the parametersXifetSelectionParameterds called more than once

with the same widget and selection without a call to specify a request, the most recently specified
parameters are used in the subsequent request.

The possible values édrmatare 8, 16, or 32. If the format is 8, the elementgatdieare
assumed to be sizeof(char); if 16, sizeof(short); if 32, sizeof(long).

To generate a MULTIPLE target request with parameters fpioathe multiple targets of the
selection request, precede individual callXtGetSelectionValueand XtGetSelectionValueln-
cremental with corresponding individual calls %tSetSelectionParametersand enclose these
all within XtCreateSelectionRequestind XtSendSelectionRequest. XtGetSelectiorlues

and XtGetSelectionValuesincrementalcannot be used to malslection requests with parame-
terized targets.

To retrieve any arget parameters needed to perform a selectioreon, the selection owner
calls XtGetSelectionParameters

221

void XtGetSelectionParameteos(ner, selectionrequest_idtype_returnvalue_return
length_returnformat_return
Widgetowner,
Atom selection
XtRequestldequest_id
Atom *type_return
XtPointer *value_return
unsigned long tength_return
int *format_return

owner Specifies the widget that owns the specified selection.

selection Specifies the selection being processed.

request_id Specifies the requestor id in the case of incremental selections, or NULL in the
case of atomic transfers.

type_return Specifies a pointer to an atom in which the property type of the parameters is
stored.

value_return Specifies a pointer into which a pointer to the parameters is to be stored. A
NULL is stored if no parameters accompdine request.

length_return Specifies a pointer into which the number of data elementdue_returnof
size indicated byormat_returnare stored.

format_return Specifies a pointer into which the size in bits of the parameter data in the ele-
ments ofvalueis stored.

XtGetSelectionParametersmay be called only from within aXtConvertSelectionProc or
from within the first call to aiXtConvertSelectionincrProc with a nev request _id.

It is the responsibility of the caller to free the returned parameters Xtinge when the param-
eters are no longer needed.

11.5.5. GeneratingMULTIPLE Requests

To havethe Intrinsics bundle multiple calls to neagelection requests into a single request using
aMULTIPLE target, useXtCreateSelectionRequestind XtSendSelectionRequest

void XtCreateSelectionRequestijuestor selection
Widgetrequestor
Atom selection

requestor Specifies the widget making the request. Must be of class Corg sulzsiass
thereof.
selection Specifies the particular selection desired.

When XtCreateSelectionRequests called, subsequent calls X¢GetSelectionValue XtGetS-
electionValuelncremental, XtGetSelectionValues and XtGetSelectionValuesincrementa)
with the requestor and selection as specifiedt@reateSelectionRequestare bundled into a
single selection request with multipledats. Theequest is made by callingtSendSelection-
Request

222

void XtSendSelectionRequesauestor selectiontime)
Widgetrequestor
Atom selection
Timetime

requestor Specifies the widget making the request. Must be of class Corg sutzriass
thereof.

selection Specifies the particular selection desired.

time Specifies the timestamp that indicates when the selection request was initiated.
The valueCurrentTime is not acceptable.

When XtSendSelectionRequesis called with a value akquestorandselectionmatching a pre-
vious call toXtCreateSelectionRequesta ®lection request is sent to the selection owifea

single target request is queued, that request is made. If multiple targets are qugaeel bilne-

dled into a single request with a target of MULTIPLE using the specified timestamp. As the val-
ues are returned, the callbacks specifiedti@etSelectionValug XtGetSelectionValuelncre-
mental, XtGetSelectionValues and XtGetSelectionValuelncrementalare irvoked.

Multi-threaded applications should lock the application context before cXti@pateSelec-
tionRequestand release the lock after calliXgSendSelectionRequesto ensure that the thread
assembling the request is safe from interference by another thread assembling a different request
naming the same widget and selection.

To relinquish the composition of a MULTIPLE request without sending it @i€ancelSelec-
tionRequest

void XtCancelSelectionRequestuestor selection
Widgetrequestor
Atom selection

requestor Specifies the widget making the request. Must be of class Corg sulaniass
thereof.
selection Specifies the particular selection desired.

When XtCancelSelectionRequests called, ay requests queued since the last caKtGreate-
SelectionRequesfor the same widget and selection are discarded anceaaurces reserved are
released. Asubsequent call tXtSendSelectionRequeswill not result in ag request being
made. Subsequeadlls toXtGetSelectionValug XtGetSelectionValues XtGetSelectionVal-
uelncremental, or XtGetSelectionValuesincrementalwill not be deferred.

11.5.6. Auxiliary Selection Properties

Certain uses of parameterized selections require clients to name othewpiogerties within a
selection parameteiTo permit reuse of temporary property names in these circumstances and
thereby reduce the number of unique atoms created in the, $kevintrinsics provides twinter-
faces for acquiring temporary property hames.

To acquire a temporary property name atom for use in a selection request, the client may call
XtResewvePropertyAtom.

223

Atom XtReservePropertyAtom
Widgetw;

w Specifies the widget making a selection request.

XtReservePropertyAtom returns an atom that may be used as a property name during selection
requests imolving the specified widget. As long as the atom remains reserved, it is unique with
respect to all other reserved atoms for the widget.

To return a temporary property name atom for reuse and to delete the property named by that
atom, useXtReleasePropertyAtom

void XtReleasePropertyAtom(atom)

Widgetw;
Atom atom
w Specifies the widget used to resetve property name atom.
atom Specifies the property name atom returnectiyeservePropertyAtom that is

to be released for reuse.

XtReleasePropertyAtom marks the specified property name atom as no longer in use and
ensures that grmproperty having that name on the specified widgethdow is deleted. Ifatom
does not specify a value returnedXwReservePropertyAtom for the specified widget, the
results are undefined.

11.5.7. Retrizing the Most Recent Timestamp

To retrieve the timestamp from the most recent calKiispatchEvent that contained a times-
tamp, useXtLastTimestampProcessed

Time XtLastTimestampProcessdidplay)
Display *display;

display Specifies an open display connection.
If no KeyPress KeyRelease ButtonPress, ButtonRelease MotionNotify , EnterNotify ,

LeaveNotify , PropertyNotify , or SelectionClearevent has yet been passedXtDis-
patchEvent for the specified displaytLastTimestampProcessedeturns zero.

11.5.8. Retrieing the Most Recent Event

To retrieve the event from the most recent call &tDispatchEvent for a specific displayuse
XtLastEventProcessed

224

XEvent *XtLastEventProcesseati§play)
Display *display,

display Specifies the display connection from which to re@itie event.

Returns the lastvent passed t&tDispatchEvent for the specified displayReturns NULL if
there is no suchvent. Theclient must not modify the contents of the returneshe

11.6. Memging Exposure Events into a Region

The Intrinsics provide aXtAddExposureToRegion utility function that mergeg&xposeand
GraphicsExposeevents into a region for clients to process at once rather than processing indi-
vidual rectanglesFor further information about regions, see Section 16X4ilm— C Languge

X Interface

To mergeExposeand GraphicsExposeevents into a region, us¥tAddExposureToRegion.

void XtAddExposureToRegior{ent, region)
XEvent *ewvent

Regionregion;
ewent Specifies a pointer to tHexposeor GraphicsExposeevent.
region Specifies the region object (as defined ¥iL&/Xutil.h >).

The XtAddExposureToRegion function computes the union of the rectangle defined by the
exposure gent and the specifiedgen. Thenit stores the results backriegion. If the event
argument is not akxposeor GraphicsExposeevent, XtAddExposureToRegion returns with-
out an error and without modifyirrggion.

This function is used by the exposure compression mechanism; see Section 7.9.3.

11.7. Translating Widget Coordinates

To translate an x-y coordinate pair from widget coordinates to root wiallsolute coordinates,
useXtTranslateCoords.

void XtTranslateCoordsy, x, y, rootx_return rooty_return
Widgetw;
Positionx, y;
Position *ootx_return *rooty_return
w Specifies the widget. Must be of class RectObj grsabclass thereof.

X
y Specify the widget-relate x and y coordinates.

rootx_return
rooty_return Return the root-relate x and y coordinates.

While XtTranslateCoords is similar to the XlibXTranslateCoordinates function, it does not

225

generate a server request because all the required information already is in the ddtiget’
structures.

11.8. Translating a Window to a Widget

To translate a gien window and display pointer into a widget instance, x¢&/indowToWid-
get.

Widget XtWindowToWidgetisplay, window)
Display *display;
Windowwindow

display Specifies the display on which the wimdis defined.
window Specifies the dweable for which you want the widget.

If there is a realized widget whose windts the specified draable on the specifiedisplay;
XtWindowToWidget returns that widget. If not and if the drable has been associated with a
widget throughXtRegisterDrawable, XtWindowToWidget returns the widget associated with
the dravable. Inother cases it returns NULL.

11.9. HandlingErrors

The Intrinsics allav a dient to register procedures that are called wheme fatal or nonfatal
error occurs. These facilities are intended for both error reporting and logging and for error cor-
rection or receoery.

Two levels of interface are provided:

. A high-level interface that takes an error name and class andsesttie error message
text from an error resource database.

. A low-level interface that takes a simple string to display.

The high-leel functions construct a string to pass to the lowegtiaterface. Thestrings may
be specified in application code and areradden by the contents of an external systemwide file,
the “error database file’ The location and name of this file are implementation-dependent.

Note

The application-context-specific error handling is not implemented oy sgatems,
although the interfaces arenalys present. Most implementations wilMegust one
set of error handlers for all application contexts within a process. yifitbeset for
different application contexts, the ones registered last wilkjire

To dbtain the error database (for example, to merge with an application- or widget-specific
database), usEtAppGetErrorDatabase .

226

XrmDatabase *XtAppGetErrorDatabaspf_context
XtAppContextapp_context

app_context Specifies the application context.

The XtAppGetErrorDatabase function returns the address of the error database. The Intrinsics
do a lazy binding of the error database and do not merge in the database file until the first call to
XtAppGetErrorDatabaseText.

For a complete listing of all errors and warnings that can be generated by the Intrinsics, see
Appendix D.

The high-leel error and warning handler procedure pointers are of KtggrorMsgHandler .

typedef void (*XtErrorMsgHandler)(String, String, String, String, String*, Cardinal*);
Stringname
Stringtype
Stringclass
Stringdefaultp
String *params
Cardinal num_params

name Specifies the name to be concatenated with the specified type to form the
resource name of the error message.

type Specifies the type to be concatenated with the name to form the resource hame of
the error message.

class Specifies the resource class of the error message.

defaultp Specifies the default message to use if no error database entry is found.

params Specifies a pointer to a list of parameters to be substituted in the message.

num_params Specifies the number of entriesparams

The specified name can be a general kind of diker“invalidParametersor *‘invalidWindow”,
and the specified typewgs extra information such as the name of the routine in which the error
was cetected. Standangrintf notation is used to substitute the parameters into the message.

An error message handler can obtain the error database text for an error or a warning by calling
XtAppGetErrorDatabaseText.

227

void XtAppGetErrorDatabas&kt(app_contextname type class default buffer_return nbytes databasg
XtAppContextapp_context
Stringname type class
Stringdefault
Stringbuffer_return
int nbytes
XrmDatabaselatabase

app_context Specifies the application context.

name

type Specify the name and type concatenated to form the resource name of the error
message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error database entry is not found.

buffer_return Specifies the buffer into which the error message is to be returned.

nbytes Specifies the size of the buffer in bytes.

database Specifies the name of the altermatthtabase to be used, or NULL if the applica-

tion contexts aror database is to be used.

The XtAppGetErrorDatabaseText returns the appropriate message from the error database or
returns the specified default message if one is not found in the error databésen the full
resource name and class when querying the databasemieandtypeare concatenated with a

single “." between them and theassis concatenated with itself with a singlé I'f it does not
already contain a ..

To return the application name and class as pass¥tDisplaylinitialize for a particular Dis-
play, use XtGetApplicationNameAndClass.

void XtGetApplicationNameAndClasdisplay, name_returnclass_returi
Display* display,
String* name_return
String* class_return

display Specifies an open display connection that has been initializetisplaylni-
tialize.

name_return Returns the application name.

class_return Returns the application class.

XtGetApplicationNameAndClass returns the application name and class pass&tDis-

playlnitialize for the specified displayif the display was rer initialized or has been closed,

the result is undefined. The returned strings are owned by the Intrinsics and must not be modified
or freed by the caller.

To regster a procedure to be called on fatal error conditionsXtsppSetErrorMsgHandler .

228

XtErrorMsgHandler XtAppSetErrorMsgHandlapp_contextmsg_handler
XtAppContextapp_context
XtErrorMsgHandlemsg_handler

app_context Specifies the application context.
msg_handler Specifies the nefatal error procedure, which should not return.

XtAppSetErrorMsgHandler returns a pointer to the previously installed higkelléatal error
handler The default high-teel fatal error handler provided by the Intrinsics is nam&tDe-
faultErrorMsg and constructs a string from the error resource database andt&alier . Fatal

error message handlers should not return. If one does, subsequent Intrinsics behavior is unde-
fined.

To call the high-lee error handleruse XtAppErrorMsg .

void XtAppErrorMsg@pp_contextname type class default params num_paramjps
XtAppContextapp_context
Stringname
Stringtype
Stringclass
Stringdefault
String *params
Cardinal num_params

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed nhame of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.
params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entriesparams
The Intrinsics internal errors all e dass “XtToolkitError”.

To regster a procedure to be called on nonfatal error conditionsXufggSetWarningMs-
gHandler.

XtErrorMsgHandler XtAppSetWarningMsgHandlapp_contextmsg_handler
XtAppContextapp_context
XtErrorMsgHandlemsg_handler

app_context Specifies the application context.
msg_handler Specifies the e nonfatal error procedure, which usually returns.

XtAppSetWarningMsgHandler returns a pointer to the previously installed higkellevarning
handler The default high-leel warning handler provided by the Intrinsics is named

229

_XtDefaultWarningMsg and constructs a string from the error resource database and calls
XtWarning .

To aall the installed high-lel warning handleruse XtAppWarningMsg .

void XtAppWarningMsgépp_contextname type class default params num_paramp
XtAppContextapp_context
Stringname
Stringtype
Stringclass
Stringdefault
String *params
Cardinal num_params

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed nhame of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.
params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entriesparams
The Intrinsics internal warnings allvedass “XtToolkitError”.

The low-lesel error and warning handler procedure pointers are of KiggrorHandler .

typedef void (*XtErrorHandler)(String);
Stringmessge

messge Specifies the error message.
The error handler should display the message string in some appropriate fashion.

To regster a procedure to be called on fatal error conditionsXtsppSetErrorHandler .

XtErrorHandler XtAppSetErrorHandlenpp_contexthandlei)
XtAppContextapp_context
XtErrorHandlerhandler,

app_context Specifies the application context.
handler Specifies the mefatal error procedure, which should not return.

XtAppSetErrorHandler returns a pointer to the previously installed loweléatal error han-

dler. The default low-lgel error handler provided by the Intrinsics_iXtDefaultError . On
POSIX-based systems, it prints the message to standard error and terminates the application.
Fatal error message handlers should not return. If one does, subsequent Intrinsics behavior is

230

undefined.

To call the installed fatal error procedure, O8&ppError .

void XtAppError@pp_contextmessge)
XtAppContextapp_context
Stringmessge
app_context Specifies the application context.
messge Specifies the message to be reported.

Most programs should usé&AppErrorMsg , not XtAppError , to provide for customization and
internationalization of error messages.

To regster a procedure to be called on nonfatal error conditionsXugg SetWarningHan-
dler.

XtErrorHandler XtAppSetWarningHandley§p_contexthandlei)
XtAppContextapp_context
XtErrorHandlerhandler,

app_context Specifies the application context.

handler Specifies the e nonfatal error procedure, which usually returns.

XtAppSetWarningHandler returns a pointer to the previously installed lowelavarning han-
dler. The default low-lgel warning handler provided by the Intrinsics XtDefaultWarning .
On POSIX-based systems, it prints the message to standard error and returns to the caller.

To aall the installed nonfatal error procedure, X¢&ppWarning .

void XtAppWarning@pp_contextmessge)
XtAppContextapp_context
Stringmessge
app_context Specifies the application context.
messge Specifies the nonfatal error message to be reported.

Most programs should usé&AppWarningMsg , not XtAppWarning , to provide for customiza-
tion and internationalization of warning messages.

11.10. SettingM_COLORMAP_WINDOWS

A client may set the value of thigM_COLORMAP_WINDOWSproperty on a widget’'window by
calling XtSetwMColormapWindows.

231

void XtSetWMColormapWindowsyidget list, coun)

Widgetwidget
Widget*list;
Cardinalcount
widget Specifies the widget on whose windthe WM_COLORMAP_WINDOWSprop-
erty is stored. Must be of class Core oy ambclass thereof.
list Specifies a list of widgets whose windows are potentially to be listed in the
WM_COLORMAP_WINDOWSproperty.
count Specifies the number of widgetslist.

XtSetWMColormapWindows returns immediately iividgetis not realized or i€ountis 0.
Otherwise XtSetWMColormapWindows constructs an ordered list of windows by examining
each widget irist in turn and ignoring the widget if it is not realized, or adding the wigget-
dow to the windav list if the widget is realized and if its colormap resource is different from the
colormap resources of all widgets whose windows are already on themtistio

Finally, XtSetWMColormapWindows stores the resulting windolist in thewM_COL-
ORMAP_WINDOWSproperty on the specified widgetvindow. Refer to Section 4.1.8 in the
Inter-Client Communication Conventions Mantml details of the semantics of tiév_COL-
ORMAP_WINDOWSproperty.

11.11. FindingFile Names

The Intrinsics provide procedures to look for a file by name, allowing string substitutions in a list
of file specifications.Two routines are provided for thiXtFindFile and XtResolvePathname
XtFindFile uses an arbitrary set of client-specified substitutions XaReésolvePathnameuses

a ¢t of standard substitutions corresponding tod@pen Portability Guidéanguage localiza-

tion corventions. Mostapplications should uss§tResolvePathname

A string substitution is defined by a list Substitution entries.

typedef struct {
char match;
String substitution;
} SubstitutionRec, *Substitution;

File name ealuation is handled in an operating-system-dependent fashion XyFdaPredicate
procedure.

typedef Boolean (*XtFilePredicate)(String);
Stringfilename

filename Specifies a potential filename.

A file predicate procedure is called with a string that is potentially a file name. It should return
Tr ue if this string specifies a file that is appropriate for the intended usEaselotherwise.

232

To search for a file using substitutions in a path list, Xxg&ndFile .

String XtFindFilepath substitutionsnum_substitutiongredicatg
String path
Substitutionsubstitutions
Cardinalnum_substitutions
XtFilePredicatgredicate

path Specifies a path of file names, including substitution characters.
substitutions Specifies a list of substitutions to neakito the path.
num_substitutionsSpecifies the number of substitutions passed in.

predicate Specifies a procedure called to judge each potential file name, or NULL.

Thepathparameter specifies a string that consists of a series of potential file names delimited by
colons. Wthin each name, the percent character specifies a string substitution selected by the fol-
lowing character The character sequence “¥specifies an embedded colon that is not a delim-

iter; the sequence is replaced by a single colon. The character sequencepeéaities a per-

cent character that does not introduce a substitution; the sequence is replaced by a single percent
character If a percent character is followed byyaother characterXtFindFile looks through the
specifiedsubstitutiondor that character in th@atchfield and, if found, replaces the percent and
match characters with the string in the corresponslifigtitutionfield. A substitutiorfield entry

of NULL is equivalent to a pointer to an empty string. If the operating system does not interpret
multiple embedded name separators in the path (i.ein ‘POSIX) the same way as a single sep-
arator, XtFindFile will collapse multiple separators into a single one after performing all string
substitutions. Excegor collapsing embedded separators, the contents of the string substitutions
are not interpreted b)}tFindFile and may therefore containyaoperating-system-dependent
characters, including additional name separators. Each resulting string is passed to the predicate
procedure until a string is found for which the procedure reftirns; this string is the return

value for XtFindFile . If no gring yields aTr ue return from the predicat&tFindFile returns

NULL.

If the predicateparameter is NULL, an internal procedure that checks if the file exists, is read-
able, and is not a directory is used.

It is the responsibility of the caller to free the returned string ustiRgee when it is no longer
needed.

To search for a file using standard substitutions in a path listXtResolvePathname

233

String XtResolvePathnamdigplay, type filename suffix path substitutionsnum_substitutiongredicatg
Display *display,
Stringtype filename suffix path
Substitutionsubstitutions
Cardinalnum_substitutions
XtFilePredicatepredicate

display Specifies the display to use to find the language for language substitutions.
type

filename

suffix Specify values to substitute into the path.

path Specifies the list of file specifications, or NULL.

substitutions Specifies a list of additional substitutions to mako the path, or NULL.
num_substitutionsSpecifies the number of entriessmbstitutions

predicate Specifies a procedure called to judge each potential file name, or NULL.

The substitutions specified b§tResolvePathnameare determined from the value of the lan-

guage string retrieed by XtDisplaylnitialize for the specified displayTo st the language for

all applications specify “*xnlLanguagéang’ i n the resource database. The format and content

of the language string are implementation-defined. One suggested syntax is to compose the lan-
guage string of three parts; “language part”, & territory part’ and a “codeset paft’ The

manner in which this composition is accomplished is implementation-defined, and the Intrinsics
malke no nterpretation of the parts other than to use them in substitutions as descrilaed belo

XtResolvePathnamecalls XtFindFile with the following substitutions in addition toyapassed
by the caller and returns the value returneXtfindFile :

%N Thevalue of thefilenameparameteror the applicatiors dass name iflenames NULL.
%T Thevaue of thetypeparameter.

%S Thevaue of thesuffixparameter.

%L Thelanguage string associated with the specified display.

%l Thelanguage part of the displajanguage string.

%t Theterritory part of the displag’language string.

%c Thecodeset part of the displalanguage string.

%C Thecustomization string retned from the resource database associateddistblay.
%D Thevaue of the implementation-specific default path.

If a path is passed tResolvePathname it is passed along tXtFindFile . If thepathargu-

ment is NULL, the value of thEFILESEARCHP ATH environment variable is passedXt~ind-

File. If XFILESEARCHP ATH is not defined, an implementation-specific default path is used that
contains at least six entries. These entries must contain the following substitutions:

%C,%N, %S, %T %L or %C, %N, %S, %T%l, %t, %c
%C,%N, %S, %T %l

%C,%N, %S, %T

%N, %S, %T %L or %N, %S, %T %l, %t, %c
%N, %S, %T %l

%N, %S, %T

oukwnpE

234

The order of these six entries within the path must bevas gbove. The order and use of sub-
stitutions within a gien entry are implementation-dependent. If the path begins with a colon, it is
preceded by %N%S. If the path include® tsjacent colons%N%S is inserted between them.

Thetypeparameter is intended to be a category of files, usually being translated into a directory
in the pathname. Possible values might include “app-defaults”, “help”, and “bitmap”.

Thesuffixparameter is intended to be appended to the file name. Possible values might include
“.txt”, “.dat”, and “.bm”.

A suggested value for the default path on POSIX-based systems is

lusr/lib/X11/%L/%T/%N%C%S:/usr/lib/X11/%I/%T/%N%C%S:\
lusr/lib/X11/%T/%N%C%S:/usr/lib/X11/%L/%T/%N%S:\
lusr/lib/X11/%I/%T/%N%S:/usr/lib/X11/%T/%N%S

Using this example, if the user has specified a language, it is used as a subdirectory of
/usr/lib/X11 that is searched for other files. If the desired file is not found there, the lookup is
tried again using just the language part of the specification. If the file is not there, it is looked for
in /usr/lib/X11. Thetypeparameter is used as a subdirectory of the language directory or of
lusr/lib/X11, andsuffixis appended to the file name.

The %D substitution allows the addition of path elements to the implementation-specific default
path, typically to allav additional directories to be searched withoutvpnéing resources in the
system directories from being founBor example, a user installing resource files under a direc-
tory called “ourdir’ might setXFILESEARCHP ATH to

%D:ourdir/%T/%N%C:ourdir/%T/%N

The customization string is obtained by querying the resource database currently associated with
the display (the database returnedmynGetDatabase) for the resourcapplication_nameus-
tomization, classpplication_classCustomization, wherapplication_namendapplica-

tion_classare the values returned DitGetApplicationNameAndClass. If no value is specified

in the database, the empty string is used.

It is the responsibility of the caller to free the returned string ustiRgee when it is no longer
needed.

11.12. Hookdor External Agents

Applications may register functions that are called at a particular control points in the Intrinsics.
These functions are intended to be used to provide notification of an “X Toathif' esuch as
widget creation, to an external agent, such as an int@aetiource editodrag-and-drop server,

or an aid for physically challenged users. The control points containing such registration hooks
are identified in a “hook registratidrdbject.

To retrieve the hook registration widget, ud@HooksOfDisplay.

Widget XtHooksOfDisplaydisplay)
Display *display,

display Specifies the desired display.

The class of this object is ayaie, implementation-dependent subclas©bfect. The hook
object has no parent. The resources of this object are the callback lists for hooks and the read-
only resources for getting a list of parentless shells. All of the callback lists are initially empty.

235

When a display is closed, the hook object associated with it is destroyed.
The following procedures can be called with the hook registration object as an argument:

XtAddCallback , XtAddCallbacks, XtRemoveCallback, XtRemoveCallbacks,
XtRemoveAllCallbacks, XtCallCallbacks, XtHasCallbacks, XtCallCallbackList

XtClass, XtSuperclass XtlsSubclass XtCheckSubclass XtIsObject, XtlIsRectObj,
XtlsWidget, XtisComposite, XtlsConstraint , XtlsShell, XtlsOverrideShell,
XtlsWMShell , XtisVendorShell, XtisTransientShell, XtlsToplevelShell, XtlsApplica-
tionShell, XtlsSessionShell

XtWidgetToApplicationContext
XtName, XtParent, XtDisplayOfObject, XtScreenOfObject
XtSetValues, XtGetValues, XtVaSetValues, XtVaGetValues

11.12.1. HookObject Resources

The resource names, classes, and representation types that are specified in the hook object
resource list are:

Name Class Representation
XtNcreateHook XtCCallback XtRCallback
XtNchangeHook XtCCallback XtRCallback
XtNconfigureHook XtCCallback XtRCallback
XtNgeometryHook XtCCallback XtRCallback
XtNdestroyHook XtCCallback XtRCallback
XtNshells XtCReadOnly XtRWidgetList
XtNnumShells XtCReadOnly XtRCardinal

Descriptions of each of these resources:

The XtNcreateHook callback list is called froXtCreateWidget, XtCreateManagedWidget,
XtCreatePopupShell, XtAppCreateShell, and their corresponding varargs versions.

Thecall_dataparameter in a createHook callback may be cast toXypeeateHookData.

typedef struct {
String type;
Widget widget;
ArgList ags;
Cardinal num_args;
} X tCreateHookDataRec, *XtCreateHookData;

Thetypeis set toXtHcreate, widgetis the newly created widget, antgsandnum_argsare the
arguments passed to the create function. The callbacks are called before returning from the create
function.

236

The XtNchangeHook callback list is called from:
XtSetValues, XtVaSetValues
XtManageChild, XtManageChildren, XtUnmanageChild, XtUnmanageChildren
XtRealizeWidget, XtUnrealizeWidget

XtAddCallback , XtRemoveCallback, XtAddCallbacks, XtRemoveCallbacks,
XtRemoveAllCallbacks

XtAugmentTranslations, XtOverrideTranslations, XtUninstallTranslations
XtSetKeyboardFocus XtSetWMColormapWindows
XtSetMappedWhenManaged XtMapWidget , XtUnmapWidget

XtPopup, XtPopupSpringLoaded, XtPopdown

Thecall _dataparameter in a changeHook callback may be cast toXt@kangeHookData.

typedef struct {
String type;
Widget widget;
XtPointer eent_data;
Cardinal num_eent_data;
} XtChangeHookDataRec, *XtChangeHookData;

When the changeHook callbacks are called as a result of a eéa$édValuesor XtVaSetVal-
ues, typeis set toXtHsetValues, widgetis the nev widget passed to the set_values procedure,
andewent_datamay be cast to typ¥tChangeHookSetValuesData

typedef struct {
Widget oldreq;
ArgList ags;
Cardinal num_args;
} XtChangeHookSetValuesDataRec, *XtChangeHookSetValuesData;

Theold, req, args, and num_argsare the parameters passed to the set_values procedure. The call-
backs are called after the set_values and constraint set_values proceckitegmaalled.

When the changeHook callbacks are called as a result of a #aNMemageChild or XtMan-
ageChildren, typeis set toXtHmanageChildren, widgetis the parentgevent_datamay be cast
to type WidgetList and is the list of children being managednand event_date the length of
the widget list. The callbacks are called after the childree baen managed.

When the changeHook callbacks are called as a result of a #alltomanageChild or XtUn-
manageChildren, typeis set toXtHunmanageChildren, widgetis the parentevent_datamay
be cast to type WidgetList and is a list of the children being unmanageadyen@vent_dates
the length of the widget list. The callbacks are called after the childuenbhan unmanaged.

The changeHook callbacks are called twice as a result of a ¢éiCttangeManagedSet once
after unmanaging and again after managing. When the callbacks are called the fitgp&iae,
set toXtHunmanageSet widgetis the parentgvent_datamay be cast to type WidgetList and is

237

a list of the children being unmanaged, ann_event_dats the length of the widget list.

When the callbacks are called the second timetyiheis set toXtHmanageSet widgetis the
parentevent_datamay be cast to type WidgetList and is a list of the children being managed, and
num_event_dates the length of the widget list.

When the changeHook callbacks are called as a result of a ¥dRéalizeWidget, thetypeis
set toXtHrealizeWidget andwidgetis the widget being realized. The callbacks are called after
the widget has been realized.

When the changeHook callbacks are called as a result of a ¢alUkwealizeWidget, thetypeis
set toXtHunrealizeWidget, and widgetis the widget being unrealized. The callbacks are called
after the widget has been unrealized.

When the changeHook callbacks are called as a result of a #aAdaCallback , typeis set to
XtHaddCallback , widgetis the widget to which the callback is being added,erdt_data

may be cast to type String and is the name of the callback being added. The callbacks are called
after the callback has been added to the widget.

When the changeHook callbacks are called as a result of a ¥ahdaCallbacks, thetypeis

set toXtHaddCallbacks, widgetis the widget to which the callbacks are being added, and
ewvent_datamay be cast to type String and is the name of the callbacks being added. The call-
backs are called after the callbackséneeen added to the widget.

When the changeHook callbacks are called as a result of a #dRé&moveCallback, thetype
is set toXtHremoveCallback, widgetis the widget from which the callback is being remsth
andewent_datamay be cast to type String and is the name of the callback beingeskmithe
callbacks are called after the callback has beenwvedrfoom the widget.

When the changeHook callbacks are called as a result of a ZdRémoveCallbacks, thetype
is set toXtHremo veCallbacks, widgetis the widget from which the callbacks are being
removed, andevent_datamay be cast to type String and is the name of the callbacks being
removed. Thecallbacks are called after the callbackgehbeen remwued from the widget.

When the changeHook callbacks are called as a result of a ¥@R&moveAllCallbacks, the
typeis set toXtHremoveAllCallbacks andwidgetis the widget from which the callbacks are
being remaed. Thecallbacks are called after the callbacksehbeen remweed from the widget.

When the changeHook callbacks are called as a result of a éaAagmentTranslations, the
typeis set toXtHaugmentTranslations andwidgetis the widget whose translations are being
modified. Thecallbacks are called after the widgatanslations hae keen modified.

When the changeHook callbacks are called as a result of a dat@rrideTranslations, the
typeis set toXtHoverrideTranslations andwidgetis the widget whose translations are being
modified. Thecallbacks are called after the widgetanslations hae teen modified.

When the changeHook callbacks are called as a result of a #alhinstallTranslations , The
typeis XtHuninstallTranslations andwidgetis the widget whose translations are being unin-
stalled. Thecallbacks are called after the widgdtanslations hee been uninstalled.

When the changeHook callbacks are called as a result of a ¥a$etKeyboardFocus thetype

is set toXtHsetKeyboardFocusandewent_datamay be cast to type Widget and is the value of
the descendant argument passedt&etKeyboardFocus The callbacks are called before return-
ing from XtSetKeyboardFocus

When the changeHook callbacks are called as a result of a agetWWMColormapWin-

dows, typeis set toXtHsetWMColormapWindows , event_datamay be cast to type WidgetList
and is the value of the list argument passext&tWMColormapWindows, and
num_event_dates the length of the list. The callbacks are called before returning from
XtSetWMColormapWindows.

238

When the changeHook callbacks are called as a result of a &a$¢edMappedWhenManaged
thetypeis set toXtHsetMappedWhenManagedandewent_datamay be cast to type Boolean

and is the value of the mapped_when_managed argument pa¥s8dtidappedWhenMan-

aged The callbacks are called after setting the widgeHpped _when_managed field and before
realizing or unrealizing the widget.

When the changeHook callbacks are called as a result of a ¥dNiapWidget , thetype is set
to XtHmapWidget andwidgetis the widget being mapped. The callbacks are called after map-
ping the widget.

When the changeHook callbacks are called as a result of a ZdlUtonapWidget, thetype is
set toXtHunmapWidget andwidgetis the widget being unmapped. The callbacks are called
after unmapping the widget.

When the changeHook callbacks are called as a result of a d@aRPopup, thetypeis set to
XtHpopup , widgetis the widget being popped up, aant_datamay be cast to type
XtGrabKind and is the value of the grab_kind argument pass¢tPtpup. The callbacks are
called before returning frondtPopup.

When the changeHook callbacks are called as a result of a ¢&dPopupSpringLoaded, the
typeis set toXtHpopupSpringLoaded andwidgetis the widget being popped up. The callbacks
are called before returning froXtPopupSpringLoaded.

When the changeHook callbacks are called as a result of a &aPépdown, thetypeis set to
XtHpopdown andwidgetis the widget being poppedwn. Thecallbacks are called before
returning fromXtPopdown.

A widget set that exports interfaces that change application state without employing the Intrinsics
library should inoke the change hook itself. This is done by:

XtCallCallbacks(XtHooksOfDisplay(dpy), XtNchangeHook, call_data);

The XtNconfigureHook callback list is calledyaime the Intrinsics mee, resize, or configure a
widget and wherXtResizeWindow is called.

Thecall_dataparameter may be cast to tygeConfigureHookData.

typedef struct {
String type;
Widget widget;
XtGeometryMask changeMask;
XWindowChanges changes;
} X tConfigureHookDataRec, *XtConfigureHookData;

When the configureHook callbacks are called tyipeis XtHconfigure , widgetis the widget
being configured, anchangeMaslandchangesreflect the changes made to the widget. The call-
backs are called after changesdnbeen made to the widget.

The XtNgeometryHook callback list is called frotMakeGeometryRequestand XtMakeRe-
sizeRequesbnce before and once after geometry negotiation occurs.

Thecall_dataparameter may be cast to tyeseometryHookData.

239

typedef struct {
String type;
Widget widget;
XtWidgetGeometry* request;
XtWidgetGeometry* reply;
XtGeometryResult result;
} XtGeometryHookDataRec, *XtGeometryHookData;

When the geometryHook callbacks are called prior to geometry negotiatiaypdliee XtHpre-
Geometry, widgetis the widget for which the request is being made reqaestis the requested
geometry When the geometryHook callbacks are called after geometry negotiatidyp e
XtHpostGeometry, widgetis the widget for which the request was madquestis the
requested geometmgply is the resulting geometry granted, aasultis the value returned from
the geometry negotiation.

The XtNdestroyHook callback list is called when a widget is dgstto Thecall_data parameter
may be cast to typEtDestroyHookData.

typedef struct {
String type;
Widget widget;
} X tDestroyHookDataRec, *XtDestroyHookData;

When the destroyHook callbacks are called as a result of a ¢éD&EstroyWidget, thetypeis
XtHdestroy andwidgetis the widget being destroyed. The callbacks are called upon completion
of phase one desydor a widget.

The XtNshells and XtnumShells are read-only resources that report a list of all parentless shell
widgets associated with a display.

Clients who use these hooks mustreise caution in calling Intrinsics functions in order void
recursion.

11.12.2. QueryingOpen Displays
To retrieve a Ist of the Displays associated with an application contextXuGetDisplays.

240

void XtGetDisplaysépp_contextdpy returnnum_dpy_returh
XtAppContextapp_context
Display ***dpy_return
Cardinal num_dpy_return

app_context Specifies the application context.

dpy_return Returns a list of open Display connections in the specified application
context.

num_dpy_return Returns the count of open Display connectiordpyn return

XtGetDisplays may be used by an external agent to query the list of open displays that belong to
an application context.olfree the list of displays, uséFree.

241

Chapter 12

Nonwidget Objects

Although widget writers are free to treat Core as the base class of the widget fj¢harehare

actually three classes almit. Theseclasses are Object, RectObj (Rectangle Object), and
(unnamed and members of these classes are referred to genericabljeats By convention,

the termwidgetrefers only to objects that are a subclass of Core, and thatenmidgetrefers to

objects that are not a subclass of Core. In the preceding portion of this specification, the interface
descriptions indicate explicitly whether the generndgetargument is restricted to particular
subclasses of Object. Sections 12.2.5, 12.3.5, and 12.5 summarize the permissible classes of the
arguments to, and return values from, each of the Intrinsics routines.

12.1. DataStructures

In order not to conflict with previous widget code, the data structures used by nonwidget objects
do not follow al the same corentions as those for widgets. In particuldwe class records are

not composed of parts but instead are complete data structures with filler for the widget fields
they do not use. This allows the static class initializers for existing widgets to remain unchanged.

12.2. ObjectObjects

The Object object contains the definitions of fields common to all objects. It encapsulates the
mechanisms for resource management. All objects and widgets are members of subclasses of
Object, which is defined by thebjectClassPart and ObjectPart structures.

12.2.1. ObjectClassBrt Structure

The common fields for all object classes are defined iDthjectClassPart structure. Allfields
have the same purpose, function, and restrictions as the corresponding fi€lole@lassPart
fields whose names are olipr some integen are not used for Object, but exist to pad the data
structure so that it matches Cardass record. The class record initialization must fill alhobj
fields with NULL or zero as appropriate to the type.

242

' typedef struct _ObjectClassPart {
WidgetClass superclass;
String class_name;

Cardinal widget_size;
XtProc class_initialize;
XtWidgetClassProc class_part_initialize;
XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtProc obj1;
XtPointer obj2;
Cardinal obj3;
XtResourcelist resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean obj4;
XtEnum obj5;
Boolean obj6;
Boolean obj7;
XtWidgetProc destroy;
XtProc obj8;
XtProc obj9;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtProc obj10;
XtArgsProc get_values_hook;
XtProc objl11;
XtVersionType version;
XtPointer callback_pvite;
String obj12;
XtProc obj13;
XtProc objl14;
XtPointer extension;

} ObjectClassPart;

-

The extension record defined fobjectClassPart with arecord_typeequal toNULLQ UARK is
ObjectClassExtensionRec

243

typedef struct {

XtPointer next_gtension; Se&ection 1.6.12
XrmQuark record_type; See Section 1.6.12
long \ersion; Se&ection 1.6.12
Cardinal record_size; See Section 1.6.12
XtAllocateProc allocate; See Section 2.5.5.
XtDeallocateProc deallocate; See Section 2.8.4.

} ObjectClassExtensionRec, *ObjectClassExtension;

The prototypicalObjectClass consists of just th®©bjectClassPart.

typedef struct _ObjectClassRec {
ObjectClassPart object_class;
} ObjectClassRec, *ObjectClass;

The predefined class record and pointer@bjectClassRecare
In IntrinsicP.h :

extern ObjectClassRec objectClassRec;

In Intrinsic.h :

extern WidgetClass objectClass;

The opaque type®bject and ObjectClassand the opaque variabtibjectClassare defined for
generic actions on objects. The symbolic constant foOthiectClassExtensionversion identi-
fier is XtObjectExtensionVersion (see Section 1.6.12)ntrinsic.h uses an incomplete structure
definition to ensure that the compiler catches attempts to acceste pata:

typedef struct _ObjectClassRec* ObjectClass;

12.2.2. ObjectRrt Structure

The common fields for all object instances are defined i®thjectPart structure. Allfields
have the same meaning as the corresponding fiel@omePart.

244

typedef struct _ObjectPart {
Widget self;
WidgetClass widget_class;
Widget parent;
Boolean being_destroyed;
XtCallbackList destroy_callbacks;
XtPointer constraints;

} ObjectPart;

All object instances ha& the Object fields as their first component. The prototypical @pject
is defined with only this set of field&/arious routines can cast object pointers, as needed, to spe-
cific object types.

In IntrinsicP.h :

typedef struct _ObjectRec {
ObjectPart object;
} ObjectRec, *Object;

In Intrinsic.h :

typedef struct _ObjectRec *Object;

12.2.3. ObjectResources

The resource names, classes, and representation types specifienbije¢t@lassRecresource
list are:

Name Class Representation

XtNdestrg/Callback XtCCallback XtRCallback

12.2.4. ObjectRrt Default Values
All fields in ObjectPart have the same default values as the corresponding fiel@siaPart.

12.2.5. ObjectArguments to Intrinsics Routines
The WidgetClass arguments to the following procedures mapjeetClassor ary subclass:

XtlInitializeWidgetClass, XtCreateWidget, XtVaCreateWidget

245

XtlsSubclass XtCheckSubclass
XtGetResourceList, XtGetConstraintResourceList

The Widget arguments to the following procedures may be of class Objegtsubafass:

XtCreateWidget, XtVaCreateWidget

XtAddCallback , XtAddCallbacks, XtRemoveCallback, XtRemoveCallbacks,
XtRemoveAllCallbacks, XtCallCallbacks, XtHasCallbacks, XtCallCallbackList

XtClass, XtSuperclass XtlsSubclass XtCheckSubclass XtIsObject, XtlIsRectObj,
XtlsWidget, XtisComposite, XtlsConstraint , XtisShell, XtlsOverrideShell,
XtlsWMShell , XtiIsVendorShell, XtisTransientShell, XtlsToplevelShell, XtlsApplica-
tionShell, XtlsSessionShell

XtlsManaged, XtlsSensitive
(both will returnFalse if argument is not a subclass of RectObj)

XtlsRealized
(returns the state of the nearest windowed ancestor if class of argument is not a subclass of
Core)

XtwidgetToApplicationContext

XtDestroyWidget

XtParent, XtDisplayOfObject, XtScreenOfObject, XtWindowOfObject
XtSetKeyboardFocus(descendant)

XtGetGC, XtReleaseGC

XtName

XtSetValues, XtGetValues, XtVaSetValues, XtVaGetValues

XtGetSubresources XtGetApplicationResources XtVaGetSubresources XtVaGe-
tApplicationResources

XtConvert , XtConvertAndStore

The return value of the following procedures will be of class Object or a subclass:

XtCreateWidget, XtVaCreateWidget
XtParent
XtNameToWidget

The return value of the following procedures will digectClassor a subclass:

XtClass, XtSuperclass

12.2.6. Usef Objects

The Obiject class exists to enable programmers to use the Intrinsics’ classing and resource-han-
dling mechanisms for things smaller and simpler than widgets. Objectsapedete many
common uses of subresources as described in Sections 9.4, 9.7.2.4, and 9.7.2.5.

246

Composite widget classes that wish to accept nonwidget children must aetepes_objects
field in theCompositeClassExtensiorstructure toTr ue. XtCreateWidget will otherwise gen-
erate an error message on an attempt to create a nonwidget child.

Of the classes defined by the Intrinsics, ApplicationShell and SessionShell accept nonwidget chil-
dren, and the class ofyanonwidget child must not beectObjClass or ary subclass. Théntent

of allowing Object children of ApplicationShell and SessionShell is to provide clients a simple
mechanism for establishing the resource-naming root of an object hjerarch

12.3. RectangleObjects

The class of rectangle objects is a subclass of Object that represents rectangular areas. It encap-
sulates the mechanisms for geometry management and is called Rect@ly tmaflict with the
Xlib Rectangledata type.

12.3.1. RectObjClassBrt Structure

As with theObjectClassPart structure, all fields in thRectObjClassPart structure hee the
same purpose and function as the corresponding fieldsr@ClassPart fields whose names are
recin for some integen are not used for RectObj, but exist to pad the data structure so that it
matches Corg’'dass record. The class record initialization must fill allmdigtids with NULL

or zero as appropriate to the type.

247

typedef struct _RectObjClassPart {
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;
XtWidgetClassProc class_part_initialize;
XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtProc rectl;
XtPointer rect2;
Cardinal rect3;
XtResourcelist resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean rect4;
XtEnum rect5;
Boolean rect6;
Boolean rect7;
XtWidgetProc destroy;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtAlmostProc set_values_almost;
XtArgsProc get_values_hook;
XtProc rect9;
XtVersionType version;
XtPointer callback_pvite;
String rect10;
XtGeometryHandler query_geometry;
XtProc rectl1;
XtPointer extension ;

} RectObjClassPart;

The RectObj class record consists of justReetObjClassPart.

typedef struct _RectObjClassRec {
RectObjClassPart rect_class;
} RectObjClassRec, *RectObjClass;

The predefined class record and pointelRectObjClassRecare
In Intrinsic.h :

248

extern RectObjClassRec rectObjClassRec;

In Intrinsic.h :

extern WidgetClass rectObjClass;

The opaque typeRectObj and RectObjClassand the opaque variabfectObjClass are

defined for generic actions on objects whose class is RectObj or a subclass of Rettinbj.

sic.h uses an incomplete structure definition to ensure that the compiler catches attempts to access
private data:

typedef struct _RectObjClassRec* RectObjClass;

12.3.2. RectObjRrt Structure

In addition to theObjectPart fields, RectODbj objects ke the following fields defined in the
RectObjPart structure. Allfields hae the same meaning as the corresponding field in
CorePart.

typedef struct _RectObjPart {
Position X, y;
Dimension width, height;
Dimension border_width;
Boolean managed;
Boolean sensiE;
Boolean ancestor_sensj

} RectObjPart;

RectObj objects hee the RectObj fields immediately following the Object fields.

typedef struct _RectObjRec {
ObjectPart object;
RectObjPart rectangle;
} RectObjRec, *RectObj;

In Intrinsic.h :

typedef struct _RectObjRec* RectObj;

249

12.3.3. RectObjResources

The resource names, classes, and representation types that are specifisti®OtjelassRec
resource list are:

Name Class Representation
XtNancestorSensite XtCSensitve XtRBoolean
XtNborderWdth XtCBorderWdth XtRDimension
XtNheight XtCHeight XtRDimension
XtNsensitve XtCSensitie XtRBoolean
XtNwidth XtCWidth XtRDimension
XtNXx XtCPosition XtRPosition
XtNy XtCPosition XtRPosition

12.3.4. RectObjRrt Default Values
All fields in RectObjPart have the same default values as the corresponding fiel@stiaPart.

12.3.5. Wdget Arguments to Intrinsics Routines
The WidgetClass arguments to the following procedures magdd®bjClass or ary subclass:

XtCreateManagedWidget, XtVaCreateManagedWidget
The Widget arguments to the following procedures may be of class RectOpjsnibalass:

XtConfigureWidget, XtMo veWidget, XtResizeWidget
XtMakeGeometryRequest XtMakeResizeRequest

XtManageChildren, XtManageChild, XtUnmanageChildren, XtUnmanageChild,
XtChangeManagedSet

XtQueryGeometry
XtSetSensitve
XtTranslateCoords

The return value of the following procedures will be of class RectObj or a subclass:

XtCreateManagedWidget, XtVaCreateManagedWidget

12.3.6. Usef Rectangle Objects

RectObj can be subclassed to provide widgetttijects (sometimes called gadgets) that do not

use windows and do notVetose features that are seldom used in simple widgets. This can

save memory resources both in the server and in applications but requires additional support code
in the parent. In the following discussiaac¢tobjrefers only to objects whose class is RectObj or

a abclass of RectObj, but not Core or a subclass of Core.

250

Composite widget classes that wish to accept rectobj children must aet#mts_objectield

in the CompositeClassExtensiorextension structure tdrue. XtCreateWidget or XtCreate-
ManagedWidget will otherwise generate an error if called to create a nonwidget child. If the
composite widget supports only children of class RectObj or a subclass (i.e., not of the general
Object class), it must declare an insert_child procedure and check the subclass oivehdd ne

in that procedure. None of the classes defined by the Intrinsics accept rectobj children.

If gadgets are defined in an object set, the parent is responsible for much more than the parent of a
widget. Theparent must request and handle inpghés that occur for the gadget and is respon-

sible for making sure that when it reges an eposure eent the gadget children get drawn cor-

rectly. Rectobj children may he& expose procedures specified in their class records, but the par-

ent is free to ignore them, instead drawing the contents of the child itself. This can potentially

sase gaphics context switching. The precise contents of the exposemeand region argu-

ments to the RectObj expose procedure are not specified by the Intrinsics; a particular rectangle
object is free to define the coordinate system origin (selfvelatiparent-relatre) and whether

or not the rectangle or region is assumed i@ lieen intersected with the visible region of the

object.

In general, it is expected that a composite widget that accepts nonwidget children will document
those children it is able to handle, since a gadget cannot be viewed as a completely self-contained
entity, as @n a widget. Since a particular composite widget class is usually designed to handle
nonwidget children of only a limited set of classes, it should check the classes of newly added
children in its insert_child procedure to neakire that it can deal with them.

The Intrinsics will clear areas of a parent windabscured by rectobj children, causing exposure
events, under the following circumstances:

. A rectobj child is managed or unmanaged.

. In a @all to XtSetValueson a rectobj child, one or more of the set_values procedures
returnsTrue.

. In a all to XtConfigureWidget on a rectobj child, areas will be cleared corresponding to
both the old and the nechild geometries, including the bordérthe geometry changes.

. In a all to XtMo veWidget on a rectobj child, areas will be cleared corresponding to both
the old and the mechild geometries, including the borgddrthe geometry changes.

. In a all to XtResizeWidgeton a rectobj child, a single rectangle will be cleared corre-
sponding to the larger of the old and thevrkild geometries if theare different.

. In a @all to XtMakeGeometryRequest(or XtMakeResizeRequeston a ectobj child

with XtQueryOnly not set, if the manager returd$GeometryYes, two rectangles will be
cleared corresponding to both the old and thve ciéld geometries.

Stacking order is not supported for rectobj children. Composite widgets with rectobj children are
free to define ansemantics desired if the child geometriesrtap, including making this an
error.

When a rectobj is playing the role of a widgetyali@pers must be reminded teadd making
assumptions about the object passed in the Widget argument to a callback procedure.

12.4. Undeclaed Class

The Intrinsics define an unnamed class between RectObj and Core for possible future use by the
X Consortium. The only assumptions that may be made about the unnamed class are

251

. Thecore_class.superclasi®ld of coreWidgetClassRecacontains a pointer to the unnamed
class record.

. A pointer to the unnamed class record when dereferenced@sjectClasswill contain a
pointer torectObjClassRecin its object_class.superclasigld.

Except for the abae, the contents of the class record for this class and the result of an attempt to
subclass or to create a widget of this unnamed class are undefined.

12.5. Widget Arguments to Intrinsics Routines
The WidgetClass arguments to the following procedures must be of class Shell or a subclass:

XtCreatePopupShell, XtVaCreatePopupShell, XtAppCreateShell, XtVaAppCre-
ateShell, XtOpenApplication, XtVaOpenApplication

The Widget arguments to the following procedures must be of class Congsnibalass:

XtCreatePopupShell, XtVaCreatePopupShell

XtAddEventHandler , XtAddRawEventHandler , XtRemoveEventHandler,
XtRemoveRawEventHandler, XtinsertEventHandler , XtinsertRawEventHandler
XtinsertEventTypeHandler , XtRemoveEventTypeHandler,

XtRegisterDrawable XtDispatchEventToWidget

XtAddGrab , XtRemoveGrab, XtGrabKey , XtGrabKeyboard , XtUngrabKey , XtUn-
grabKeyboard, XtGrabButton , XtGrabPointer , XtUngrabButton ,
XtUngrabPointer

XtBuildEventMask
XtCreateWindow, XtDisplay, XtScreen, XtWindow
XtNameToWidget

XtGetSelectionValug XtGetSelectionValues XtOwnSelection, XtDisownSelection
XtOwnSelectionincremental, XtGetSelectionValuelncremental XtGetSelectionVal-
uesincremental,

XtGetSelectionRequest

XtinstallAccelerators, XtinstallAllAccelerators (both destination and source)

XtAugmentTranslations, XtOverrideTranslations, XtUninstallTranslations ,
XtCallActionProc

XtMapWidget , XtUnmapWidget

XtRealizeWidget, XtUnrealizeWidget
XtSetMappedWhenManaged

XtCallAcceptFocus, XtSetKeyboardFocus(subtree)
XtResizeWindow

XtSetWMColormapWindows

The Widget arguments to the following procedures must be of class Composiyesobanss:

252

XtCreateManagedWidget, XtVaCreateManagedWidget
The Widget arguments to the following procedures must be of a subclass of Shell:

XtPopdown, XtCallbackPopdown, XtPopup, XtCallbackNone, XtCallbackNonex-
clusive, XtCallbackExclusive, XtPopupSpringLoaded

The return value of the following procedure will be of class Core or a subclass:
XtWindowToWidget
The return value of the following procedures will be of a subclass of Shell:

XtAppCreateShell, XtVaAppCreateShell, XtApplnitialize , XtVaApplnitialize ,
XtCreatePopupShell, XtVaCreatePopupShell

253

Chapter 13

Evolution of the Intrinsics

The interfaces described by this specificatiovehadergone seeral sets of revisions in the

course of adoption as an X Consortium standard specification. Hawinpeen adopted by the
Consortium as a standard part of the X Wimdystem, it is expected that this and future revi-

sions will retain backward compatibility in the sense that fully conforming implementations of
these specifications may be produced that provide source compatibility with widgets and applica-
tions written to previous Consortium standard revisions.

The Intrinsics do not place yBpecial requirement on widget programmers to retain source or
binary compatibility for their widgets as thevolve, but sgeral corventions hae keen estab-
lished to assist thosewtopers who want to provide such compatibility.

In particular widget programmers may wish to conform to thevention described in Section
1.6.12 when defining class extension records.

13.1. DeterminingSpecification Revision L&el

Widget and application gielopers who wish to maintain a common source pool that will build
properly with implementations of the Intrinsics at different revisiosl$éeof these specifications
but that tale advantage of newer features added in later revisions may use the symbolic macro
XtSpecificationRelease

#define XtSpecificationRelease 6

As the symbolXtSpecificationReleasavas rew o Release 4, widgets and applications desiring
to build against earlier implementations should test for the presence of this symbol and assume
only Release 3 interfaces if the definition is not present.

13.2. Releas8 to Release 4 Compatibility

At the data structurevel, Release 4 retains binary compatibility with Release 3 (the first X Con-
sortium standard release) for all data structures exvdpEhellPart, TopLevelShellPart, and
TransientShellPart Release 4 changed the argument type to most procedureswhiakeo
arguments of typ&tPointer and structure members that arevraf type XtPointer in order to

avdd potential ANSI C conformance problems. It is expected that most implementations will be
binary compatible with the previous definition.

Two fields in CoreClassPartwere changed frorBooleanto XtEnum to allonv implementations
additional freedom in specifying the representations of each. This change should require no
source modification.

13.2.1. Additional Arguments

Arguments were added to the procedure definitionXftmitProc , XtSetValuesFung and
XtEventHandler to provide more information and to allevent handlers to abort further

254

dispatching of the currenvent (caution is advised!). The added argument&ttoitProc and
XtSetValuesFuncmale the initialize_hook and set_values_hook methods obsolete, but the
hooks hae been retained for those widgets that used them in Release 3.

13.2.2. set_alues_almost Procedures

The use of the arguments by a set_values_almost procedure was poorly described in Release 3
and was inconsistent with other entions.

The current specification for the manner in which a set_values_almost procedure returns informa-
tion to the Intrinsics is not compatible with the Release 3 specification, and all widget implemen-
tations should verify that grset_values_almost procedures conform to the current interface.

No known implementation of the Intrinsics correctly implemented the Release 3 interface, so it is
expected that the impact of this specification change is small.

13.2.3. QueryGeometry

A composite widget layout routine that cal$QueryGeometry is nov expected to store the
complete n& geometry in the intended structure; previously the specification said “store the
changes it intends to makeOnly by storing the complete geometry does the chilelzny vay
to knowv what other parts of the geometry may still b&ifike. Existingwidgets should not be
affected by this, except to kdvantage of the meinformation.

13.2.4. unealizeCallback Callback List

In order to provide a mechanism for widgets to be notified whegrbdeme unrealized through

a all to XtUnrealizeWidget, the callback list name “unrealizeCallbadkas been defined by

the Intrinsics. A widget class that requires notification on unrealize may declare a callback list
resource by this name. No class is required to declare this resourcey blasarthat did so in a

prior revision may find it necessary to modify the resource name if it does not wish to use the new
semantics.

13.2.5. Subclassest WMShell

The formal adoption of thimter-Client Communication Conventions Manaalan X Consortium
standard has meant the addition of four fielde/fdShellPart and one field tdlopLevelShell-
Part . In deference to some widget libraries that haetltged their own additional ceantions
to provide binary compatibilifythese fie rew fields were added at the end of the respechta
structures.

To provide more covenience for TransientShells, a field was added to the previously empty
TransientShellPart On some architectures the size of the part structure will neg deanged
as a result of this.

Any widget implementation whose class is a subclass of Malfhleell or TransientShell must at
minimum be recompiled with the wedata structure declarations. Becayg®ShellPart no
longer contains a contiguod&SizeHints data structure, a subclass that expected to do a single
structure assignment of atizeHints structure to theize_hintdield of WMShellPart must be
revised, though the old fields remain at the same positions WitMShellPart .

255

13.2.6. Resowe Type Coiverters

A new interface declaration for resource typevasters was defined to provide more information

to corverters, to support caersion cache cleanup with resource reference counting, and to allow
additional procedures to be declared to free resources. The old interfaces remain (in the compati-
bility section), and a meset of procedures was defined that work only with the type con-

verter interface.

In the nav obsolete old type caerter interface, corerters are reminded that shenust return the
size of the coverted value as well as its address. The example indicated this, but the description
of XtConverter was incomplete.

13.2.7. KeySym Case Cowersion Procedure

The specification for th&tCaseProcfunction type has been changed to match the Release 3
implementation, which included necessary additional information required by the function (a
pointer to the display connection), and corrects the argument type of the seyBgenkparame-
ter. No known implementation of the Intrinsics implemented the previously documented inter-
face.

13.2.8. NonwidgeObjects

Formal support for nonwidget objects ismto Release 4.A prototype implementation was

latent in at least one Release 3 implementation of the Intrinsics, but the specification has changed
someavhat. Themost significant change is the requirement for a composite widget to declare the
CompositeClassExtensiomecord with theaccepts_objectiield set toTr ue in order to permit a

client to create a nonwidget child.

The addition of this extension field ensures that composite widgets written under Release 3 will
not encounter unexpected errors if an application attempts to create a nonwidget child. In Release
4 there is no requirement that all composite widgets implement the extra functionality required to
manage windowless children, so Hexept_objectfield allows a composite widget to declare

that it is not prepared to do so.

13.3. Releasd to Release 5 Compatibility

At the data structureVel, Release 5 retains complete binary compatibility with Release 4. The
specification of thébjectPart, RectObjPart, CorePart, CompositePart, ShellPart,
WMShellPart, TopLevelShellPart, and ApplicationShellPart instance records was made less
strict to permit implementations to add internal fields to these structurgs.misitementation

that chooses to do so would, of course, force a recompilation. The Xlib specificatikmmfor
Value and XrmOptionDescRecwas Yodated to use a wetype, XPointer, for theaddrand
valuefields, respectely, to azoid ANSI C conformance problems. The definitionXd®ointer is
binary compatible with the previous implementation.

13.3.1. basefanslations Resource

A new pseudo-resource, XtNbaseTranslations, was defined to permit applicatébrpées to
specify translation tables in application defaults files while still giving end users the ability to
augment or eerride individual @ent sequences. This change will affect only those applications

256

that wish to tak advantage of the mefunctionality or those widgets that maywbkareviously
defined a resource named “baseTranslations”.

Applications wishing to tak advantage of the mefunctionality would change their application
defaults file, e.g., from

app.widget.translationsalue
to
app.widget.baseTranslationalue

If it is important to the application to presersomplete compatibility of the defaults file between
different versions of the application running under Release 4 and Release 5, the full translations
can be replicated in both the “translatidrzsid the “baseTranslatiorig’esource.

13.3.2. Resoure File Search Path

The current specification allows implementations greater flexibility in defining the directory struc-
ture used to hold the application class and per-user application defaults files. Previous specifica-
tions required the substitution strings to appear in the default path in a certajpraxeating

sites from collecting all the files for a specific application together in one diredioeyRelease

5 goecification allows the default path to specify the substitution stringyiarder within a sin-

gle path entry Users will need to pay close attention to the documentation for the specific imple-
mentation to kna where to find these files andwto specify their ownXFILESEARCHP ATH

and XUSERFILESEARCHPATH values when werriding the system defaults.

13.3.3. CustomizatiorResource

XtResolvePathnamesupports a ne substitution string, %C, for specifying separate application
class resource files according to arbitrary user-specifiedarége. Theprimary motvation for

this addition was separate monochrome and color application class defaults files. The substitution
value is obtained by querying the current resource database for the application resource name

“ customization”, class “Customizatidn’ Any application that previously used this resource

name and class will need to bease of the possibly conflicting semantics.

13.3.4. Rr-Screen Resource Database

To dlow a user to specify separate preferences for each screen of a dispesgcreen resource
specification string has been added and multiple resource databases are created; one for each
screen. Thisvill affect ary application that modified the (formerly unique) resource database
associated with the display subsequent to the Intrinsics database initialization. Such applications
will need to be ware of the particular screen on which each shell widget is to be created.

Although the wording of the specification changed substantially in the description of the process
by which the resource database(s) is initialized, the net effect is the same as in prior releases with
the exception of the added per-screen resource specification and/ttiestemization substitu-

tion string inXtResolvePathname

257

13.3.5. Intenationalization of Applications

Internationalization as defined by ANSI is a technology that allows support of an application in a
single locale. In adding support for internationalization to the Intrinsics the restrictions of this
model hae keen follaved. Inparticular the nev Intrinsics interfaces are designed not to pre-

clude an application from using other altervegti For this reason, no Intrinsics routine makes a
call to establish the locale. Hower, a ®nvenience routine to establish the locale at initialize

time has been provided, in the form of a default procedure that must be explicitly installed if the
application desires ANSI C locale behavior.

As malry objects in X, particularly resource databasesy imherit the global locale when there
created, applications wishing to use the ANSI C locale model should usentfienction XtSet-
LanguageProcto do so.

The internationalization additions also definer filters as a part of the Xlib Input Method spec-
ifications. Thdntrinsics enable the use ofent filters through additions t&tDispatchEvent.
Applications that may not be dispatching akrts throughXtDispatchEvent should be

reviewed in the context of thiswanput method mechanism.

In order to permit internationalization of error messages, the name and path of the error database
file are nav alowed to be implementation-dependent. No adequate standard mechanism has yet
been suggested to alldhe Intrinsics to locate the database from localization information sup-

plied by the client.

The previous specification for the syntax of the language string specifiadlianguage has
been dropped tovaid potential conflicts with other standards. The language string syntax is now
implementation-defined. Thexample syntax cited is consistent with the previous specification.

13.3.6. Fermanently Allocated Strings

In order to permit additional memory savings, an Xlib interface was addedvctiaioesource
manager toaid copying certain string constants. The Intrinsics specification was updated to
explicitly require the Objectlass _namgesource _namaesource_clasgesource_typge
default_typan resource tables, Cosagtions strindgfield, and Constrainesource_name
resource_classesource_typegand default_typeaesource fields to be permanently allocated. This
explicit requirement is expected to affect only applications that may create and dksses on
the fly.

13.3.7. Aguments to Existing Functions

Theargsargument toXtApplnitialize , XtVaApplnitialize , XtOpenDisplay, XtDisplaylnitial-
ize, and Xtlnitialize were changed frontardinal * to int* to conform to pre-existing coen-
tion and aoid otherwise annoying typecasting in ANSI C environments.

13.4. Releas® to Release 6 Compatibility

At the data structureVel, Release 6 retains binary compatibility with Release 5 for all data struc-
tures exceptWMShellPart. Three resources were added to the specification. The known imple-
mentations had unused space in the data structure, therefore on some architectures and implemen-
tations, the size of the part structure will notdnahanged as a result of this.

258

13.4.1. Wdget Internals

Two new widget methods for instance allocation and deallocation were added to the Object class.
These n& methods allav widgets to be treated as C++ objects in the C++ environment when an
appropriate allocation method is specified or inherited by the widget class.

The textual descriptions of the processes of widget creation and widget destruatitedra
edited to provide clarification to widget writerd/idgets writers may a reason to rely on the
specific order of the stages of widget creation and destruction; with thattooti the specifica-
tion nov more exactly describes the process.

As a conenience, an interface to locate a widget class extension record on a linkEdGist;
ClassExtension has been added.

A new qption to allav bundled changes to the managed set of a Composite widget is introduced
in the Composite class extension recofddgets that define a change_managed procedure that
can accommodate additions and deletions to the managed set of children in agngt®m

should set allows_change_managed_sét te in the extension record.

The wording of the process followed BgUnmanageChildren has changed slightly to better
handle changes to the managed set during phase 2ydasitessing.

A new &posure gent compression flag{tExposeNoRegion was added. Manwidgets specify
exposure compression, but either ignore the actual damage region passed to the core expose pro-
cedure or use only the cumulagibounding box datavailable in the gent. Widgets with expose
procedures that do not nalkse of exact exposure region information can indicate that the Intrin-
sics need not compute the region.

13.4.2. GeneraApplication Development

XtOpenApplication is a nev corvenience procedure to initialize the toolkit, create an applica-
tion context, open an X display connection, and create the root of the widget instance tree. Itis
identical to the interface it replacestApplnitialize , in al respects except that it takes an addi-
tional argument specifying the widget class of the root shell to create. This interfagetieno
recommended one so that clients may easily become session participants. Theeniémom
procedures appear in the compatibility section.

The toolkit initialization functionXtToolkitInitialize may be called multiple times without
penalty.

In order to optimize changes in geometry to a set of geometry-managed childnennterface,
XtChangeManagedSet has been added.

13.4.3. Communicationwith Window and Session Managers

The revision of thénter-Client Communication Conventions Manaalan X Consortium stan-
dard has resulted in the addition of three fields to the specificatMBhellPart. These are
urgency, client_leader andwindow_role

The adoption of thX Session Mangement Protocohs an X Consortium standard has resulted in

the addition of a ne shell widget, SessionShelland an accompanying subclass verification
interface,XtIsSessionShell This widget provides support for communication between an appli-
cation and a session managerwell as a windar manager In order to presey compatibility

with existing subclasses @ipplicationShell, the ApplicationShell was subclassed to create the

new widget class. The session protocol requires a modal response to certain checkpointing opera-
tions by participating applications. TigessionShelktructures the applicatianiotification of

259

and responses to messages from the session manager by use of various callback lists and by use
of the nev interfacesXtSessionGetTokenand XtSessionReturnToken There is also a new

command line argument, -xtsessionlD, which facilitates the session manager in restarting applica-
tions based on the Intrinsics.

The resource name and class strings defined by the Intrinsics shell widg¥tdlitSkell.h> are

now listed in Appendix E. The addition of ameymbol for theWMShell wait_for_wm

resource was made to bring the external symbol and the string it represents into agreement. The
actual resource name stringWiMShell has not changed. The resource representation type of

the XtNwinGravity resource of th&/MShell was dhanged to XtRGravity in order to register a

type cowerter so that windw gravity resource values could be specified by name.

13.4.4. GeometryManagement

A clarification to the specification was made to indicate that geometry requests may include cur-
rent values along with the requested changes.

13.4.5. Eent Management

In Release 6, support is provided for registering selectorsvaentifeandlers foreents generated
by X protocol extensions and for dispatching thoss to the appropriate widget. The new
event handler registration interfaces af#nsertEventTypeHandler and XtRemoveEvent-
TypeHandler. Since the mechanism to indicate selection of extensientg is specific to the
extension being used, the Intrinsics introdu¢RegisterExtensionSelector which allows the
application to select for thevents of interest. In order to change the dispatching algorithm to
accommodate extensioments as well as core X protocolents, the Intrinsics\ent dispatcher
may nav be replaced or ereloped by the application witKtSetEventDispatcher. The dis-
patcher may wish to catGetKeyboardFocusWidgetto determine the widget with the current
Intrinsics leyboard focus.A dispatcherafter determining the destination widget, may use
XtDispatchEventToWidget to cause thevent to be dispatched to theeat handlers registered
by a specific widget.

To permit the dispatching ofvents for nonwidget draables, such as pixmaps that are not associ-
ated with a widge$ window, XtRegisterDrawable and XtUnregisterDrawable have keen
added to the libraryA related update was made to the descriptiokt@¥indowToWidget .

The library is nwv thread-safe, allowing one thread at a time to enter the library and protecting
global data as necessary from concurrent use. Threaded toolkit applications are supported by the
new interfacesXtToolkitThreadlnitialize , XtAppLock , XtAppUnlock , XtAppSetExitFlag,

and XtAppGetExitFlag . Widget writers may also us€tProcessLockand XtProcessUnlock

Safe handling of POSIX signals and other asynchronous notifications jgonided by use of
XtAppAddSignal , XtNoticeSignal, and XtRemoveSignal.

The application can reaa rotification of an impending block in the Intrinsiogeat manager by
registering interest througktAppAddBlockHook and XtRemoveBlockHook.

XtLastEventProcessedreturns the most recentant passed tXtDispatchEvent for a specified
display.

13.4.6. Resoure Management

Resource corerters are registered by the Intrinsics for wiwdgravity and for three e resource
types associated with session participation: RestartStyle, CommandArgArray and

260

DirectoryString.

The file search path syntax has been extended te inadsier to include the default search path,
which controls resource database construction, by using theubstitution string, %D.

13.4.7. Tanslation Management

The default ky translator ner recognizes the NumLock modifief NumLock is on and the sec-
ond keysym is a kypad leysym (a standarddysym named with a “KP’prefix or a vendor-spe-
cific keysym in the hexadecimal range 0x11000000 to 0x1100FFFF), then the defatdirisla-
tor will use the first &ysym if Shift and/or ShiftLock is on and will use the secoegsim if nei-
ther is on. Otherwise, it will ignore NumLock and apply the normal protocol semantics.

13.4.8. Selections

The targets of selection requests may be parameterized, as described by thintevi€diént
Communication Conventions Manuahen such requests are mad¢SetSelectionParame-

ters is used by the requestor to specify the target parametebst@edSelectionParametersis

used by the selection owner to retadhe parameters. When a parameterized target is specified

in the context of a bundled request for multiple targét€reateSelectionRequest XtCancelS-
electionRequest and XtSendSelectionRequesare used to eelop the assembly of the request.
When the parameters themselves are the names of properties, the Intrinsics provides support for
the economical use of property atom names)d8esewvePropertyAtom and XtReleaseProp-
ertyAtom.

13.4.9. Extenal Agent Hooks

External agent hooks were added for the benefit of applications that instrument other applications
for purposes of accessibiljtiesting, and customization. The external agent and the application
communicate by a shared protocol which is transparent to the application. The hook callbacks
permit the external agent to register interest in groups or classes of toolkit activity and to be noti-
fied of the type and details of the activity as it occurs. Theinterfaces related to this effort are
XtHooksOfDisplay, which returns the hook registration widget, attGetDisplays, which

returns a list of the X displays associated with an application context.

261

Appendix A

Resource File Format

A resource file contains text representing the default resource values for an application or set of
applications.

The format of resource files is definedXlib — C Languge X hterfaceand is reproduced here
for convenience only.

The format of a resource specification is

ResourceLine €omment | IncludeFile | ResourceSpec | <empty line>
Comment = 1" { <ary character except null or newline>}

IncludeFile = #” W hiteSpace “include’'W hiteSpace FileName WhiteSpace
FileName =valid filename for operating system>

ResourceSpec WhiteSpace ResourceName WhiteSpaceW:hiteSpace Value
ResourceName [Binding] {Component Binding} ComponentName

Binding SR

WhiteSpace F<space> | <horizontal tab>}

Component = ?" | ComponentName

ComponentName NHameChar {NameChar}

NameChar za’-“z’ | AT 2| oY T T

Value ={<any character except null or unescaped newline>}

Elements separated by vertical bar (]) are altegatiCurlybraces ({...}) indicate zero or more
repetitions of the enclosed elements. Square brackets ([...]) indicate that the enclosed element is
optional. Quote¢“...”) are used around literal characters.

If the last character on a line is a backslash (\), that line is assumed to continue on the next line.

To dlow a Value to begin with whitespace, the two-character sequespacg (backslash fol-
lowed by space) is recognized and replaced by a space chaadtire two-character sequence
“\tab” (backslash followed by horizontal tab) is recognized and replaced by a horizontal tab
character.

To dlow a Value to contain embedded newline characters, the two-character sefuerice
recognized and replaced by a newline charadiedlow a Value to be broken across multiple
lines in a text file, the two-character sequengetlin€ (backslash followed by newline) is rec-
ognized and remad from the value.

To dlow a Value to contain arbitrary character codes, the four-character sequandé,‘Where
eachnis a digit character in the range of “0"-"7", is recognized and replaced with a single byte
that contains the octal value specified by the sequence. Fihallyvo-character sequence “\\"

is recognized and replaced with a single backslash.

262

Notation

Appendix B

Translation Table Syntax

Syntax is specified in EBNF notation with the following wartions:

[a] Means either nothing or “a”

{a}
(alb)

M eans zero or more occurrences of “a”
Means either “d’or ‘‘b”

\\n Isthe newline character

All terminals are enclosed in double quotation marks)(' Informal descriptions are enclosed in
angle brackets (< >).

Syntax

The syntax of a translation table is

translation®@ble
directive
production

Ihs

keyseq

keychar

evant
modifier_list
modifier

count
modifier_name
event_type
detail

rhs

name
namechar
params

string
guoted_string
escape_char

unquoted_string

=[directive] { production }
=(“#replace’ | ‘‘#override” | *‘#augment’) *‘\\n”

=lhs “’’ rhs “\n”

=(event | leyseq) {“)" (event | lkeyseq) }

=H m kewhar {kewhar} [{11E}]

=[] %7 | W] <ISO Latin 1 character>

=[moadifier_list] “<"event_type“>" [‘("' count[“+"] “)’ '] { detail}
=([* "] [*:"] {modifier}) | “None”
=[*""] modifier_name
=123 A L)
£ @" <keysym> | <see ModifierNames table below>
=<see Event Types table below>
=<event specific details>
={ name “(" [params] “)" }
=namechar { namechar }
a2’ | AT 09T T)
sstring {*,” string}
=quoted_string | unquoted_string
" f <Latin 1 character> | escape_char} [“Q\}\' "
S\
f<Latin 1 character except space, talj,,“;\\n", “)">}

Theparamsfield is parsed into a list &tring values that will be passed to the named action pro-
cedure. Agquoted stringnay contain an embedded quotation mark if the quotation mark is pre-
ceded by a single backslash (\). The three-character sequentis fiiterpreted as “single
backslash followed by end-of-string”.

263

Modifier Names

The moadifier field is used to specify standardetioard and button modifier mask bits. Modi-
fiers are lgd on event typeskKeyPress KeyRelease ButtonPress, ButtonRelease MotionNo-
tify , EnterNotify , LeaveNotify , and their abbreéiations. Anerror is generated when a transla-
tion table that contains modifiers foryasther events is parsed.

. If the modifier list has no entries and is not “None”, it means “tloate’ on al modi-
fiers.

. If an exclamation point (!) is specified at the beginning of the modifier list, it means that the
listed modifiers must be in the correct state and no other modifiers can be asserted.

. If any modifiers are specified and an exclamation point (!) is not specified, it means that the
listed modifiers must be in the correct state and “dcar'e’ about aly other modifiers.

. If a modifier is preceded by a tilde ("), it means that that modifier must not be asserted.

. If “*‘None” is specified, it means no modifiers can be asserted.

. If a colon () is specified at the beginning of the modifier list, it directs the Intrinsics to

apply aty standard modifiers in thevent to map theeent keycode into a IKySym. The
default standard modifiers are Shift and Lock, with the interpretation as defidann
dow System Protocdbection 5. The resulting &/Sym must exactly match the specified
KeySym, and the nonstandard modifiers in thenemust match the modifier lisEor
example, “:<Key>a” is distinct from “:<Key>A", and “:Shift<Key>A”" i s dstinct from
“<Key>A’ .

. If both an exclamation point (!) and a colon (:) are specified at the beginning of the modifier
list, it means that the listed modifiers must be in the correct state and that no other modi-
fiers except the standard modifiers can be asserteglsté&mdard modifiers in thevent are
applied as for colon (:) alwe.

. If a colon () is not specified, no standard modifiers are applied. Then, for example,
“<Key>A" and “<Key>a" are equvalent.

In key ®quences, a circumii€”) is an abbreviation for the Control modifiarcbllar sign ($) is
an abbreviation for Meta, and a backslash (\) can be used to guateaaacterin particular a
double quote ("), a circumftg”), a dollar sign ($), and another backslash (\). Briefly:

No modifiers: None <ent> detail

Any modifiers: <@ent> detail

Only these modifiers: ' mod1l mod2 <eent> detalil
These modifiers and wpwthers: modimod2 <eent> detail

The use of “Noné’for a modifier list is identical to the use of an exclamation point with no mod-
ifers.

Modifier Abbreviation Meaning

Ctrl c Control modifier bit
Shift S Shift modifier bit
Lock I Lock modifier bit
Meta m Meta key modifier
Hyper h Hyper key nodifier
Super su Super ley nodifier

264

Modifier Abbreviation Meaning

Alt a Alt key nmodifier
Mod1 Modl1modifier bit
Mod?2 Mod2modifier bit
Mod3 Mod3maodifier bit
Mod4 Mod4modifier bit
Mod5 Mod5modifier bit
Buttonl ButtonImodifier bit
Button2 ButtonZmodifier bit
Button3 Button3modifier bit
Button4 Buttondmodifier bit
Button5 ButtonSmodifier bit
None Nomodifiers

Any Any modifier combination

A key nodifier is ary modifier bit one of whose correspondingyCodes contains the corre-
sponding left or right KySym. For example, “m’ or ‘‘Meta” means ay modifier bit mapping to
a KeyCode whose KySym list contains XK_Meta_L or XK_Meta_R. Note that this interpreta-
tion is for each displayot global or gen for each application conte TheControl, Shift, and
Lock modifier names refer explicitly to the corresponding modifier bits; there is no additional
interpretation of leySyms for these modifiers.

Because it is possible to associate arbitraey3yms with modifiers, the set oék nodifiers is
extensible. The @” <keysym> syntax means ymodifier bit whose correspondingeiCode
contains the specifieddgSym name.

A modifier_list/KeySym combination in a translation matches a modifieglldde combination
in an eent in the following ways:

1. If a clon () is used, the Intrinsics call the displa)td<eyProc with the KeyCode and
modifiers. B match, Modifiers& ~“modifiers_returhmust equamodifier_list and
keysym_returrmust equal the gen KeySym.

2. If () is not used, the Intrinsics mask alt don’t-care bits from the modifiers. This value
must be equal tmodifier_list Then, for each possible combination of don’t-care modifiers
in the madifier list, the Intrinsics call the displayXéKeyProc with the KeyCode and that
combination ORed with the cared-about modifier bits from Weete Keysym_returrmust
match the KySym in the translation.

Event Types

The event-type field describes XEvent types. In addition to the standard Xlib symbetittgpe
names, the followingwent type synonyms are defined:

Type Meaning

Key KeyPress
KeyDown KeyPress
KeyUp KeyRelease
BtnDown ButtonPress
BtnUp ButtonRelease

265

Type Meaning

Motion MotionNotify
PtrMoved MotionNotify
MouseMaoed MotionNotify
Enter EnterNotify
EnterWindow EnterNotify
Leave LeaveNotify
LeaveWindow LeaveNotify
Focusin Focusin
FocusOut FocusOut
Keymap KeymapNotify
Expose Expose

GrExp GraphicsExpose
NoEXxp NoExpose
Visible VisibilityNotify
Create CreateNotify
Destroy DestroyNotify
Unmap UnmapNotify
Map MapNotify
MapReq MapRequest
Reparent ReparentNotify
Configure ConfigureNotify
ConfigureReq ConfigureRequest
Grav GravityNotify
ResReq ResizeRequest
Circ CirculateNotify
CircReq CirculateRequest
Prop PropertyNotify
SelClr SelectionClear
SelReq SelectionRequest
Select SelectionNotify
Clrmap ColormapNotify
Message ClientMessage
Mapping MappingNotify

The supported abbreviations are:

Abbreviation Ewent Type Including

Ctrl KeyPress with Control modifier
Meta KeyPress withMeta modifier
Shift KeyPress with Shift modifier
Btn1Down ButtonPress with Buttonl detail
BtnlUp ButtonRelease withButtonl detail
Btn2Down ButtonPress with Button2 detail
Btn2Up ButtonRelease withButton2 detalil
Btn3Down ButtonPress with Button3 detail

266

Abbreviation Ewent Type Including

Btn3Up ButtonRelease withButton3 detalil
Btn4Down ButtonPress with Button4 detail
Btn4Up ButtonRelease withButton4 detalil
Btn5Dawvn ButtonPress with Button5 detail
Btn5Up ButtonRelease withButton5 detail
BtnMotion MotionNotify withary button modifier
Btn1Motion MotionNotify withButton1 modifier
Btn2Motion MotionNotify withButton2 modifier
Btn3Motion MotionNotify withButton3 modifier
Btn4Motion MotionNotify withButton4 modifier
Btn5Motion MotionNotify withButton5 modifier

The detail field iseent-specific and normally corresponds to the detail field of the corresponding
event as described by Window System Protocdbection 11. The detail field is supported for the
following event types:

Event Ewent Field

KeyPress kySym from eent detail (keycode)
KeyRelease KySym from @ent detail (keycode)
ButtonPress iton from @ent detail
ButtonRelease uiton from @ent detail
MotionNotify event detalil

EnterNotify eent mode

LeaveNotify event mode

Focusin @ent mode

FocusOut gent mode

PropertyNotify atom
SelectionClear selection
SelectionRequest selection
SelectionNotify selection
ClientMessage type
MappingNotify request

If the event type isKeyPressor KeyRelease the detail field specifies ag§Sym name in stan-
dard format which is matched against thien¢ as described afee, for example, <l€y>A.

For the PropertyNotify , SelectionClear, SelectionRequestSelectionNotify, and ClientMes-
sageevants the detail field is specified as an atom name; for example, <Message>WM_PRO-
TOCOLS. For theMotionNotify , EnterNotify , LeaveNotify , Focusin, FocusOut, and Map-
pingNotify events, either the symbolic constants as define Byndow System Protocdbec-

tion 11, or the numeric values may be specified.

If no detail field is specified, thenyadalue in the eent detail is accepted as a match.

A KeySym can be specified asyanf the standard &ySym names, a hexadecimal number pre-
fixed with “Ox” or *‘0X”, an octal number prefixed with “0”, or a decimal numbek KeySym

267

expressed as a single digit is interpreted as the corresponding Lagys¥r, for example, “0”
is the keySym XK_0. Other single characteeySyms are treated as literal constants from Latin

1, for example, “I"is treated as 0x21. Standar@ySym names are as defined in
<X11l/keysymdef.l» with the “XK_"’ prefix remaed.

Canonical Representation

Every translation table has a unigue, canonical text representation. This representation is passed
to a widget’sdisplay_acceleratorprocedure to describe the accelerators installed on that widget.

The canonical representation of a translation table is (see also “Syntax”)

translation®@ble ={ production }

production =hs “”’ rhs “\n”

Ihs —event {“,” event }

event =[modifier_list] “<”event_type“>"[*‘("’ count[*+"] “)’ '] { detail}
modifier_list =[*1"] [*:"] {modifier}

modifier =[*""] modifier_name

count =(“1' 273 4]

modifier_name 2 @" <keysym> | <see canonical modifier names below>
evant_type =<see canonicalent types below>

detail =<event-specific details>

rhs ={name “(" [params])’ }

name =namechar { namechar }

namechar a2’ | A2 09T T L)

params sstring {“,” string}

string =quoted_string

quoted_string Z" {<Latin 1 character> | escape_char} [“\|\' *”
escape_char S\

The canonical modifier names are

Ctrl Mod1 Buttonl
Shift Mod2 Button2
Lock Mod3 Button3
Mod4 Button4
Mod5 Button5

The canonicalyent types are

KeyPress KeyRelease
ButtonPress ButtonRelease
MotionNotify EnterNotify
LeaveNotify Focusin
FocusOut KeymapNotify
Expose GraphicsExpose,
NoExpose VisibilityNotify
CreateNotify DestroyNotify
UnmapNotify MapNotify
MapRequest ReparentNotify
ConfigureNotify ConfigureRequest
GravityNotify ResizeRequest

268

CirculateNotify CirculateRequest
PropertyNotify SelectionClear
SelectionRequest SelectionNotify
ColormapNotify ClientMessage

Examples

. Always put more specificvents in the table before more general ones:

Shift <Btn1Down> : twas()\n\
<Btn1Down> : brillig()

. For double-click on Button1 Up with Shift, use this specification:
Shift<Btn1Up>(2) : and()
This is equialent to the following line with appropriate timers set betweaents:
Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down>,Shift<Btn1Up> : and()
. For double-click on Buttonl Down with Shift, use this specification:
Shift<Btn1Down>(2) : the()
This is equialent to the following line with appropriate timers set betweaents:
Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down> : the()

. Mouse motion is alays discarded when it occurs betweeangs in a table where no
motion e/ent is specified:

<Btn1Down>,<Btn1Up> : slithy()

This is taken, een if the pointer mees a bt between the down and upenats. Similarly
ary motion event specified in a translation matchey anmber of motion eents. Ifthe
motion event causes an action procedure to wekid, the procedure isyoked &ter each
motion event.

. If an event sequence consists of a sequence/@its that is also a noninitial subsequence
of another translation, it is not taken if it occurs in the context of the longer sequence. This
occurs mostly in sequencesdithe following:

<Btn1Down>,<Btn1Up> : tees()\n\
<Btn1Up>: did()

The second translation is taken only if the button release is not preceded by a button press
or if there are interveningrents between the press and the release. Be particuleatg a

of this when using the repeat notation,ahaevith buttons and &ys, because their expan-

sion includes additionalvents; and when specifying motioments, because thiare

implicitly included between antwo ather events. Inparticular pointer motion and double-

click translations cannot coexist in the same translation table.

269

For single click on Buttonl Up with Shift and Meta, use this specification:
Shift Meta <Btn1Down>, Shift Meta<Btn1Up>: gyre()

For multiple clicks greater or equal to a minimum numhbgius sign (+) may be appended
to the final (rightmost) count in anant sequence. The actions will bedked on the
countth click and each subsequent one arriving within the multi-click time alteFor
example:

Shift <Btn1Up>(2+) : and()

To indicateEnterNotify with ary modifiers, use this specification:
<Enter> : gimble()

To indicateEnterNotify with no modifiers, use this specification:
None <Enter> : in()

To indicateEnterNotify with Buttonl Down and Button2 Up and “ddamare’ about the
other modifiers, use this specification:

Buttonl "Button2 <Enter> : the()

To indicateEnterNotify with Button1l down and Button2 down exchy, use this speci-
fication:

I Buttonl Button2 <Enter> : wabe()

You do ot need to use a tilde (7) with an exclamation point (!).

270

Appendix C

Compatibility Functions

In prototype versions of the X Toolkit each widget class implemented awidgret>Create (for
example, XtLabelCreate) function, in which most of the code was identical from widget to wid-
get. Inthe Intrinsics, a single genentiCreateWidget performs most of the common work and
then calls the initialize procedure implemented for the particular widget class.

Each Composite class also implemented the procedurédidget-Add and an Xt¥\Vid-
get>Delete (for examplexXtButtonBoxAddButton and XtButtonBoxDeleteButton). Inthe
Intrinsics, the Compaosite generic proceduXéglanageChildren and XtUnmanageChildren
perform error checking and screening out of certain children. Thgrcaliehe change_man-
aged procedure implemented for the widg€dmposite class. If the widgetparent has not yet
been realized, the call to the change_managed procedure is delayed until realization time.

Old-style calls can be implemented in the X Toolkit by defining one-line procedures or macros
that invoke a gneric routine.For example, you could define the macktLabelCreate as:

#define XtLabelCreata@me parent args num_arg$\
((LabelWidget) XtCreateWidgaiame labelWidgetClass parent args, num_arg$)

Pop-up shells in some of the prototypes automatically performédManageChild on their
child within their insert_child procedure. Creators of pop-up children need t¥tbédin-
ageChild themselves.

XtApplnitialize and XtVaApplnitialize have keen replaced b)XtOpenApplication and
XtVaOpenApplication .

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial application shell instance, an application maxtApelnitialize or
XtVaApplnitialize .

This appendix is part of the formal Intrinsics Specification.

271

Widget XtApplnitializepp_context_returrapplication_classoptions num_options
argc_in_outargv_in_out fallback_resourcesargs num_arg$
XtAppContext *app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options
int *argc_in_out
String *argv_in_out
String *fallback_resources
ArgList args
Cardinalnum_args

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesoptions

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies a pointer to the command line arguments.

fallback_resources Specifies resource values to be used if the application class resource file
cannot be opened or read, or NULL.

args Specifies the argument list twasride ary other resource specifications
for the created shell widget.
num_args Specifies the number of entries in the argument list.

The XtApplnitialize function callsXtToolkitInitialize followed by XtCreateApplicationCon-
text, then callsXtOpenDisplay with display_stringNULL and application_nameéULL, and
finally calls XtAppCreateShell with application_naméNULL, widget_classapplicationShell-
WidgetClass and the specifiedrgsandnum_argsand returns the created shell. The modified
argcandargvreturned byXtDisplaylnitialize are returned iargc_in_outandargv_in_out If
app_context_returis not NULL, the created application context is also returned. If the display
specified by the command line cannot be opened, an error message is isskgpphdtialize
terminates the application. fidillback _resourcess non-NULL, XtAppSetFallbackResourcesis
called with the value prior to callingtOpenDisplay.

272

Widget XtVaApplnitializegpp_context_returrapplication_classoptions num_options
argc_in_outargv_in_out fallback resources..)
XtAppContext *app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options
int *argc_in_out
String *argv_in_out
String *fallback_resources

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesaptions

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resource values to be used if the application class resource file
cannot be opened, or NULL.

Specifieshe variable argument list taverride ary other resource specifi-
cations for the created shell.

The XtVaApplnitialize procedure is identical in function XtApplnitialize with theargsand
num_arggarameters replaced by a varargs list, as described in Section 2.5.1.

As a comenience to people coerting from earlier versions of the toolkit without application
contexts, the following routines existtInitialize , XtMainLoop , XtNextEvent, XtProcessEv-
ent, XtPeekEvent, XtPending, XtAddInput , XtAddTimeOut , XtAddWorkProc , XtCre-
ateApplicationShell, XtAddActions, XtSetSelectionTimeout and XtGetSelectionTimeout

273

Widget Xtlnitialize&hell_nameapplication_classoptions num_optionsargc, argv)
Stringshell_name
Stringapplication_class
XrmOptionDescReoptiong];
Cardinalnum_options
int *argc;
Stringarg\];
shell_name This parameter is ignored; therefore, you can specify NULL.

application_class
Specifies the class name of this application.

options Specifies he to parse the command line foryagpplication-specific resources.
Theoptionsargument is passed as a parametertnParseCommand.

num_options Specifies the number of entries in the options list.
argc Specifies a pointer to the number of command line parameters.
argv Specifies the command line parameters.

XtInitialize calls XtToolkitInitialize to initialize the toolkit internals, creates a default applica-
tion context for use by the other eenience routines, callXtOpenDisplay with display_string
NULL andapplication_nameéNULL, and finally callsXtAppCreateShell with applica-
tion_nameNULL and returns the created shell. The semantics of caMiigjtialize more than
once are undefined. This routine has been replaced®@yenApplication .

void XtMainLoop(void)

XtMainLoop first reads the next alternate input, timarX event by calling XtNextEvent.
Then it dispatches this to the appropriate registered procedure by édllirgpatchEvent. This
routine has been replaced KyAppMainLoop .

void XtNextEventéwent_returr
XEvent *event_return

ewent_return Returns the\ent information to the specified/ent structure.

If no input is on the X input queue for the default application con¥textEvent flushes the X

output buffer and waits for awent while looking at the alternate input sources and timeout val-

ues and calling ancallback procedures triggered by them. This routine has been replaced by
XtAppNextEvent. Xtinitialize must be called before using this routine.

274

void XtProcessEventiash
XtinputMaskmask

mask Specifies the type of input to process.

XtProcessEventprocesses one X/ent, timeout, or alternate input source (depending on the
value ofmash, blocking if necessaryit has been replaced ¥tAppProcessEvent Xtlinitial-
ize must be called before using this function.

Boolean XtPeekEverdg(ent_returr)
XEvent *event_return

event_return Returns theent information to the specified/ent structure.

If there is an eent in the queue for the default application cont&tBeekEventfills in the event
and returns a nonzeralae. Ifno X input is on the queuXtPeekEvent flushes the output

buffer and blocks until input isvailable, possibly calling some timeout callbacks in the process.
If the input is aneent, XtPeekEventfills in the e/ent and returns a nonzeralue. Otherwise,

the input is for an alternate input source, XteekEventreturns zero. This routine has been
replaced byXtAppPeekEvent. Xtlnitialize must be called before using this routine.

Boolean XtPending()

XtPending returns a nonzero value if there averdgs pending from the X server or alternate
input sources in the default application cantdf there are nowents pending, it flushes the out-
put buffer and returns a zeralue. Ithas been replaced b§tAppPending. Xtlnitialize must
be called before using this routine.

Xtinputld XtAddInput&ource condition proc, client_datg
int source
XtPointercondition
XtInputCallbackProroc;
XtPointerclient_data

source Specifies the source file descriptor on a POSIX-based system or other operating-
system-dependent device specification.

condition Specifies the mask that indicates either a read, write, or exception condition or
some operating-system-dependent condition.

proc Specifies the procedure called when inpuvalable.

client_data Specifies the parameter to be passqmdowhen input is @ailable.

The XtAddInput function registers in the default application context\a smurce of gents,
which is usually file input but can also be file output. (The viltecdhould be loosely interpreted
to mean aysink or source of data.XtAddInput also specifies the conditions under which the
source can generateeats. Wherinput is pending on this source in the default application

275

context, the callback procedure is called. This routine has been replaz@ddpAddinput .
XtInitialize must be called before using this routine.

Xtintervalld XtAddTimeOutinterval, proc, client_datg
unsigned longnterval,
XtTimerCallbackProroc;
XtPointerclient_data
interval Specifies the time interval in milliseconds.
proc Specifies the procedure to be called when time expires.

client_data Specifies the parameter to be passqudowhen it is called.

The XtAddTimeOut function creates a timeout in the default application context and returns an
identifier for it. The timeout value is setitderval. The callback procedure will be called after

the time interval elapses, after which the timeout is keghoThisroutine has been replaced by
XtAppAddTimeOut . Xtlnitialize must be called before using this routine.

XtWorkProcld XtAddWorkProggroc, client_datd
XtWorkProcproc;
XtPointerclient_data

proc Procedure to call to do the work.

client_ data Client data to pass f@oc when it is called.

This routine registers a work procedure in the default application context. It has been replaced by
XtAppAddWorkProc . Xtlnitialize must be called before using this routine.

Widget XtCreateApplicationShefl@me widget_classargs num_arg$
Stringname
WidgetClassvidget_class
ArglList args
Cardinalnum_args
name This parameter is ignored; therefore, you can specify NULL.

widget_class Specifies the widget class pointer for the created application shell widget. This
will usually betopLevelShellwidgetClassor a subclass thereof.

args Specifies the argument list teeoride ary other resource specifications.
num_args Specifies the number of entriesamgs

The proceduretCreateApplicationShell calls XtAppCreateShell with application_name
NULL, the application class passedXtnitialize , and the default application context created by
Xtlnitialize . This routine has been replaced XtAppCreateShell.

An old-format resource type cesrter procedure pointer is of typ&Converter .

276

typedef void (*XtConwerter)(XrmValue*, Cardinal*, XrmValue*, XrmValue*);
XrmValue *args
Cardinal num_args
XrmValue *rom;
XrmValue *o;

args Specifies a list of additiona{rmValue arguments to the cwerter if additional
context is needed to perform the eension, or NULL.

num_args Specifies the number of entriesags

from Specifies the value to ceasrt.

to Specifies the descriptor to use to return theverded value.

Type cowerters should perform the following actions:
. Check to see that the number of arguments passed is correct.
. Attempt the type comrsion.

. If successful, return the size and pointer to the data itothlgument; otherwise, call
XtWarningMsg and return without modifying tht® argument.

Most type cowerters just tak the data described by the specifimsn argument and return data
by writing into the specifietb agument. Afew need other information, which isalable in the
specified argument listA type comerter can inoke another type coverter, which allows differ-
ing sources that may ceat into a common intermediate result to reakaximum use of the type
corverter cache.

Note that the address returnedar>addr cannot be that of a local variable of the oster
because this is not valid after the eener returns. It should be a pointer to a static variable.

The procedure typ&tConverter has been replaced b§tTypeConverter .

The XtStringConversionWarning function is a comenience routine for old-format resource
corverters that covert from strings.

void XtStringCorversionWarninggrc, dst_typé
Stringsrc, dst_type

src Specifies the string that could not bewated.
dst_type Specifies the name of the type to which the string could not verbeh

The XtStringConversionWarning function issues a warning message with name vemmon-
Error”, type “string”, class “XtToolkitError, and the default message string “Cannotvah
"src' to typedst_typé. This routine has been supersededtpisplayStringConversion-
Warning.

To regster an old-format comrter, use XtAddConverter or XtAppAddConverter .

277

void XtAddCorverter(from_typeto_type converter convert_argsnum_args
Stringfrom_type
Stringto_type
XtCorwverter converter
XtCorvertArgList convert_args
Cardinalnum_args
from_type Specifies the source type.
to_type Specifies the destination type.
converter Specifies the type cuarter procedure.
convert_args Specifies ha to compute the additional arguments to theveoter, or NULL.

num_args Specifies the number of entriescionvert_args

XtAddConverter is equialent in function toxXtSetTypeCorverter with cache_typequal to
XtCacheAll for old-format type coverters. Ithas been superseded XtSetTypeCorverter .

void XtAppAddCorverter(@pp_contextfrom_typeto_type converter convert_argsnum_arg}
XtAppContextapp_context
Stringfrom_type
Stringto_type
XtCorwverter converter
XtCorvertArgList convert_args
Cardinalnum_args
app_context Specifies the application context.
from_type Specifies the source type.
to_type Specifies the destination type.
converter Specifies the type cuater procedure.
convert_args Specifies hay to compute the additional arguments to theveoter, or NULL.

num_args Specifies the number of entriesconvert_args

XtAppAddConverter is equiaent in function toXtAppSetTypeCornverter with cache_type
equal toXtCacheAll for old-format type coverters. Ithas been superseded XtAppSetType-
Converter .

To invoke resource corersions, a client may usétConvert or, for old-format comerters only,
XtDirectConvert .

278

void XtCorvert(w, from_typefrom, to_typeto_return
Widgetw;
Stringfrom_type
XrmValuePtrfrom;
Stringto_type
XrmValuePtrto_return

w Specifies the widget to use for additional argumentsyibeneeded.
from_type Specifies the source type.

from Specifies the value to be a@nted.

to_type Specifies the destination type.

to_return Returns the cormerted value.

void XtDirectCorvert(converter args num_argsfrom, to_return
XtCorwverter converter
XrmValuePtrargs,
Cardinalnum_args
XrmValuePtrfrom;
XrmValuePtrto_return

converter Specifies the camrsion procedure to be called.

args Specifies the argument list that contains the additional arguments needed to per-
form the comersion (often NULL).

num_args Specifies the number of entriesargs.
from Specifies the value to be c@nted.
to_return Returns the comerted value.

The XtConvert function looks up the type ceerter registered to cemlrt from_typeto to_type
computes anadditional arguments needed, and then cétBirectConvert or XtCallCon-

verter . The XtDirectConvert function looks in the carerter cache to see if this o@msion pro-
cedure has been called with the specifigiiiarents. Ifso, it returns a descriptor for information
stored in the cache; otherwise, it calls theveter and enters the result in the cache.

Before calling the specified caster, XtDirectConvert sets the return value size to zero and the
return value address to NULLTo determine if the corersion was successful, the client should
checkto_return.addrfor non-NULL. The data returned b¢tConvert must be copied immedi-
ately by the calleras it may point to static data in the type werter.

XtConvert has been replaced B§tConvertAndStore , and XtDirectConvert has been super-
seded byXtCallConverter .

To deallocate a shared GC when it is no longer neededtixstroyGC.

279

void XtDestroyGCyy, gc)

Widgetw;
GCgc
w Specifies apabject on the display for which the shared GC was created. Must
be of class Object or grsubclass thereof.
gc Specifies the shared GC to be deallocated.

References to sharable GCs are counted and a free request is generated to the server when the last
user of a gien GC cestroys it. Note that some earlier versionXtibestroyGC had only agc

argument. Thereforehis function is not very portable, and you are encouraged tXtise
leaseGCinstead.

To declare an action table in the default application context and register it with the translation
manageruse XtAddActions .

void XtAddActions@ctions num_actiony
XtActionList actions
Cardinalnum_actions

actions Specifies the action table to register.
num_actions Specifies the number of entriesactions

If more than one action is registered with the same name, the most recently registered action is
used. Ifduplicate actions exist in an action table, the first is used. The Intrinsics register an
action table forXtMenuPopup and XtMenuPopdown as part of X Toolkit initialization. This
routine has been replaced KyAppAddActions . Xtlnitialize must be called before using this
routine.

To =t the Intrinsics selection timeout in the default application contexiXi&stSelectionTime-
out.

void XtSetSelectionTimeoui(meou)

unsigned longimeout

timeout Specifies the selection timeout in milliseconds. This routine has been replaced
by XtAppSetSelectionTimeout Xtinitialize must be called before using this
routine.

To get the current selection timeout value in the default application contexXXtGs¢Selection-
Timeout.

unsigned long XtGetSelectionTimeout()

The selection timeout is the time within which th@m@mmunicating applications must respond

280

to one anotherlf one of them does not respond within this interval, the Intrinsics abort the selec-
tion request.

This routine has been replaced XtAppGetSelectionTimeout. Xtinitialize must be called
before using this routine.

To dbtain the global error database (for example, to merge with an application- or widget-specific
database), us¥tGetErrorDatabase.

XrmDatabase *XtGetErrorDatabase()

The XtGetErrorDatabase function returns the address of the error database. The Intrinsics do a
lazy binding of the error database and do not merge in the database file until the first call to
XtGetErrorDatbaseText. This routine has been replaced XtAppGetErrorDatabase.

An error message handler can obtain the error database text for an error or a warning by calling
XtGetErrorDatabaseText.

void XtGetErrorDatabasekt(name type class default buffer_return nbyte3
Stringname type class

Stringdefault
Stringbuffer_return
int nbytes
name
type Specify the name and type that are concatenated to form the resource name of the
error message.
class Specifies the resource class of the error message.
default Specifies the default message to use if an error database entry is not found.

buffer_return Specifies the buffer into which the error message is to be returned.
nbytes Specifies the size of the buffer in bytes.

The XtGetErrorDatabaseText returns the appropriate message from the error database associ-
ated with the default application context or returns the specified default message if one is not
found in the error databas@&o form the full resource hame and class when querying the
database, theameandtypeare concatenated with a singlé ‘b etween them and thaassis
concatenated with itself with a singlé 1 f it does not already contain & . This routine has

been superseded B§tAppGetErrorDatabaseText.

To regster a procedure to be called on fatal error conditionsXtSetErrorMsgHandler .

void XtSetErrorMsgHandlenisg_handler
XtErrorMsgHandlemsg_handler

msg_handler Specifies the e fatal error procedure, which should not return.

The default error handler provided by the Intrinsics constructs a string from the error resource

281

database and calltError . Fatal error message handlers should not return. If one does, subse-
guent Intrinsics behavior is undefined. This routine has been superseldetbpBetErrorMs-
gHandler.

To aall the high-leel error handleruse XtErrorMsg .

void XtErrorMsgfHame type class default params num_parampg
Stringname
Stringtype
Stringclass
Stringdefault
String *params
Cardinal num_params

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.
params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entriesparams
This routine has been supersededppErrorMsg .

To regster a procedure to be called on nonfatal error conditionsXigstWarningMsgHan-
dler.

void XtSetWarningMsgHandlemfsg_handler
XtErrorMsgHandlemsg_handler

msg_handler Specifies the v nonfatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics constructs a string from the error resource
database and calltWarning . This routine has been supersededdppSetWarningMs-
gHandler.

To aall the installed high-kel warning handleruse XtWarningMsg .

282

void XtWarningMsgfame type class default params num_paramp
Stringname
Stringtype
Stringclass
Stringdefault
String *params
Cardinal num_params

name Specifies the general kind of error.

type Specifies the detailed nhame of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.
params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entriesparams
This routine has been supersededi¥ppWarningMsg .

To regster a procedure to be called on fatal error conditionsXtSetErrorHandler .

void XtSetErrorHandlef{andle))
XtErrorHandlerhandler,

handler Specifies the mefatal error procedure, which should not return.

The default error handler provided by the IntrinsicsXsError . On POSIX-based systems, it

prints the message to standard error and terminates the appli¢dedialnerror message handlers
should not return. If one does, subsequent X Toolkit behavior is undefined. This routine has been
superseded b)tAppSetErrorHandler .

To all the installed fatal error procedure, d&&rror .

void XtError(messge)
Stringmessge

messge Specifies the message to be reported.

Most programs should usé&AppErrorMsg , not XtError , to provide for customization and
internationalization of error messages. This routine has been supersedgppizrror .

To regster a procedure to be called on nonfatal error conditions{igst\WarningHandler .

283

void XtSetWarningHandleh@ndle
XtErrorHandlerhandler,

handler Specifies the me nonfatal error procedure, which usually returns.
The default warning handler provided by the IntrinsicsX$Warning . On POSIX-based sys-

tems, it prints the message to standard error and returns to the Thiteroutine has been super-
seded byXtAppSetWarningHandler .

To call the installed nonfatal error procedure, X¢@/arning .

void XtWarning(messge)
Stringmessge

messge Specifies the nonfatal error message to be reported.

Most programs should us&AppWarningMsg , not XtWarning , to provide for customization
and internationalization of warning messages. This routine has been supersd&pdby
Warning.

284

Appendix D

Intrinsics Error Messages

All Intrinsics errors and warnings Y& dass “XtToolkitError”. The following two tables sum-
marize the common errors and warnings that can be generated by the Intrinsics. Additional
implementation-dependent messages are permitted.

Error Messages

Name Ype Defult Message

allocError calloc Cannot perform calloc

allocError malloc Cannot perform malloc

allocError realloc Cannot perform realloc

internalError xtMakGeometryRequest internal error; ShellClassExtension is NULL

invalidArgCount xtGet¥lues Argument count > 0 on NULL argument list in XtGetVal-
ues

invalidArgCount xtSet"lues Argument count > 0 on NULL argument list in XtSetVal-
ues

invalidClass applicationShellinsertChild ApplicationShell does not accept RectObj children;
ignored

invalidClass constraintSetue Subclass of Constraint required in CallConstraintSetVal-
ues

invalidClass xtAppCreateShell XtAppCreateShell requires non-NULL widget class

invalidClass xtCreatePopupShell XtCreatePopupShell requires non-NULL widget class

invalidClass xtCreate\dget XtCreateWidget requires non-NULL widget class

invalidClass xtPopdan XtPopdown requires a subclass of shellWidgetClass

invalidClass xtPopup XtPopup requires a subclass of shellWidgetClass

invalidDimension xtCreate\dow Widget %s has zero width and/or height

invalidDimension shellRealize Shell widget %s has zero width and/or height

invalidDisplay xtlnitialize Cant open display: %s

invalidGetValues xtGet¥lues NULL ArgVal in XtGetValues

invalidExtension shellClasstinitialize widget class %s hasvalid ShellClassExtension record

invalidExtension xtMakGeometryRequest widget class %s hadiih ShellClassExtension record

invaidGeometryManager xtMaGeometryRequest XtMakeGeometryRequest - parent has no geometry man-
ager

invalidParameter xtAddInput invalid condition passed to XtAddInput

invalidParameter xtAddInput invalid condition passed to XtAppAddinput

invalidParent xtChangeManagedSet Attempt to manage a child when parent is not Composite

invalidParent xtChangeManagedSet Attempt to unmanage a child when parent is not Compos-
ite

invalidParent xtCreatePopupShell XtCreatePopupShell requires non-NULL parent

invalidParent xtCreate\dget XtCreateWidget requires non-NULL parent

invalidParent xtMaleGeometryRequest non-shell has no parent in XtMakeGeometryRequest

285

invalidParent
invalidParent
invalidParent

invalidProcedure
invalidProcedure
invalidWindow
missingWdget
nonWdget

noPerDisplay
noPerDisplay
noSelectionProperties
noWdgetAncestor
nullDisplay

nullProc
r2versionMismatch
R3wersionMismatch
R4orR5ersionMismatch
rangeError

sessionManagement
subclassMismatch

xtMaleGeometryRequest
xtManageChildren
xtUnmanageChildren

inheritanceProc
realizeProc

eventHandler

fetchDisplayAg
xtCreate\Wdget

closeDisplay

getPerDisplay
freeSelectionProperty

windeedAncestor

xtR@isterExtensionSelector

insertChild
widget
widget
widget

xtRgisterExtensionSelector

SmcOpenConnection
xtCheckSubclass

XtMakeGeometryRequest - parent not composite
Attempt to manage a child when parent is not Composite
Attempt to unmanage a child when parent is not Compos-
ite
Unresolved inheritance operation
No realize class procedure defined

Event with wrong window
FetchDisplayAg called without a widget to reference
attempt to add non-widget child "%s" to parent "%s"
which supports only widgets
Couldnt find per display information
Couldnt find per display information
internal error: no selection property context for display
Object "%s" does notvkanindowed ancestor

XtRegisterExtensionSelector requires a non-NULL dis-
play
"%s" parent has NULL insert_child method
Widget class %s must be re-compiled.

Widget class %s must be re-compiled.
Widget class %s must be re-compiled.

Attempt to register multiple selectors for one extension
event type
Tried to connect to session mana§és
Widget class %s found when subclass of %s expected:
%s

Warning Messages

Name

Ype

Defult Message

ambiguousBrent
ambiguousBrent
ambiguousBrent

badFormat
badGeometry

bad\alue
communicationError
conversionError
corversionError
corversionRailed
corversionRailed
displayError
grabError

grabError

xtChangeManagedSet
xtManageChildren
xtUnmanageChildren

xtGetSelectioralue
shellRealize

cvtString®Pixel
select

string

string®Visual

xtCowertVarToArgList

xtGetVpedArg
imalidDisplay

xtAddGrab

xtRemeeGrab

Not all children hee same parent

Not all children hge same parent in XtManageChildren
Not all children hae same parent in XtUnmanageChil-
dren

Selection owner returned type INCR property with for-
mat != 32

Shell widget "%s" has anvelid geometry specification:
"0ps

Color name "%s" is not defined

Select failed; error code %s

Cannot cowert string "%s" to type %s

Cannot find Visual of class %s for display %s

Type cowersion failed

Type cowersion (%s to %s) failed for widget '%s’

Cant find display structure

XtAddGrab requires excluge gab if spring_loaded is
TRUE

XtRemwoeGrab asked to remre a wdget not on the list

286

initializationError
insufficientSpace
internalError
invalidAddressMode

invalidArgCount
invalidCallbackList
invalidCallbackList
invalidCallbackList
invalidCallbackList
invalidCallbackList
invalidChild
invalidChild
invalidChild
invalidChild
invalidChild
invalidDepth
invalidExtension

invalidExtension

invaidGrab
invalidGrabKind

invalidParameters
invalidParameters
invalidParameters
invalidParameters
invalidParent
invalidPopup
invalidPopup
invalidPopup

invalidPopup

invalidProcedure
invalidProcedure
invalidProcedure
invalidResourceCount
invalidResourceName
invalidShell
invalidSizeOverride

missingCharsetList
noActionProc
noColormap
noFont

noFont

noFont

xtInitialize
xtGewpedArg
shell
computeds

getResources
xtAddCallback
xtAddCallback
xtCallCallback
xtRemuweAllCallback
xtRemweCallback
xtChangeManagedSet
xtManageChildren
xtManageChildren
xtUnmanageChildren
xtUnmanageChildren
set\dlues
xtCreateWget

xtCreateWiget

ungrabl€¢yOrButton
XtPopup

freg@nslations
meeTranslations
xtMenuPopdn
xtMenuPopupAction
xtCogFromParent
xtMenuPopup
xtMenuPopden

unsupportedOperation

unsupportedOperation

deleteChild

inputHandler

set alues_almost

getResources

computeds
xtTranslateCoords
xtDependencies

cvtStringFontSet
xtCallActionProc
cvtStringdPixel
cvtString BFont
cvtStringDFontSet
cvtStringDFontStruct

Initializing Resource Lists twice
Insufficient space for ceerted type '%s’ in widget '%s’
Shell's window manager interaction is broken
Cowersion arguments for widget '%s’ contain an unsup-
ported address mode
argument count > 0 on NULL argument list
Cannot find callback list in XtAddCallback
Cannot find callback list in XtAddCallbacks
Cannot find callback list in XtCallCallbacks
Cannot find callback list in XtRemeAllCallbacks
Cannot find callback list in XtRereCallbacks
Null child passed to UnmanageChildren
null child passed to ManageChildren
null child passed to XtManageChildren
Null child passed to XtUnmanageChildren
Null child found in argument list to unmanage
Cart'change widget depth
widget "%s" class %s hawilid CompositeClassExten-
sion record
widget class %s hasvalid ConstraintClassExtension
record
Attempt to remee ronexistent pasee gab
grab kind argument hasvialid value; XtGrabNone
assumed
Freeing XtTranslations requires no extra arguments
MergeTM to TranslationTable needs no extra arguments
XtMenuPopdown called with num_params !=0 or 1
MenuPopup wants exactly one argument
CopyFromParent musvdaon-NULL parent
Cant find popup widget "%s" in XtMenuPopup
Cant find popup in widget "%s" in XtMenuPopdown
Pop-up menu creation is only supported on ButtonPress,
KeyPress or EnterNotifyvents.
Pop-up menu creation is only supported on Buttay, K
or EnterNotify @ents.
null delete_child procedure for class %s in XtDestroy
XtRemovelnput: Input handler not found
set_values_almost procedure shauddULL
resource count > 0 on NULL resource list
Cannot find resource name %s as argument t@sion
Widget has no shell ancestor
Representation size %d must match supercagssier-
ride %s
Missing charsets in String to FontSevemion
No action proc named "%s" is registered for widget "%s"
Cannot allocate colormap entry for "%s"
Unable to load grusable ISO8859-1 font
Unable to load ynsable fontset
Unable to load ynsable 1ISO8859-1 font

287

notinCorvertSelection

notRectObj
notRectObj
nullWidget

r3versionMismatch
translationError
translationError
translationError
translationError
translationError
translationError
translationError
translationError
translationError
translationRrseError
translationRrseError
translationRrseError
translationRrseError
translationRrseError
typeCoiversionError
unknownType
unknownType
versionMismatch

wrongRarameters

wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters

wrongRarameters

wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters

wrongRarameters
wrongRarameters
wrongRarameters

xtGetSelectionRequest

xtChangeManagedSet

xtManageChildren

xtCowertVarToArgList

widget

nulldble

nulldble
ambiguousActions
n@Actions

null@ble

null@ble
oldActions
unboundActions
xtianslatelnitialize
missingComma
nonLatinl
parseError
parseString
sholine
noCoverter

xtCowertVarToArgList

xtGetPpedArg
widget

cvtintOrPefToXColor

cvtindBool
cvtindBoolean
cvtindFloat
cvtin@Font
cvtindPixel
cvtindPixmap
cvtindShort

cvtindUnsignedChar

cvtStringRcceleratorTable

cvtStringAtom
cvtStringBool
cvtStringBoolean

cvtStringlCommandArgArray

cvtStringCursor

cvtStringdDimension
cvtStringDirectoryString

288

XtGetSelectionRequest or XtGetSelectionParameters
called for widget "%s" outside of CeertSelection proc
child "%s", class %s is not a RectObj
child "%s", class %s is not a RectObj
XtVaTypedAg corversion needs non-NULL widget han-
dle
Shell Widget class %s binary compiled for R3
Carnt remove acelerators from NULL table
Tried to remoe ronexistent accelerators
Overriding earlier translation manager actions.
Nev actions are:%s
table to (un)merge must not be null
Cart translate eent through NULL table
Previous entry was: %s %s
Actions not found: %s
Initializing Translation manager twice.
... possibly due to missing in event sequence.
... probably due to non-Latinl character in quoted string
translation table syntax error: %s
Missing ™.
... found while parsing '%s’
No type cowverter registered for '%s’ to '%s’ caersion.
Unable to find type of resource for gersion
Unable to find type of resource for eension
Widget class %s version mismatch (recompilation
needed):\n widget %d vs. intrinsics %d.
Pixel to color corersion needs screen and colormap
arguments
Integer to Bool corersion needs no extra arguments
Integer to Boolean a@nsion needs no extra arguments
Integer to Float cemrsion needs no extra arguments
Integer to Font cearsion needs no extra arguments
Integer to Pixel caersion needs no extra arguments
Integer to Pixmap cesrsion needs no extra arguments
Integer to Short ceersion needs no extra arguments
Integer to UnsignedChan@sion needs no extra argu-
ments
String to AcceleratorTables®gion needs no extra
arguments
String to Atom cowversion needs Display argument
String to Bool coversion needs no extra arguments
String to Boolean camrsion needs no extra arguments
String to CommandArgArray gersion needs no extra
arguments
String to cursor cearsion needs display argument
String to Dimension cesrsion needs no extra arguments
String to DirectoryString casrsion needs no extra argu-
ments

wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters

wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters

wrongRarameters

wrongRarameters
wrongRarameters

wrongRarameters
wrongRarameters

wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters
wrongRarameters

cvtStringDisplay
cvtStringFile
cvtStringFloat
cvtStringFont
cvtStringFontSet

cvtStringFontStruct

cvtStringlGravity

cvtStringTnitialState

cvtStringint
cvtStringPixel

cvtStringRestartStyle

cvtStringBhort

cvtStringlTranslationTable

cvtStringlUnsignedChar

cvtStringVisual

cvtXColoPixel
freeCursor
freeDirectoryString
freeFile

freednt

freefntSet
freefntStruct
freePéx

String to Display caersion needs no extra arguments
String to File coversion needs no extra arguments
String to Float caersion needs no extra arguments
String to font corersion needs display argument

String to FontSet a@nsion needs display and locale
arguments

String to font ceersion needs display argument

String to Gravity corersion needs no extra arguments
String to InitialState ceersion needs no extra arguments
String to Integer car@rsion needs no extra arguments
String to pixel corersion needs screen and colormap
arguments

String to RestartStyle eension needs no extra argu-
ments

String to Integer cuarsion needs no extra arguments

String to TranslationTable\e®@rion needs no extra
arguments

String to Integer e@rsion needs no extra arguments
String to Visual corersion needs screen and depth argu-
ments

Color to Pixel carersion needs no extra arguments
Free Cursor requires display argument
Free Directory String requires no extra arguments
Free File requires no extra arguments
Free Font needs display argument

FreeFontSet needs display and locale arguments

Free FontStruct requires display argument
Freeing a pixel requires screen and colormap arguments

289

Appendix E

Defined Strings

The StringDefs.h header file contains definitions for the following resource name, class, and rep-
resentation type symbolic constants.

Resource names:

Symbol Definition
XtNaccelerators "accelerators"
XtNallowHoriz "allowHoriz"
XtNallowVert "allovVert"
XtNancestorSensite "ancestorSensite"
XtNbackground "background”
XtNbackgroundPixmap "backgroundPixmap"
XtNbitmap "bitmap"
XtNborder "borderColor"
XtNborderColor "borderColor"
XtNborderPixmap "borderPixmap"
XtNborderWdth "borderWdth"
XtNcallback "callback"
XtNchangeHook "changeHook"
XtNchildren "children”
XtNcolormap "colormap”
XtNconfigureHook "configureHook"
XtNcreateHook "createHook"
XtNdepth "depth"
XtNdestrgyCallback "destrgCallback"
XtNdestroyHook "destrgHook"
XtNeditType "editype"

XtNfile "file"

XtNfont "font"

XtNfontSet "fontSet"
XtNforceBars "forceBars"
XtNforeground "forground”
XtNfunction "function”
XtNgeometryHook "geometryHook"
XtNheight "height”
XtNhighlight "highlight"
XtNhSpace "hSpace"
XtNindex "index"
XtNinitialResourcesPersistent "InitialResourcesPersistent"
XtNinnerHeight "innerHeight"
XtNinnerWidth "innerWidth"

290

XtNinnerWindow
XtNinsertPosition
XtNinternalHeight
XtNinternalWdth
XtNjumpProc
XtNjustify
XtNknobHeight
XtNknoblIndent
XtNknobPixel
XtNknobWdth
XtNlabel
XtNlength
XtNlowerRight

XtNmappedWhenManaged

XtNmenuEntry
XtNname
XtNnotify
XtNnumChildren
XtNnumShells
XtNorientation
XtNparameter
XtNpixmap
XtNpopupCallback

XtNpopdavnCallback

XtNresize
XtNreverseMdeo
XtNscreen
XtNscrollProc
XtNscrollDCursor
XtNscroll[HCursor
XtNscrollLCursor
XtNscrollRCursor
XtNscrollUCursor
XtNscrollVCursor
XtNselection
XtNselectionArray
XtNsensitve
XtNsession
XtNshells
XtNshawn
XtNspace
XtNstring
XtNtextOptions
XtNtextSink
XtNtextSource
XtNthickness
XtNthumb
XtNthumbProc
XtNtop

"innerWindow"
"insertPosition"
"internalHeight"

"internalWdth"
"jumpProc"

"justify"
"knobHeight"
"knoblndent"

"knobPixel"

"knobWdth"

"label"

"length”
"laverRight"

"mappedWhenManaged"

"menuEntry"”
"name"

"notify"
"numChildren”
"numShells"
"orientation”
"parameter”
"pixmap"
"popupCallback"
"popdenCallback”
"resize"
"reverseVideo"
"screen”
"scrollProc"
"scrollDCursor"
"scrollHCursor"
"scrollLCursor"
"scrollRCursor"
"scrollUCursor"
"scrollVCursor"
"selection"
"selectionArray"
"sensitve"
"session"
"shells"

"shavn"

"space"

"string"
"txtOptions"
"textSink™"
"t®tSource"
"thickness"
"thumb"
"thumbProc"

"top”

2901

XtNtranslations
XtNunrealizeCallback

"translations"
"unrealizeCallback

XtNupdate "update"
XtNuseBottom "useBottom"
XtNuseRight "useRight"
XtNvalue "\alue"
XtNvSpace "vSpace"
XtNwidth "width"
XtNwindow "window"

XtNx X"

XtNy "y"

Resource classes:

Symbol Definition
XtCAccelerators "Accelerators"
XtCBackground "Background"
XtCBitmap "Bitmap"
XtCBoolean "Boolean”
XtCBorderColor "BorderColor"
XtCBorderWdth "BorderWdth"
XtCCallback "Callback"
XtCColormap "Colormap"
XtCColor "Color"
XtCCursor "Cursor"
XtCDepth "Depth"
XtCEditType "EditType"
XtCEventBindings "EentBindings”
XtCFile "File"

XtCFont "Font"
XtCFontSet "lpntSet"
XtCForgground "Foreground”
XtCFraction "Fraction"
XtCFunction "Function”
XtCHeight "Height"
XtCHSpace "HSpace"
XtClndex "Index"

XtClnitialResourcesPersistent
XtClnsertPosition

XtClnterval

XtCJustify

XtCKnoblndent

XtCKnobPixel

XtCLabel

XtCLength
XtCMappedWhenManaged
XtCMargin

"InitialResourcesPersistent"
“InsertPosition"
"Intenal"
"Justify"
"KnoblIndent"
"KnobPixel"
"Label"
"Length”
"MappedWhenManaged"
"Margin"

292

XtCMenuEntry
XtCNotify
XtCOrientation
XtCParameter
XtCPixmap
XtCPosition
XtCReadOnly
XtCResize
XtCReverseMdeo
XtCScreen
XtCScrollProc
XtCScrolIDCursor
XtCScroll[HCursor
XtCScrollLCursor
XtCScrollRCursor
XtCScrollUCursor
XtCScrollVCursor

"MenuEntry"
"Notify"
"Orientation"
"BRrameter"
"Pixmap"
"Position"
"ReadOnly"
"Resize"
"ReverseVideo"
"Screen”
"ScrollProc"
"ScrollDCursor"
"Scroll[HCursor"
"ScrollLCursor"
"ScrollRCursor"
"ScrollUCursor"
"ScrollVCursor"

XtCSelection "Selection"
XtCSelectionArray "SelectionArray"
XtCSensitve "Sensitve"
XtCSession "Session"
XtCSpace "Space"
XtCString "String"
XtCTextOptions "“EextOptions”
XtCTextPosition "extPosition"
XtCTextSink "TextSink"
XtCTextSource "BExtSource"
XtCThickness "Thickness"
XtCThumb "Thumb"
XtCTranslations "Tanslations"
XtCValue "\alue"
XtCVSpace "VSpace"
XtCWidth "Width"
XtCWindow "Window"
XtCX "X

XtCY "y

Resource representation types:

Symbol Definition
XtRAcceleratorable "Acceleratordble”
XtRAtom "Atom"
XtRBitmap "Bitmap"
XtRBool "Bool"
XtRBoolean "Boolean"
XtRCallback "Callback"
XtRCallProc "CallProc"

293

XtRCardinal
XtRColor
XtRColormap
XtRCommandAgArray
XtRCursor
XtRDimension
XtRDirectoryString
XtRDisplay
XtREditMode
XtREnum
XtREnvironmentArray
XtRFile

"Cardinal"

"Color"

"Colormap"
"CommandAgArray"
"Cursor"
"Dimension”
"DirectoryString"
"Display"
"EditMode"
"Enum"
"EnmironmentArray"
"File"

XtRFloat "Float"
XtRFont "Font"
XtRFontSet "PntSet"
XtRFontStruct "EntStruct”
XtRFunction "Function”
XtRGeometry "Geometry"
XtRGravity "Gravity"
XtRImmediate “Immediate”
XtRInitialState “InitialState"
XtRInt “Int"
XtRJustify "Justify"
XtRLongBoolean XtRBool
XtRObject "Object”
XtROrientation "Orientation"
XtRPixel "Pixel"
XtRPixmap "Pixmap”
XtRPointer "Pointer"
XtRPosition "Position"
XtRRestartStyle "RestartStyle"
XtRScreen "Screen"
XtRShort "Short"
XtRSmcConn "SmcConn"
XtRString "String"
XtRStringArray "StringArray"
XtRStringTable "Stringable"
XtRUnsignedChar "UnsignedChar"
XtRTranslation@ble "TranslationTable"
XtRVisual "Msual"
XtRWidget "Wdget"
XtRWidgetClass "WigetClass"
XtRWidgetList "WdgetList"
XtRWindow "Window"
Boolean enumeration constants:

Symbol Definition

294

XtEoff
XtEfalse
XtEno
XtEon
XtEtrue
XtEyes

mn Offll
"BAlse"
"no
|l0nll
"true"
"yes

n

Orientation enumeration constants:

Symbol Definition
XtEvertical “vertical"
XtEhorizontal "horizontal"

Tex edit enumeration constants:

Symbol Definition
XtEtextRead "read"
XtEtextAppend "append"
XtEtextEdit "edit"

Color enumeration constants:

Symbol Definition
XtExtdefaultbackground "xtdefultbackground"
XtExtdefaultforground "xtdedultforeground”
Font constant:

Symbol Definition
XtExtdefaultfont "xtdetultfont"”

Hooks for External Agents constants:

Symbol Definition
XtHcreate "Xtcreate"
XtHset\alues "Xtsetalues"

XtHmanageChildren
XtHunmanageChildren

"XtmanageChildren"
"XtunmanageChildren

295

XtHmanageSet "XtmanageSet"

XtHunmanageSet "XtunmanageSet"
XtHrealizeWdget "XtrealizeWdget"
XtHunrealizeWdget "XtunrealizeWdget"
XtHaddCallback "XtaddCallback"
XtHaddCallbacks "XtaddCallbacks"
XtHremoveCallback "XtremeeCallback”
XtHremoveCallbacks "XtremweCallbacks"
XtHremoveAllCallbacks "XtremaeAllCallbacks"
XtHaugmentTanslations "Xtaugmentanslations”
XtHoverrideTranslations "XtgerrideTranslations"
XtHuninstallTranslations "Xtuninstallignslations"
XtHsetKeyboardfcus "XtsetkeyboardFocus”
XtHsetWMColormapWindws "XtsetWMColormapWhdows"
XtHmapWdget "XtmapWdget"
XtHunmapWdget "XtunmapWidget"
XtHpopup "Xtpopup"
XtHpopupSpringLoaded "XtpopupSpringLoaded"
XtHpopdowvn "Xtpopdavn"
XtHconfigure "Xtconfigure"
XtHpreGeometry "XtpreGeometry"
XtHpostGeometry "XtpostGeometry"
XtHdestry "Xtdestroy"

The Shell.h header file contains definitions for the following resource name, class, and represen-
tation type symbolic constants.

Resource names:

Symbol Definition
XtNallowShellResize "allvShellResize"
XtNargc "agc"

XtNargv "algv"
XtNbaseHeight "baseHeight"
XtNbaseWdth "baseVidth"
XtNcancelCallback "cancelCallback"
XtNclientLeader “clientLeader"
XtNcloneCommand "cloneCommand"
XtNconnection "connection"
XtNcreatePopupChildProc "createPopupChildProc"
XtNcurrentDirectory "currentDirectory"”
XtNdieCallback "dieCallback"
XtNdiscardCommand "discardCommand"
XtNenvironment "emironment"
XtNerrorCallback "errorCallback"
XtNgeometry "geometry"
XtNheightinc "heightinc”
XtNiconMask "iconMask"

296

XtNiconName
XtNiconNameEncoding
XtNiconPixmap
XtNiconWindow
XtNiconX

XtNiconY

XtNiconic
XtNinitialState
XtNinput
XtNinteractCallback
XtNjoinSession
XtNmaxAspectX
XtNmaxAspectY
XtNmaxHeight
XtNmaxWidth
XtNminAspectX
XtNminAspectY
XtNminHeight
XtNminWidth
XtNoverrideRedirect
XtNprogramRith
XtNresignCommand
XtNrestartCommand
XtNrestartStyle
XtNsaveCallback
XtNsaveCompleteCallback

"iconName"
"iconNameEncoding"
"iconPixmap"

"iconWindow"

"iconX"

"iconY"

"iconic”

"initialState"

"input"
"interactCallback"
"joinSession"
"maxAspectX"
"maxAspectY"
"maxHeight"

"maxWdth"
"minAspectX"
"minAspectY”
"minHeight"

"minWidth"
"gerrideRedirect”
"programBth”

"resignCommand"

"restartCommand"
"restartStyle"
"sgeCallback"”

"s@CompleteCallback"

XtNsaveUnder "saeUnder"
XtNsessionID "session|D"
XtNshutdavnCommand "shutdenCommand"
XtNtitle "title"
XtNtitleEncoding "titteEncoding"
XtNtransient "transient"
XtNtransientfer "transienter"
XtNurgeny "urgency"
XtNvisual "visual"
XtNwaitForwm "waitforwm"
XtNwaitforwm "waitforwm"
XtNwidthlnc "widthInc"
XtNwindowGroup "windavGroup"
XtNwindowRole "windawvRole"
XtNwinGravity "winGravity"
XtNwmTimeout "wmTmeout"
Resource classes:

Symbol Definition

XtCAllowShellResize

"allvShellResize"

297

XtCArgc

XtCArgv
XtCBaseHeight
XtCBaseWdth
XtCClientLeader
XtCCloneCommand
XtCConnection
XtCCreatePopupChildProc
XtCCurrentDirectory
XtCDiscardCommand
XtCEnvironment
XtCGeometry
XtCHeightinc
XtClconMask
XtClconName
XtClconNameEncoding
XtClconPixmap
XtClconWindowv
XtClconX

XtClconY

XtClconic
XtClnitialState
XtClnput
XtCJoinSession
XtCMaxAspectX
XtCMaxAspectY
XtCMaxHeight
XtCMaxWidth
XtCMinAspectX
XtCMinAspectY
XtCMinHeight
XtCMinWidth
XtCOverrideRedirect
XtCProgrammth
XtCResignCommand
XtCRestartCommand
XtCRestartStyle
XtCSareUnder
XtCSessionlD
XtCShutdevnCommand
XtCTitle
XtCTitleEncoding
XtCTransient
XtCTransientler
XtCUrgeny
XtCVisual
XtCWaitForwwm
XtCWaitforwm
XtCWidthinc

"Argc"
"Argv"

"BaseHeight"
"BaseWdth"

"ClientLeader"

"CloneCommand"

"Connection"
"CreatePopupChildProc"
"CurrentDirectory"

"DiscardCommand”
"Environment"
"Geometry"
"HeightInc"
“lconMask"
"lconName"

"lconNameEncoding"
"lconPixmap"

"lconWindow"
"lconX"
"lconY"
"lconic"
"InitialState"
"Input”

"JoinSession"
"MaxAspectX"
"MaxAspectY"
"MaxHeight"
"MaxwWidth"
"MinAspectX"
"MinAspectY"
"MinHeight"
"MinWidth"

"OerrideRedirect"
"Programgth”

"ResignCommand"”

"RestartCommand"

"RestartStyle"
"SaeUnder"
"Session|D"

"ShutdenCommand"

"Title"
"TtleEncoding"
"Tansient"

"TransientFor"

"Urgency"
"Visual"

"Waitforwm"

"Waitforwm"

"WidthInc"

298

XtCWindowGroup "WindowGroup"
XtCWindowRole "WindowRole"
XtCWinGravity "WinGravity"
XtCWmTimeout "WmTmeout"
Resource representation types:

Symbol Definition
XtRAtom "Atom"

299

Appendix F

Resource Configuration Management

Setting and changing resources in X applications can be difficult for both the application pro-
grammer and the end usé&esource Configuration Management (RCMpaddresses this prob-
lem by changing thX | ntrinsics to immediately modify a resource for a specified widget and
each child widget in the hierarghln this context, immediate means: no sourcing of a resource
file is required; the application does not need to be restarted fomihreswurce values to take
effect; and the change occurs immediately.

The main difference betwe®CM and theEditres protocol is that th&@CM customizing hooks
reside in théntrinsics and thus are linked with other toolkits such as Motif and the Athena wid-
gets. Hovever, the EditRes protocol requires the application to link with tBditRes routines in

the Xmu library and Xmu is not used by all applications that use Motif. Als&dthBes proto-

col uses ClientMessage, whereasRi@&M Intrinsics hooks usé’ropertyNotify events.

X Properties and thBropertyNotify events are used to implemeRCM and allav on-the-fly
resource customization. When the X Toolkit is initializedy #oms are interned with the strings
Custom InitandCustom Data Both _XtCreatePopupShelland _XtAppCreateShell register a
PropertyNotify event handler to handle these properties.

A customization tool uses tli@ustom Initproperty toping an application to get the application’s
toplevel window. When the applicatios’property notify @ent handler is imoked, the handler
deletes the propertyNo data is transferred in this property.

A customization tool uses tlgustom Datgroperty to tell an application that it should change a
resources value. Thedata in the property contains the length of the resource hame (the number
of bytes in the resource name), the resource name andxhealue for the resource. This prop-
erty’s type isXA_STRING and the format of the string is:

Thelength of the resource name (the number of bytes in the resource name)
Onespace character

Theresource name

Onespace character

Theresource value

a ks wn e

When setting the applicatianfesource, thevent handler calls functions to walk the application’s
widget tree, determining which widgets are affected by the resource string, and then applying the
value with XtSetValues.As the widget tree is recuvsly descended, at eaclvéin the widget

tree a resource part is tested for a match. When the entire resource string has been matched, the
value is applied to the widget or widgets.

Before a value is set on a widget, it is first determined if the last part of the resource is a valid
resource for that widget. It must also add the resource to the applisaismirce database and
then query it using specific resource strings that is builds from the widget information.

300

Table of Contents

Acknowledgments .

About This Manual . :

Chapter 1 — Intrinsics and Wrdgets

1.1. Intrinsics . Ce e

1.2. Languages .

1.3. Procedures and Macros

1.4. Widgets

1.4.1. Core Wigets

1.4.1.1. CoreClassPart Structure

1.4.1.2. CorePart Structure

1.4.1.3. Coe Resources.

1.4.1.4. CorePart Defaulalues

1.4.2. Composite Wigets

1.4.2.1. CompositeClassPart Structure
1.4.2.2. CompositePart Structure .

1.4.2.3. Composite Resources . .
1.4.2.4. CompositePart DefaulaMes

1.4.3. Constraint \gets

1.4.3.1. ConstraintClassPart Structure
1.4.3.2. ConstraintPart Structure

1.4.3.3. Constraint Resources

1.5. Implementation-Specific Types

1.6. Widget Classing. :

1.6.1. Widget Naming Conentlons .

1.6.2. Widget Subclassing in Public .h Frles
1.6.3. Widget Subclassing in aie .h Files
1.6.4. Widget Subclassing in .c Files . .
1.6.5. Widget Class and Superclass Look Up .
1.6.6. Widget Subclasse¥ification :
1.6.7. Superclass Chaining

1.6.8. Class Initialization: class_ |n|t|aI|ze and class part |n|t|aI|ze Procedures.

1.6.9. Initializing a Widget Class .

1.6.10. Inheritance of Superclass Operatrons :

1.6.11. Iivocation of Superclass Operations.

1.6.12. Class Extension Records

Chapter 2 — Widget Instantiation .

2.1. Initializing the X Toolkit .

2.2. Establishing the Locale . .

2.3. Loading the Resource Database .

2.4. Parsing the Command Line.

2.5. Creating Widgets .

2.5.1. Creating and Merging Argument L|sts

2.5.2. Creating a Widget Instance . .

2.5.3. Creating an Application Shell Instance .

2.5.4. Cowvenience Procedue to Initialize an Applrcatron
2.5.5. Widget Instance Allocation: The allocate Procedure.

2.5.6. Widget Instance Initialization: The initialize Procedure.

XX,

©COOWONNODOPDNWWNNR R P

FROARNOOENWNOODEIN NS D ORI RMNNRRD

2.5.7. Constraint Instance Initialization: The ConstraintClassPart initialize Procedure
2.5.8. Nonwidget Data Initialization: The initialize_hook Procedure.
2.6. Realizing Widgets .

2.6.1. Widget Instance WlndoCreatron The reallze Procedure
2.6.2. Windav Creation Corenience Routine.

2.7. Obtaining Window I nformation from a Widget

2.7.1. Unrealizing Widgets.

2.8. Destroying Widgets .

2.8.1. Adding and Removing Destroy Callbacks :

2.8.2. Dynamic Data Deallocation: The degtRoocedure

2.8.3. Dynamic Constraint Data Deallocation: The ConstrarntCIassPart;dérstce-
dure .
2.8.4. Widget Instance Deallocatlon The deallocate Procedure
2.9. Exiting from an Application .

Chapter 3 — Composite Widgets and Thelr Chlldren CoL .
3.1. Addition of Children to a Composite Widget: The insert__ ch|Id Procedure .
3.2. Insertion Order of Children: The insert_position Procedure .
3.3. Deletion of Children: The delete_child Procedure .

3.4. Adding and Removing Children from the Managed Set .
3.4.1. Managing Children . Ce e

3.4.2. Unmanaging Children .

3.4.3. Bundling Changes to the Managed Set

3.4.4. Determining if a Widget Is Managed .

3.5. Controlling When Widgets Get Mapped

3.6. Constrained Compositeiffgets . .

Chapter 4 — Shell VEgets . .

4.1. Shell Widget Definitions . .

4.1.1. ShellClassPart Definitions

4.1.2. ShellPart Definition .

4.1.3. Shell Resources . .

4.1.4. ShellPart Default Values .

4.2. Session Participation .

4.2.1. Joining a Session :

4.2.2. Saving Application State .

4.2.2.1. Requesting Interaction

4.2.2.2. Interacting with the User durrng a Checkpomt .

4.2.2.3. Responding to a Shutdown Cancellation.

4.2.2.4. Completing a Sze . . .

4.2.3. Responding to a Shutdown .

4.2.4. Resigning from a Session.

Chapter 5 — Pop-Up tigets . .

5.1. Pop-Up Widget Types.

5.2. Creating a Pop-Up Shell.

5.3. Creating Pop-Up Children .

5.4. Mapping a Pop-Up Widget .

5.5. Unmapping a Pop-Up Widget .

Chapter 6 — Geometry Management.

6.1. Initiating Geometry Changes . .

6.2. General Geometry Manager Requests.

6.3. Resize Requests

DD OOOWRNR NN ANNNSTOANN O REDINeBg COoatialByEd

6.4. Potential Geometry Changes .

6.5. Child Geometry Management: The geometry manager Procedure .

6.6. Widget Placement and Sizing .

6.7. Preferred Geometry .

6.8. Size Change Management: The resize Procedure
Chapter 7 — Event Management .

7.1. Adding and Deleting Additional Event Sources
7.1.1. Adding and Removing Input Sources.

7.1.2. Adding and Removing Blocking Notlflcatlons
7.1.3. Adding and Removing Timeouts .o
7.1.4. Adding and Removing Signal Callbacks.

7.2. Constraining Events to a Cascade of Widgets .
7.2.1. Requesting Key and Button Grabs.

7.3. Focusing Events on a Child.

7.3.1. Events for Drawables That Ae Not a Wldgets Wndow :

7.4. Querying Event Sources.
7.5. Dispatching Events :
7.6. The Application Input Loop .

7.7. Setting and Checking the Sensrtwrty State of a Wldget .

7.8. Adding Background Work Procedures .
7.9. X Event Filters . .o

7.9.1. Pointer Motion Compressron

7.9.2. Enter/Leae Compression

7.9.3. Exposure Compression

7.10. Widget Exposure andsibility .

7.10.1. Redisplay of a Widget: The expose Procedure
7.10.2. Widget Vsibility . Ce
7.11. X Event Handlers. .

7.11.1. Event Handlers That SeIec'eEts

7.11.2. Event Handlers That Do Not Seleceie

7.11.3. Current Event Mask . .

7.11.4. Event Handlers for X11 Protocol ExtenS|ons
7.12. Using the Intrinsics in a Multi-Threadedviganment
7.12.1. Initializing a Multi-Threaded Intrinsics Application
7.12.2. Locking X Toolkit Data Structures .o
7.12.2.1. Locking the Application Context

7.12.2.2. Locking the Process

7.12.3. Event Management in a Multi- Threaded Envrronment

Chapter 8 — Callbacks. :

8.1. Using Callback Procedue and CaIIback Lrst Defrnrtlons
8.2. Identifying Callback Lists .

8.3. Adding Callback Procedures .

8.4. Removing Callback Procedures .

8.5. Executing Callback Procedures .

8.6. Checking the Status of a Callback List .

Chapter 9 — Resource Management .

9.1. Resource Lists .

9.2. Byte Offset Calculatlons . .
9.3. Superclass-to-Subclass Chaining of Resource Lrsts :
9.4. Subresources

a6
106
@8
a9
11
12
12
12
14
15
16
17
19
23

P5

26
a7
28
A
B0

31
31
31
33
B3
34
34
B5
B7
39
1o
na
una
a5
a5
46

ue6

us

49
19
30
51
52
53

a8
b8

9.5. Obtaining Application Resources.

9.6. Resource Cearsions

9.6.1. Predefined Resource @ermers

9.6.2. Nev Resource Corerters

9.6.3. Issuing Corersion Warnings

9.6.4. Registering a New Resource Cmerter
9.6.5. Resource Corerter In vocation .

9.7. Reading and Writing Widget State
9.7.1. Obtaining Widget State

9.7.1.1. Widget Subpart Resource Data: The get vaIues hook Procedure .

9.7.1.2. Widget Subpart State

9.7.2. Setting Widget State

9.7.2.1. Widget State: The set_: values Procedure

9.7.2.2. Widget State: The set_values_almost Procedure . :
9.7.2.3. Widget State: The ConstraintClassPart set_values Procedure
9.7.2.4. Widget Subpart State

9.7.2.5. Widget Subpart Resource Data: The set values hook Procedure :

Chapter 10 — Translation Management .

10.1. Action Tables . .

10.1.1. Action Table Reglstrat|on

10.1.2. Action Names to ProcedtﬂrTransIatlons

10.1.3. Action Hook Registration

10.2. Translation Tables

10.2.1. Event Sequences .

10.2.2. Action Sequences.

10.2.3. Multi-Click Time

10.3. Translation Table Management

10.4. Using Accelerators

10.5. KeyCode-to-kKeySym Corversmns ..

10.6. Obtaining a KeySym in an Action Procedure

10.7. KeySym-to-KeyCode Cowmersions . .

10.8. Registering Button and Key Grabs for Actlons

10.9. Invoking Actions Directlyo

10.10. Obtaining a Widget’/Action List .

Chapter 11 — Utility Functions .

11.1. Determining the Number of EIements in an Array
11.2. Translating Strings to Widget Instances .

11.3. Managing Memory Usage.

11.4. Sharing Graphics Contexts

11.5. Managing Selections . .
11.5.1. Setting and Getting the Selectlon T|meout VaIue :
11.5.2. Using Atomic fiansfers

11.5.2.1. Atomic Transfer Procedures.

11.5.2.2. Getting the SelectiomMe .

11.5.2.3. Setting the Selection Owner.

11.5.3. Using Incrementakdnsfers

11.5.3.1. Incremental Transfer Procedures .

11.5.3.2. Getting the Selection Value Incrementally
11.5.3.3. Setting the Selection Owner for Incrementah3fers
11.5.4. Setting and Retrieving Selection Targaaketers . .

vi

60
@1
62
©4
68
59
I3
¥6
16

177

18
19
80
Bl
B2
a2

183

85

&7
87
&7
a9
a9
90
90
21
93
94
D8
98
B9
Qo
R1
Q2
D2
P2
a3
a5
Q7
D8
@8
P8
21
23
25
25
a8
29
21

11.5.5. Generating MULTIPLE Requests.
11.5.6. Auxiliary Selection Properties .

11.5.7. Retrieving the Most Receritriestamp . .

11.5.8. Retrieving the Most Recentdin
11.6. Merging Exposure Events into agita
11.7. Translating Widget Coordinates.
11.8. Translating a Windaw to a Widget .
11.9. Handling Errors

11.10. Setting WM COLORMAP WINDOWS.

11.11. Finding File Names.

11.12. Hooks for External Agents .
11.12.1. Hook Object Resources .
11.12.2. Querying Open Displays .
Chapter 12 — Nonwidget Objects .
12.1. Data Structures .
12.2. Object Objects. . .
12.2.1. ObjectClassPart Structure .
12.2.2. ObjectPart Structure .
12.2.3. Object Resources. . . .
12.2.4. ObjectPart Default Values .

12.2.5. Object Arguments to Intrinsics Routlnes .

12.2.6. Use of Objects .

12.3. Rectangle Objects

12.3.1. RectObjClassPart Structure
12.3.2. RectObjPart Structure
12.3.3. RectObj Resources . .
12.3.4. RectObjPart Default Values

12.3.5. Widget Arguments to Intrinsics Routrnes .

12.3.6. Use of Rectangle Objects .

12.4. Undeclared Class.

12.5. Widget Arguments to Intrrnsrcs Routlnes
Chapter 13 — Evolution of the Intrinsics.

13.1. Determining Specification Revision Leel .

13.2. Release 3 to Release 4 Compatibility .
13.2.1. Additional Aguments .
13.2.2. set_values_almost Procedures
13.2.3. Query Geometry . .
13.2.4. unrealizeCallback Callback Llst :
13.2.5. Subclasses of WMShell .

13.2.6. Resource Type Gganters . .o
13.2.7. kySym Case Corersion Procedure .
13.2.8. Nonwidget Objects :
13.3. Release 4 to Release 5 Compatlblllty.
13.3.1. baseTranslations Resource.

13.3.2. Resource File Search Path.

13.3.3. Customization Resource

13.3.4. Per-Screen Resource Database .
13.3.5. Internationalization of Applications .
13.3.6. Permanently Allocated Strings
13.3.7. Arguments to Existing Functions.

Vii

22
23
24
24
25
25
26

31
22
35
26
20
22

22
24
a5
a5
25

27
a7
29
20
30
30
30

32
34
34
34
34
a5

35
35
36
36
26
26
36
a7
a7
37
38
28
28

13.4. Release 5 to Release 6 Compatibility. B8

13.4.1. Widget Internals . . . e <®)
13.4.2. General Application Delopment Ce e - 1)
13.4.3. Communication with Wingoand Session Managers o 1¢)
13.4.4. Geometry Management. @0
13.4.5. Event Management . @
13.4.6. Resource Management. @0
13.4.7. Translation Management &
13.4.8. Selections . . . e 4
13.4.9. External Agent Hooks - 1
Appendix A — Resource File Format. B2
Appendix B — Translation Table Syntax. B3
Appendix C — Compatibility Functions 11
Appendix D — Intrinsics ErrorMessages 85
Appendix E — Defined Strings . . . e, [0
Appendix F — Resource Configuration Management 3 0]
Index . 013

viii

